Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Nadif, Sami; Sabir, Essaid; Elbiaze, Halima et Haqiq, Abdelkrim (sous presse). Green Grant-Free Power Allocation for Ultra-Dense Internet of Things: A Mean-Field Perspective. Journal of Network and Computer Applications, In Pre. doi.org/10.1016/j.jnca.2024.103908
Fichier(s) associé(s) à ce document :
PDF
- MFG-IoT-JNCA.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation) |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Accepté (sous presse) |
Résumé : | Grant-free access, in which each Internet-of-Things (IoT) device delivers its packets through a randomly selected resource without spending time on handshaking procedures, is a promising solution for supporting the massive connectivity required for IoT systems. In this paper, we explore grant-free access with multi-packet reception capabilities, with an emphasis on ultra-low-end IoT applications with small data sizes, sporadic activity, and energy usage constraints. We propose a power allocation scheme aimed at maximizing throughput while minimizing power consumption by considering the tra!c and energy constraints of IoT devices. Our approach employs a stochastic geometry framework and mean-field game theory to model and analyze the mutual interference among active IoT devices. Additionally, we utilize a Markov chain model to capture and track the queue length of IoT devices, enabling the derivation of the transmission success probability at steady-state. The simulation results illustrate the optimal power allocation strategy and evaluate the proposed approach’s performance in terms of packet transmission success probability and average delay. |
Adresse de la version officielle : | https://www.sciencedirect.com/science/article/abs/... |
Déposant: | Essaid, Sabir |
Responsable : | Sabir Essaid |
Dépôt : | 03 juin 2024 12:59 |
Dernière modification : | 03 juin 2024 12:59 |
RÉVISER |