LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

Identification of osteoarthritis kinematic phenotypes using cluster analysis on knee kinesiography data [r-libre/3615]

Mezghani, Neila; Loulou, Karim; Ouakrim, Youssef; Ayena, Johannes C; Cagnin, Alix; Choinière, Manon; Bureau, Nathalie J et Hagemeister, Nicola (2024). Identification of osteoarthritis kinematic phenotypes using cluster analysis on knee kinesiography data. Dans 2024 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET) (p. 1-5). https://doi.org/10.1109/IC_ASET61847.2024.10596254

Fichier(s) associé(s) à ce document :
[img]  PDF - 2024_IEEE_ASET_Mezghani.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation)
Licence : Creative Commons CC BY.
 
Catégorie de document : Communications dans des actes de congrès/colloques
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : Previous studies highlight that identifying phenotypes is crucial for developing effective treatments for knee osteoarthritis (OA). This study aims to identify kinematic phenotypes in a knee OA population and characterize them by patient biomechanical markers which are functional parameters used in clinical settings. Knee kinematics are measured using the KneeKG (Knee Kinesiography) system, a technology that objectively assesses 3D knee kinematics. Kinematic data were categorized into homogeneous groups using a clustering process with a discriminant model called Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH). We identified five distinct phenotypes, exhibiting significant statistical differences (p < 0.05) in 3D kinematics, and linked these phenotypes to biomechanical markers measurable in clinical settings.
Adresse de la version officielle : https://ieeexplore.ieee.org/abstract/document/1059...
Déposant: Ayena, Johannes
Responsable : Neila Mezghani
Dépôt : 28 févr. 2025 19:33
Dernière modification : 28 févr. 2025 19:33

Actions (connexion requise)

RÉVISER RÉVISER