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A B S T R A C T

Grant-free access, in which each Internet-of-Things (IoT) device delivers its packets
through a randomly selected resource without spending time on handshaking procedures,
is a promising solution for supporting the massive connectivity required for IoT systems.
In this paper, we explore grant-free access with multi-packet reception capabilities, with
an emphasis on ultra-low-end IoT applications with small data sizes, sporadic activity, and
energy usage constraints. We propose a power allocation scheme aimed at maximizing
throughput while minimizing power consumption by considering the tra�c and energy
constraints of IoT devices. Our approach employs a stochastic geometry framework and
mean-field game theory to model and analyze the mutual interference among active IoT
devices. Additionally, we utilize a Markov chain model to capture and track the queue
length of IoT devices, enabling the derivation of the transmission success probability at
steady-state. The simulation results illustrate the optimal power allocation strategy and
evaluate the proposed approach’s performance in terms of packet transmission success
probability and average delay.

1. Introduction
Massive Internet of Things (IoT) communications

are essential in the fifth-generation (5G) and beyond
cellular networks [1, 2, 3, 4]. They are distinguished
by a large number of low-cost IoT devices that op-
erate mostly in the uplink and have small packets,
sporadic activity, and restrictive energy usage require-
ments. Hence, massive IoT requires a whole di�erent
set of Medium Access Control (MAC) protocols than
those intended for human-centric communications. To
be more specific, existing cellular networks use Grant-
Based (GB) transmission, which means that each IoT
device must conduct a handshake procedure to es-
tablish a connection with the Base Station (BS) any-
time a new packet needs to be sent. Furthermore, the
handshake procedure involves exchanging multiple sig-
naling messages (i.e., scheduling request, scheduling
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grant, and resource allocation) to facilitate exclusive
channel access, which might take several tens of mil-
liseconds [5]. However, as packet sizes shrink and the
number of IoT devices grows, this handshake procedure
becomes ine�cient, potentially resulting in overhead
signaling and radio access congestion [6]. Additionally,
the number of signaling messages has a significant
impact on the energy e�ciency of IoT devices (shorter
transmissions preserve energy). To address these is-
sues, Grant-Free (GF) transmission [5, 7, 8, 9] is a
promising solution. This approach removes the need for
a handshaking process by allowing each IoT device to
send its packets across a randomly selected resource
without prior coordination with the BS. SigFox and
LoRa are two examples of low-power wide-area net-
work technologies that implement GF transmission
for e�cient IoT connectivity [10, 11]. This is made
possible through the use of low-complexity contention-
based random access schemes, such as variations of
the well-known ALOHA protocol [12, 13], making GF
transmission ideal for large-scale IoT networks with
infrequent communication needs. However, since the
orthogonal resources are not allocated by the base sta-
tion, numerous IoT devices may use the same resource
for transmission, potentially resulting in a collision.
To reduce the e�ects of collisions, non-orthogonal
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multiple access protocols can be used in conjunction
with random access schemes [5, 14]. More specifically,
the Multi-Packet Reception (MPR) capability [15, 16]
given by a non-orthogonal transmission mechanism
enables numerous IoT devices to use the same resource
and transmit their packets concurrently, reducing the
occurrence of packet collisions. Nevertheless, the per-
formance of grant-free access with MPR capability
degrades in a massive IoT environment with sporadic
tra�c [17]. Thus, in order to take full advantage of this
solution, a distributed resource management technique
such as power control [18, 19, 20] must be considered.
Power control was originally employed in cellular net-
works to manage interference, but it is also a flexible
mechanism to provide quality of service and reduce en-
ergy consumption. Thus, grant-free transmission, when
combined with an e�ective power allocation strategy,
can therefore meet the 5G standards for IoT devices,
which include a battery life of more than ten years [21].

