
Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Mezghani, Neila; Loulou, Karim; Ouakrim, Youssef; Ayena, Johannes C; Cagnin, Alix; Choinière, Manon; Bureau, Nathalie J et Hagemeister, Nicola (2024). Identification of osteoarthritis kinematic phenotypes using cluster analysis on knee kinesiography data. Dans 2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET) (p. 1-5). https://doi.org/10.1109/IC_ASET61847.2024.10596254
Fichier(s) associé(s) à ce document :![]() |
PDF
- 2024_IEEE_ASET_Mezghani.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation) Licence : Creative Commons CC BY. |
|
Catégorie de document : | Communications dans des actes de congrès/colloques |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Previous studies highlight that identifying phenotypes is crucial for developing effective treatments for knee osteoarthritis (OA). This study aims to identify kinematic phenotypes in a knee OA population and characterize them by patient biomechanical markers which are functional parameters used in clinical settings. Knee kinematics are measured using the KneeKG (Knee Kinesiography) system, a technology that objectively assesses 3D knee kinematics. Kinematic data were categorized into homogeneous groups using a clustering process with a discriminant model called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). We identified five distinct phenotypes, exhibiting significant statistical differences (p < 0.05) in 3D kinematics, and linked these phenotypes to biomechanical markers measurable in clinical settings. |
Adresse de la version officielle : | https://ieeexplore.ieee.org/abstract/document/1059... |
Déposant: | Ayena, Johannes |
Responsable : | Neila Mezghani |
Dépôt : | 28 févr. 2025 19:33 |
Dernière modification : | 28 févr. 2025 19:33 |
![]() |
RÉVISER |