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Abstract—Previous studies highlight that identifying 

phenotypes is crucial for developing effective treatments for 

knee osteoarthritis (OA). This study aims to identify kinematic 

phenotypes in a knee OA population and characterize them by 

patient biomechanical markers which are functional 

parameters used in clinical settings. Knee kinematics are 

measured using the KneeKG® (Knee Kinesiography) system, a 

technology that objectively assesses 3D knee kinematics. 

Kinematic data were categorized into homogeneous groups 

using a clustering process with a discriminant model called 

Balanced Iterative Reducing and Clustering using Hierarchies 

(BIRCH). We identified five distinct phenotypes, exhibiting 

significant statistical differences (p < 0.05) in 3D kinematics, 

and linked these phenotypes to biomechanical markers 

measurable in clinical settings. 

Keywords—knee oesteoarthritis, gait analysis, phenotype, 

cluster analysis, kinematic data 

I. INTRODUCTION 

Knee osteoarthritis (OA) is a complex disease with 
multifactorial causes, making treatment approaches to reduce 
pain and improve quality of life challenging. One of the 
reasons regularly brought up is the very high inter-individual 
variability in this population [1]. As a result, an increasing 
number of studies are seeking to define phenotypes. For 
instance, phenotype definition has been based on 
anatomical/structural information obtained by imaging [2], 
on biological information [3] and/or musculoskeletal 
information [4]. To our knowledge, there is currently no 
phenotype based on kinematic information within the OA 
population. 

Biomechanical markers derived from kinematic curves 
such as flexion/extension, abduction/adduction, and 
external/internal rotation, are increasingly recognized to be 
risk factors for disease progression in knee OA [5]. These 
markers are not only associated with pain [6], but they are 
also sensitive to clinical improvement following targeted 

exercise [7]. Therefore, they could have a high potential to 
guide physical therapy for patients who will not undergo 
total knee replacement. Furthermore, they could be a helpful 
tool to individualize the approach to total knee replacement 
for surgical planning. To measure biomechanical markers, we 
can use the KneeKG® system that was designed to 
objectively measure parameters in a three-dimensional (3D) 
dynamic, weight-bearing context and in a clinical setting [8]. 
A number of medium to large cohort studies or randomized 
controlled trial (RCT) [9] have been conducted in the past 
years using the KneeKG®, providing us with data suited for 
clustering approaches. 

Early diagnosis of knee OA and the implementation of an 
effective procedure to monitor its progression are still 
challenging. While previous research [10]–[13] have 
reported phenotypes identification as a critical and important 
step in the development of treatment for the knee OA, no 
study has yet fully investigated such identification among 
knee OA population using kinematic parameters. To propose 
clinical meaningful OA phenotype, van Spil et al. [14] have 
investigated a consensus-based framework designed with a 
panel of 25 members selected encompassing an array of 
expertise in OA related topics, career stages, and 
geographical origins. Among their recommendations, they 
claim that OA classification systems should include 
measures from more than one domain. Thus, the phenotypes 
should be different in terms of clinically relevant variables. 
They also highlighted the importance of data-driven 
approaches (over expert opinion approaches), as long as 
these data are of high quality, have a clinical meaning and 
are reproducible. Our study is in line with the idea of 
including measures from more than one domain and 
represents a first step towards a general characterization of 
the phenotypes. Its main contribution is to develop a new 
methodology (1) To identify kinematic phenotypes within a 
knee OA population and (2) To link these phenotypes to 
biomechanical markers measured in clinical settings. The 
proposed approach uses the kinematics curves 
(flexion/extension, abduction/adduction, and tibial 
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internal/external rotation) measured via the KneeKG® 
system during a gait task, providing practical clinical 
insights into OA classification. These kinematic data 
represent the knee movement in three dimensions. Clusters 
are characterized in terms of demographic and 
biomechanical markers.  

II. METHODS 

The methodology used to identify kinematic phenotypes is 
summarized in Fig. 1. It involves (1) data collection and (2) 
data standardization, (3) clustering for phenotypes 
identification, (4) phenotype validation and (5) phenotype 
characterization (interpretation and description). The 
following subsections describe these steps including the 
measurement device. 

A. Knee Kinesiography System 

The measurement device is a tool labelled KneeKG® 
(Emovi Inc., Canada). It stands for Knee Kinesiography and 
utilizes a knee marker attachment system designed to reduce 
skin-motion artifacts [15]. The KneeKG® aims at assessing 
knee kinematics in order to identify biomechanical risk 
factors related to OA progression (Fig. 2). It comprises a set 
of trackers fixed on the KneeKG®, an infrared camera 
(Polaris Spectra, Northern Digital Inc., Quebec, Canada) 
providing 3D positions of the trackers at a rate of 60 Hz, 
and a computer equipped with the KneeKG® software suite 
(Emovi, Inc.) storing data points for each gait cycle in three 
dimensions [8]. The reliability and accuracy of the 
KneeKG® system have been investigated [15]. 