In this paper, we consider large-scale ultra-dense
IoT networks using grant-free transmission with J -
MPR capability (assuming that up to J collided IoT
devices can be decoded on a single resource), and we
focus on ultra-low-end IoT applications with small data
sizes, sporadic activity, and restrictive energy usage
requirements. We construct an analytical model that
considers both spatial randomness and temporal tra�c
generation. For the tractability of our analysis, both
BSs and IoT devices are modeled using a homogeneous
Poisson Point Process (PPP), where the BSs bound-
aries can be shown by a weighted Voronoi tessellation.
Stochastic geometry, particularly point process theory,
is widely used to model the spatial topology of cellular
networks, and several empirical foundations validate
the PPP model [22, 23]. It is noteworthy that, in prac-
tical scenarios, achieving a high level of positioning
accuracy is possible [24]. This aspect is particularly
significant as it enhances the precision of location
information in real-world applications.
From a temporal perspective, our model addresses spo-
radic IoT tra�c, where packet arrivals at each IoT de-
vice follow a Bernoulli process with a small arrival rate.
The main di�culty in considering a spatiotemporal
model is that the set of active IoT devices that cause
interference changes dramatically over time. Thus, to
assess the uplink performance of the grant-free trans-
mission in a massive IoT network, manage inter-cell in-
terference, and avoid unnecessary energy wastage, we
propose a distributed uplink power allocation strategy
under spatiotemporal fluctuation. The power allocation

problem is initially treated as a di�erential game due
to the coupling in interference. Then, by using the
stochastic geometry framework and Mean-Field Game
(MFG) theory to model and analyze mutual interfer-
ence among active IoT devices, we extend the di�eren-
tial game to a MFG. The MFG framework enables each
IoT device to determine its optimal power allocation
strategy based on its own energy budget and the statisti-
cal distribution of the system state, known as the mean-
field. Moreover, we develop a Markov chain model to
monitor the IoT device’s queue length and derive the
steady-state transmission success probability. Finally,
by formulating the problem as a mean-field optimal
control problem, we can obtain a set of equations that
allow us to achieve the mean-field equilibrium through
an iterative solution.

1.1. Related Work
The use of game theory in the analysis of random

access schemes has been widely studied over the past
decades [25, 26, 27, 28]. Game theory provides a way to
analyze the decision-making process between multiple
individuals or entities who are interacting with each
other, and it has been used to study various aspects
of random access schemes, such as user behavior and
system performance optimization. The authors in [25],
for example, use game theory to analyze the Aloha
protocol from the perspective of selfish users who have
two possible actions: transmit or wait. The authors
construct an Aloha game to study the optimal behavior
of individual users and show that the Aloha game
has an equilibrium. The authors in [26] analyze the
ALOHA protocol with users having two transmission
power levels and use two non-cooperative optimization
concepts, the Nash equilibrium and the evolutionary
stable strategy. The performance of these concepts is
compared with a cooperative solution and the impact
of multiple power levels is analyzed. Game theory has
also been used to capture the interactions between a
set of IoT devices and predict their optimal strategies
on contemporary IoT networks by analyzing the Nash
and/or Stackelberg equilibrium [29]. The authors in
[30] use the Nash equilibrium to provide an energy-
e�cient access point allocation in an IoT network. In
[31], the authors use the age of information metric to
analyze the competition between multiple IoT devices,
who can choose their own transmission probability, in
an irregular repetition slotted Aloha IoT system. By
analyzing the Nash equilibrium, they highlight that
introducing a transmission cost can regulate the over-
all performance. In contrast, related works based on
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the Stackelberg equilibrium concept include [32, 33],
which develop and analyze hierarchical game models
for IoT networks based on the leader/follower principle.
The authors in [32], for example, develop a multi-
leader/multi-follower Stackelberg game to provide a
caching strategy in a 5G-enabled IoT network by an-
alyzing a competitive scenario with various 5G mobile
network operators and di�erent content providers.
However, when dealing with a large number of IoT
devices, the atomic equilibrium concepts become ex-
tremely challenging. In this circumstance, it is more in-
teresting for an IoT device to deal with collective behav-
ior than with the specific individual strategy of each IoT
device. Hence, the Mean-Field Game (MFG) theory
[34, 35, 36, 37, 38] has increasingly gained attention
in massive IoT networks. Related works analyzing the
mean-field equilibrium in massive IoT networks could
be found in [39, 40, 41, 42]. For example, the authors in
[40] investigate delay-optimal random access in large-
scale energy harvesting IoT networks. They handle the
coupling between the data and energy queues using
a two-dimensional Markov decision process, and they
employ the MFG theory to disclose the coupling among
IoT devices by exploiting the large-scale property. In
[42], under the grant-free communication framework,
the age of information minimization problem is ana-
lyzed in a massive IoT network using a mean-field evo-
lutionary game-based approach by optimizing packet
sampling and scheduling.

The works related to grant-free transmission, on
the other hand, include [8], where a Semi-Granted
Multiple Access (SGMA) approach is analyzed for
non-orthogonal multiple access in 5G networks, allow-
ing grant-based and grant-free transmission to share
the same wireless resource. Then, a heuristic SGMA
resource allocation algorithm is presented to enhance
network capacity and user connectivity. The authors in
[43] present a grant-free user activity detection scheme
in a massive IoT network with extremely low com-
plexity and latency. They use multiple antennas at the
base station to generate spatial filtering via a fixed
beamforming network, which reduces inter-beam inter-
ference. They also suggest using orthogonal multiple
access technology to minimize intra-beam interference
in the temporal domain. In [7], the authors investi-
gate an asynchronous grant-free transmission protocol
with the goal of reducing energy consumption and
delay by relaxing the synchronization requirement at
the cost of sending multiple packet replicas and using

a more complex signal processing technique. The sug-
gested approach is scrutinized by developing closed-
form expressions for critical performance characteris-
tics, including reliability and battery life. Related works
that investigate spatiotemporal modeling [44, 45] for
grant-free transmission can be found in [46, 47]. The
authors in [46] analyze three grant-free transmission
schemes that use Hybrid Automatic Repeat reQuest
(HARQ) retransmissions: reactive, K-repetition, and
proactive. They provide a spatiotemporal assessment
model for contention-based grant-free transmission and
define the access failure probability to evaluate the
reliability and latency performance under the three
grant-free HARQ schemes. In [47], the authors inves-
tigate the energy e�ciency and packet transmission
probability in grant-free uplink IoT networks. To do
this, a spatiotemporal model is constructed leveraging
queueing theory and a stochastic geometry framework,
where each device is represented by a two-dimensional
discrete-time Markov chain and expected to use full
path loss inversion power control with a target power
level. In a similar vein, our work also examines grant-
free transmission using a spatiotemporal model. How-
ever, instead of relying on path loss inversion power
control, we employ a power allocation strategy based
on mean-field game theory. Within this framework,
we also aim to analyze energy e�ciency and packet
transmission probability.

1.2. Our Contributions
The contributions of this paper are manifold and

can be summarized as follows:

(1) We present a spatiotemporal model for grant-
free transmission with J -MPR capability by using
stochastic geometry and Markov chain theory.
From a spatial perspective, stochastic geometry is
applied to model and analyze the mutual interfer-
ence among active IoT devices (i.e., those with at
least one packet in their queue). From a temporal
perspective, Markov chain theory is used to model
the correlation of the number of packets in a queue
over di�erent frames.

(2) To address the issue of the large number of IoT
devices, we present a mean-field power allocation
scheme that integrates the IoT device’s tra�c gen-
eration and energy budget. Our approach enables
IoT devices to distributively compute their power
allocation control strategies without having com-
plete awareness of the strategies or states of other
IoT devices.
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(3) We combine stochastic geometry analysis and mean
field formulation to derive the transmission success
probability in a massive grant-free IoT network
(see proposition 2). The success probability in the
paper’s model is influenced by multiple factors,
such as IoT density, arrival rate, base station den-
sity, and multi-packet reception capability.

(4) We assess the performance of a massive grant-
free IoT network with MPR capability in terms of
packet transmission success probability and aver-
age delay.

The rest of the paper is organized as follows: The
section 2 presents the system model and the assump-
tions. The power allocation problem is formalized in
section 3. The section 4 introduces the discrete-time
Markov chain model. The section 5 provides the numer-
ical and simulation results. Finally, concluding remarks
are given in section 6.