B. Datasets 

This study is a secondary analysis of a large randomized 
controlled trial (RCT; ISRCTN16152290) conducted 
between the years 2015 and 2019 on OA patients who were 
not on a waiting list for a total knee replacement. 
Patients were enrolled if they reported pain ≥ 4/10 on a 
numerical scale and had a confirmed knee OA graded 2 or 
more according to the Kellgren-Lawrence (KL) radiographic 
severity scale [16]. Details related to this RCT, including the 
sample size and the inclusion and exclusion criteria, can be 
found in [9]. The protocol of this previous study was 
approved by the research ethics boards of the École de 
Technologie Supérieure (No: H20150505) and the Centre 
Hospitalier de l’Université de Montréal (No: CE.14.339). For 
this present study, a second approbation was granted by 
these ethical committees in order to access the database 
(subsequent use of secondary data). 
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Fig. 1. Block diagram of the adopted methodology. 

Fig. 2. Knee Kinesiography (KneeKG®) system. 

C. Data Standardization 

The delineation of each gait cycle’s beginning and end is 
determined based on the flexion/extension signal plan, with 
equivalent points identified in the adduction/abduction and 
internal/external rotation signals. Each gait cycle is 
normalized to range from 1% to 100% of the gait cycle for 
each kinematic dimension. For each patient, approximately 
15 representative cycles are extracted from the 
flexion/extension signal to establish a median pattern for this 
specific movement. Subsequently, matching cycles are 
identified within the adduction/abduction and 
internal/external rotation signals, aligning with the cycles 
chosen for the flexion/extension analysis. This approach 
guarantees that the median patterns derived for the 
adduction/abduction and internal/external rotation 
movements are based on the identical representative cycles as 
those selected for the flexion/extension. Consequently, this 
methodology yields a total of 300 measurement points, 
distributed evenly across the three kinematic dimensions—
flexion/extension, adduction/abduction, and internal/external 
rotation—with each dimension contributing 100 points. We 
standardize the data using a scaling technique where the values 
are centered around the mean with a unit standard deviation. 
Indeed, the recorded data are heterogeneous (i.e., range at 
different scales) since the knee’ movement amplitude in 3D is 
different according to the movement plane (sagittal, frontal, 
and transverse). 

TABLE I.  BIOMECHANICAL MARKERS (B1 TO B12) USED IN 
CLINCAL SETTINGS 

Calibrate parameter B1 
Varus functional lower limb 
alignment 

Gait 

      

Phases 

at initial contact 

B2 Varus alignment 

B3 Knee flexum 

B4 External tibia rotation 

during loading 

B5 Varus thrust 

B6 Valgus thrust 

B7 Limited flexion excursion 

B8 Internal tibia rotation 

during stance 
B9 Varus alignment 

B10 Fixed flexion 

during swing B11 Decreased maximum flexion 

during all gait 

phases 
B12 

Decreased sagittal  
plane range of motion 

 



D. Biomechanical Markers 

The biomechanical markers are parameters routinely 
extracted and assessed in clinical biomechanical studies 
involving knee OA population, as summarized in Table I. 

E. Cluster Analysis for Phenotype Identification 

Based on the measurement points of all patients, we 
perform a clustering in order to identify homogeneous groups 
that have similar features. Once the groups formed, the mean 
patterns (average of the kinematic curves within each 
homogeneous group) are computed to obtain the knee 
kinematic phenotypes. In this paper, groups also refer to 
clusters or phenotypes. 

1) Clustering model: We apply a hierarchical clustering 
algorithm named Balanced Iterative Reducing and Clustering 
using Hierarchies (BIRCH) [17]. The main advantage of 
BIRCH is its ability to incrementally and dynamically cluster 
incoming multi-dimensional data in an attempt to produce 
the best quality clustering. This is suitable for kinematic data 
and offers the opportunity to perform clustering in case of 
high dimensional data. Moreover, BIRCH can find 
high-quality clustering with only a single scan of a dataset 
and can efficiently handle noise caused by the kinematic data 
variability [18]. 

2) Optimum number of clusters: The optimum number of 
clusters or groups is determined using Elbow method which 
is one of the most common and technically robust 
approaches. In this method, the sum of distances of 
observations from their cluster centroids, called Within-
Cluster-Sum-of-Squares (WCSS), is computed. Plotting 
WCSS against increasing k (number of clusters) can show an 
‘elbow’ which demarks significant drop-in rate of increase. 
The optimal number of groups corresponds to an elbow point 
which achieves reasonable performance without having too 
many groups. 