2. System Model
We consider a massive IoT network using an or-

thogonal multiple access scheme, with the total band-
width partitioned into L orthogonal channels repre-
sented as L = {l

i
, i = 1,… ,L}. We assume that

the total bandwidth is reused throughout the network
with a frequency reuse factor of 1. This signifies that
each cell has access to the entire set of orthogonal
channels, and there is no restriction on the reuse of
frequencies across di�erent cells, leading to inter-cell
interference. Furthermore, we consider a single-tier of
base stations (BS) with Multi-Packet Reception (MPR)
capability that are spatially distributed according to a
homogeneous PPP denoted by �

s
= {s

i
, i = 1, 2,…}

with intensity �
s
, where s

i
is the location of the i

th

BS. We consider a J -MPR model where up to J IoT
devices can be decoded on a single channel. We assume
that if j IoT devices choose the same channel, there
is no packet collision whenever j f J , whereas all
the j IoT devices are not decoded (collided) whenever
j > J . The IoT devices, on the other hand, are
randomly distributed and modeled by a homogeneous
PPP denoted by �

u
= {u

i
, i = 1, 2,…} with intensity

�
u
, where u

i
is the location of the i

th IoT device. Each
IoT device is served via its geographically nearest BS.
Thus, the BS boundaries can be shown by a weighted
Voronoi tessellation. An important random parameter
is the distance r separating an IoT device from its
serving BS. Since each IoT device communicates with
the closest BS, no other base station can be closer than
r. Thus, the distance of an arbitrary IoT device from its

serving BS has a cumulative distribution function given
as follows:

F
r
(r0) = P[r f r0]

= 1 * P[No BS closer than r0]

= 1 * e
*�

s
⇡r

2
0 .

(1)

Thus, the probability density function can be found as

f
r
(r) =

dF
r
(r)

dr
= 2⇡�

s
re

*�
s
⇡r

2
. (2)

Let V be the area of a Voronoi cell. The number of IoT
devices associated with a specific BS of area V = v,
defined as N

v
, follows a Poisson distribution with the

probability mass function given by:

P[N
v
= kV = v] =

(�
u
v)k

k! e
*�

u
v
, k = 0, 1,… (3)

Moreover, the Voronoi cell area V is a random variable
that can be approximated by the gamma distribution
with shape c = 3.575 and rate �

s
c [48]. The corre-

sponding probability density function is:

f
V
(v) =

v
c*1(�

s
c)c

�(c) e
*(�

s
c)v
, v > 0. (4)

From the temporal perspective, we assume that the
network operates in a synchronized manner and that
the timeline is segmented into frames with duration
T
f

. This simplifies the user detection procedure since
multiple packets are allowed to be sent on the same
channel simultaneously. We also assume that the IoT
devices use grant-free transmission. In other words,
the packet for each IoT device will be transmitted
immediately once it is generated. In this paper, the
packet arrival process at each IoT device is modeled
by a Bernoulli process, which is commonly utilized
in discrete-time system modeling, with a small arrival
rate 0 f p

a
f 1 (sporadic activity). Note that p

a
is

also the probability that an IoT device will generate a
packet in a particular frame. Furthermore, IoT devices
with a non-empty queue may employ a frame for a
single packet uplink transmission attempt. As a result,
in each frame, only one packet may arrive and/or depart
from the queue of each IoT device in the network.
Each IoT device transmits packets via a first-come,
first-served packet scheduling scheme and has a queue
that can store a maximum of M packets. We also
assume that the generated packet is su�ciently small
and thus can be successfully transmitted through each
transmission attempt if there is no packet collision and
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the received Signal to Interference-plus-Noise Ratio
(SINR) is greater than a threshold ✓. Furthermore, we
presume that BS employs access barring to control
overall tra�c load in the system, where IoT devices
with at least one packet in their queue, referred to as
active IoT devices, attempt uplink transmissions in the
current frame with probability 1 * p

b
or skip it with

probability p
b
.

In this work, we denote by ⇡
a

the probability that an
IoT device is active, for which we will derive a closed-
form expression in section 4. The active IoT devices
that attempt uplink transmissions in a given frame using
channel l

i
À L constitute a PPP, denoted by �

a
=

{a
i
, i = 1, 2,…}, with intensity �

a
= ((1*p

b
)⇡

a
_L)�

u
.

Let’s N
a

be the number of active IoT devices in a given
Voronoi cell using channel l

i
À L. Therefore, by using

(3) and (4), the unconditional probability mass function
of N

a
, for k = 0, 1, 2,… , writes

P[N
a
= k] =

ÿ

 
0

�

�
a
v
�k

k! e
*�

a
v
f
V
(v) dv

= �(k + c)
�(k + 1)�(c) �

�

�
a

�k (�
s
c)c

�

�
a
+ c�

s

�k+c .

(5)

In the rest of this paper, we consider a large circle
of radius R to be the spatial domain of our analysis,
denoted as C

R
. It is worth noting that the number of

active IoT devices attempting an uplink transmission
in a given frame using channel l

i
in C

R
, denoted asN

R
, is a Poisson random variable with a mean intensity

�
a
⇡R

2.
The outcome of a transmission is assessed through

the received time-varying SINR. Without loss of gen-
erality, the experienced SINR under a Gaussian single-
input, single-output channel writes:

�
i
(t,P

i
,P*i) =

P
i
(t)H

i,i
(t)D

i,i
(r)

�0 + I
i
(t,P*i)

, (6)

where in the above expression, P
i
À [0,P

max
] is the

transmit power of IoT device i, P*i denotes the transmit
power vector of the active IoT devices using the same
channel without i, H

i,j
(resp. D

i,j
) is a parameter repre-

senting the multipath fading (resp. path-loss) between
the IoT device j and BS serving the IoT device i, �0 is
the noise power, and I

i
(t,P*i) denotes the interference

caused by the active IoT devices using the same channel
for transmission expressed as:

I
i
(t,P*i) =

N
R


…

j=1,jëi
P
j
(t)H

i,j
(t)D

i,j
(r). (7)

Finally, we assume that the channel between all the
transmitters and all the receivers experiences an inde-
pendent Rayleigh fading H , exponentially distributed
with unity mean, and a path-loss D(r) = r

*↵ with
exponent ↵ > 2.

3. Power Allocation: A Mean-Field Approach
The MFG stands out as a robust framework for

modeling and analyzing large-scale ultra-dense net-
works, particularly in the context of massive IoT de-
ployments. Specifically, when dealing with a large
number of IoT devices, the mean-field approach is more
practical than traditional atomic equilibrium concepts,
emphasizing collective behavior over specific individ-
ual strategies. In this section, we initially approach the
power allocation problem as a di�erential game and
subsequently extend it to MFG.

3.1. Di�erential Game Model
The di�erential power allocation game is played

over time t À [0, T
f
], where T

f
represents the frame

duration.
÷ Player sets: N

R
= {1, 2,… , N

R
}, the active IoT

devices that attempt uplink transmissions in a given
frame using channel l

i
À L

÷ State: The state of an IoT device i time t is de-
scribed by its remaining energy at that time, given by
E
i
(t) À [0,E

i,max
], evolving according to the following

di�erential equation:

dE
i
(t) = *P

i
(t) dt, (8)

where P
i
(t) is the transmit power, and E

i,max
= E

i
(0) is

the energy budget fixed by the IoT device i to spend over
[0, T

f
]. The dynamics (8) implies that the variation

in the energy budget during dt is proportional to the
transmission power.
÷ Actions: Transmit power P

i
(t) À [0,P

max
], which is

allowed to depend not only on time but also on the state
E
i
(t) and on the states of all other active IoT devices

in the system at time t, denoted as E*i(t). A power
allocation strategy of the IoT device i will be denoted
by P

i
with P

i
(t) = P

i
(t,E

i
(t),E*i(t)).

÷ Utility function: The goal of each IoT device is
to adapt its actions according to its remaining energy
while maximizing its throughput. Thus, the average
utility function of the IoT device i is given by:

U
i
(P

i
,P*i, ps) = E

b

f

f

f

d

T
f

 
0

F
i
(t,P

i
,P*i, ps) dt

c

g

g

g

e

, (9)
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where

F
i
:= (1 * p

s
)P

i
* p

s
log2(1 + �

i
), (10)

and p
s

is the transmission success probability (see
proposition 2).
Such utility function is especially relevant when IoT
devices have to trade-o� between achieving the highest
possible throughput and expending as little power as
necessary.
÷ Nash equilibrium: A power allocation strategy pro-
file P< = (P <