3) Cluster evaluation: The clustering model is evaluated 
using the intra-class correlation coefficient (ICC), which 
informs how similar elements in the same cluster are. It 
provides a measure of homogeneity within the clusters. 
The values of ICC range from 0 to 1. A very small value for 
ICC implies that the within-cluster variance is much greater 
than the between-cluster variance, and an ICC of 0 shows 
that there is no correlation within a cluster. 

F. Phenotype Validation and Characterization 

We validate the identified phenotypes by utilizing the 1D 
statistical parametric mapping (SPM). SPM is increasingly 
employed for continuum data (e.g., kinematic data) by the 
biomechanics research community to assess the overall 
difference on each plane through a complete gait cycle [19].  

 

 

TABLE II.  INTRA-CLUSTER CORRELATION COEFFICIENT (ICC) 
WITHIN EACH GROUP (G1 TO G5) 

 G1 G2 G3 G4 G5 

Flexion/Extension 0.43 0.44 0.35 0.3 0.37 

Abduction/Adduction 0.66 0.62 0.62 0.62 0.66 

Rotation 0.48 0.53 0.61 0.54 0.29 

 

This statistical analysis aims to compare the identified 
phenotypes in order to confirm that they are indeed different. 
To characterize the different phenotypes, we perform a 
Chi-square and analysis of variance (ANOVA) tests to assess 
between-groups differences in terms of: (i) demographic 
characteristics (age, sex, BMI) and (ii) biomechanical 
markers, described in Table I, which are a set of 12 
kinematic parameters used in clinical settings by the 
KneeKG® system. 

III. RESULTS 

Numerical simulations were conducted with Python 3.7 
(standard scientific and visualization packages: sklearn 
0.24.2, matplotlib 0.99). The optimum number of groups is 
fixed to five via the Elbow method, which utilizes Within-
Cluster-Sum-of-Squares. The resulting clusters (G1 to G5) are 
verified using the intra-cluster correlation coefficient (ICC), 
with Table II detailing ICC values ranging from 0.29 to 0.66. 
This indicates a significant correlation among knee kinematic 
curves within each group. 

A. Identified Phenotypes 

The identified phenotypes are described in Fig. 3. Five 
phenotypes are obtained by averaging the 3D kinematic 
curves within each homogeneous group identified by the 
BIRCH clustering. The number n of observations per group 
(cluster) is indicated on the upper corner of Fig. 3 (Figs. 3a, 
3b, 3c). The results presented in Figs. 3d, 3e, 3f (second line 
of Fig. 3) are related to the 1D-SPM statistical analysis in 
which the gray area indicates the percentage of the gait cycle 
where the five phenotypes are different. Our results showed a 
statistical difference of the identified phenotypes in the three 
planes and throughout the whole gait cycle. 

B. Interpretation and Description of the Phenotypes 

ANOVA test allows to assess between-groups differences 
in terms of the demographic characteristics of the 
participants (Table III), and the biomechanical markers 
which are biomechanical parameters used in clinical settings 
(Table IV). Based on an ANOVA, Table III shows that there 
is no statistical difference in terms of age and BMI in the 
different groups. The statistical analysis in terms of 
biomechanical markers states several significant differences 
as shown in table (Table IV). 

 

 

 



 

Fig. 3. Five phenotypes are identified based on 623 knee kinematic observations (Line 1) and the corresponding SPM{t} with a significance threshold α = 
0.05 (Line 2). The gray area indicates the percentage of the gait cycle for which the five phenotypes are different.

 

TABLE III.  DEMOGRAPHIC CHARACTERISTICS OF 616 KNEE 
KINEMATICS OBSERVATIONS FROM 409 PATIENTS 

 G1 G2 G3 G4 G5 

N 279 130 52 65 90 

Age �� (�) 64.02(9.00) 63.72(10.05) 62.02(9.37) 64.08(13.45) 60.58(8.83) 

BMI �� (�) 30.54(5.32) 31.21(5.87) 30.10(4.59) 31.28(5.13) 28.14(5.71) 

IV. DISCUSSION 

In this research, we introduced a clustering methodology 
utilizing the BIRCH (Balanced Iterative Reducing and 
Clustering using Hierarchies) approach to discern and define 
kinematic phenotypes in the osteoarthritis (OA) population. 
To our understanding, this study represents the pioneering 
effort of its kind, with no comparable studies found in the 
literature for OA phenotype classification. Indeed, we 
identified five distinct phenotypes by averaging 3D kinematic 

curves within each homogeneous group, as illustrated in Figs. 
3a, 3b, and 3c. These phenotypes exhibit statistically 
significant differences across the three planes, depicted in 
Figs. 3d, 3e, and 3f. Our findings indicate the feasibility of 
efficiently deriving phenotypes based on knee kinematics, 
measured using a knee kinesiography system. Consequently, 
these phenotypes provide an objective assessment of knee 
movement patterns in the OA population. 

The number of observations per group, and therefore 
making up a phenotype, differs from one group to another. For 
example, Group G1 includes 283 observations while Group 
G5 comprises 91 (Fig. 3). This demonstrates that the G1 
phenotype is the most prevalent within the considered OA 
population. The analysis of demographic characteristics 
(Table III) shows that there are no statistical differences 
between the different groups. This demonstrates that the 
various phenotypes are not a consequence of these 
characteristics. 

TABLE IV.  STATISTICAL RESULTS: CLINICAL INTERPRETATION OF THE PHENOTYPES 

                                                                                                                                                                                Clusters comparison 

 

Biomechanical markers 
G1G2 G1G3 G1G4 G1G5 G2G3 G2G4 G2G5 G3G4 G3G5 G4G5 

Varus thrust during loading 0.001 * 0.534 * 0.171 0.003 0.015 * 0.493 * 

Varus functional lower limb * 0.506 * * * * 0.147 * * * 

Varus alignment at initial contact * * * * * * * * * * 

Valgus thrust during loading 0.001 * 0.193 * 0.001 0.299 * * 0.938 * 

Knee flexum at initial contact * * * 0.007 * * * 0.183 * * 

External tibial rotation * * * 0.470 * * * 0.742 * * 

Varus alignment during stance * * * * * * * * * * 

Internal tibial rotation * * * 0.728 * * * 0.704 * * 

Limited flexion excursion 0.076 0.149 0.121 0.187 0.013 0.858 0.011 0.021 0.747 0.021 

Fixed flexion during stance 0.009 0.062 0.183 0.003 0.952 0.653 0.532 0.718 0.695 0.407 

Maximum flexion during swing 0.002 * 0.083 0.041 * 0.001 * * * 0.914 

Sagittal plane range 0.007 0.53 0.002 0.347 0.021 * 0.147 0.127 0.216 0.002 

Note:     *p<0.001     



 The biomechanical markers, described in Table I, Table 
IV, highlighted interesting characteristics of each phenotype 
especially for Group 4. The latter is characterized by a 
significantly higher abduction angle, indicating a unique 
biomechanical profile (red curve in Fig. 3). Notably, the 
varus biomarker (varus functional alignment and varus 
thrust) is markedly elevated in this group and statistically 
higher than Groups 2, 3 and 5. Interestingly, Group 4 shares 
a notable similarity in biomarker tendencies with Group 3, 
where knee flexum tends to be higher than in other groups, 
and internal and external tibial rotation tends to be lower. 
This observation highlights commonalities in the 
biomechanical characteristics of both Group 3 and Group 4, 
further underlining the nuanced nature of arthrosis subgroups 
and offering valuable insights for targeted therapeutic 
interventions.  

Group 2 has a different biomechanical profile, marked by 
significantly low knee flexum, and low internal and external 
tibial rotation, whereas Group 5 presents with the lowest 
varus scores, wherein varus alignments (i.e., valgus), which 
are significantly different from other groups. Furthermore, 
the varus functional alignment in Group 5 is lower but 
similar to the one in Group 2, while the varus thrust also 
being lower is comparable to Group 3. This distinctive 
combination of biomechanical markers in Group 5 further 
underscores the diverse nature of arthrosis subgroups, 
suggesting potential variations in disease mechanisms and 
highlighting the need for tailored therapeutic approaches 
based on specific kinetic patterns within this patient 
population. 

V. CONCLUSION 

This study identified five distinct phenotypes in the knee 
osteoarthritis (OA) population using 3D kinematic data 
captured with a Knee Kinesiography exam (KneeKG® 
system). The findings reveal that each phenotype has a 
distinct combination of biomechanical markers, which are 
objective functional parameters used in clinical settings and 
associated with OA progression and patient-reported 
outcomes. These results indicate the potential of this 
approach to tailor treatment plans based on the identified 
phenotypes, offering a more personalized care strategy for 
knee OA patients. Future research will expand on these 
findings by improving the robustness of the identified 
phenotypes, incorporating additional clinical parameters, 
such as quality of life measures, patient-reported outcomes 
using the Knee Injury and Osteoarthritis Outcome Score 
(KOOS) questionnaire and knee OA radiographic grades. 
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