1 ,P
<
2 ,… ,P

<
N

R


) is a feedback Nash equi-
librium of the dynamic di�erential game if and only
if ≈i,P <

i
is a solution of the following optimal control

problem:

inf
P
i

U
i
(P

i
,P<

*i, ps), (11)

subject to

d

4

E
i
(t)

E*i(t)

5

=
4

*P
i
(t)

*P<
*i(t)

5

dt, (12)

To obtain the optimal power allocation strategies, the
standard solution concept consists of analyzing the
Nash equilibrium. However, the complexity of this ap-
proach increases with the number of IoT devices. Fur-
thermore, it necessitates that each IoT device be fully
aware of the states and actions of all other IoT devices,
resulting in a tremendous volume of information flow.
This is not feasible and impractical for a grant-free,
massive IoT network. Nevertheless, since the e�ect of
other IoT devices on a single IoT device’s average utility
function is only via interference, it is intuitive that,
as the number of IoT devices increases, a single IoT
device has a negligible e�ect. Thus, we suggest using
a mean-field limit for this game to convert these mul-
tiple interactions (interference) into a single aggregate
interaction known as mean-field interference. However,
the mean-field limit is only significant if the associated
approximation error is small. It has been shown that,
under appropriate conditions, the mean-field limit real-
izes an ✏-Nash equilibrium for the dynamic di�erential
game, with ✏ converging to zero as the number of
players goes to infinity [38, 49]. Therefore, in this
paper, we consider a large-scale (R ô ÿ) massive IoT
network under the assumption of frequency reuse factor
of 1 to assure a small approximation error at the mean-
field limit. It is important to note that if the frequency
resources are not reused, increasing the number of
BS in the network would decrease the number of IoT
devices using the same channel for transmission, which
would negatively a�ect the accuracy of the mean-field
limit.

3.2. Mean-Field Regime
The general setting of a mean-field regime is based

on the following assumptions:
- The existence of large number of IoT devices ensured
by considering large-scale, massive IoT network.
- Interchangeability: the permutation of the state (en-
ergy budget) among the IoT devices would not a�ect
the optimal power allocation strategy. To guarantee
this property, we assume that each IoT device only
knows its individual energy budget and implements a
homogeneous transmit power P

i
(t) = P (t,E

i
(t)).

- Finite mean-field interference I
mf

(see proposition 1).
Let [0,E

max
] be the energy domain of our analysis.

We define the empirical energy distribution of the IoT
devices in C

R
at time t in [0, T

f
] as:

M(t, e) = 1
N

R


N
R


…

i=1
�
e
(E

i
(t)), ≈e À [0,E

max
],

(13)

where �
e

is the Dirac measure.
The basic idea behind the mean-field regime is to
approximate a finite population with an infinite one,
where the empirical energy distribution M(t, e) almost
surely converges, as N

R
 ô ÿ, to the probability

density functionm(t, e) of a single IoT device, due to the
strong law of large numbers. We will refer to the energy
distribution (m

t
)
tg0 as the mean-field. Additionally, as

the IoT devices become essentially indistinguishable,
we can focus on a generic IoT device by dropping its
index i where its individual dynamic is written as:

T

dE(t) = *P
�

t,E(t)
�

dt, t g 0,
E(0) = E0.

(14)

Thus, the evolution of the mean-field (m
t
)
tg0 over time t

in [0, T
f
] is described by a first-order partial di�erential

equation, known as the Fokker-Planck Kolmogorov
(FPK) equation, given by [41]:

T

)
t
m(t, e) * )

e

�

P (t, e)m(t, e)
�

= 0,
m(0, .) = m0.

(15)

The mean-field regime describes the mass behaviors
of IoT devices in a massive IoT network, allowing
the generic IoT device to determine its optimal power
allocation strategy based only on its own energy budget
and the initial mean-field. By expressing the interfer-
ence in terms of an expectation over the mean-field
that changes with time according to the FPK equation,
we achieve a remarkable degree of economy in the
description of population dynamics.
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Proposition 1. By following a stochastic geometry-
based approach, the mean-field interference in a large-
scale network for a generic IoT device is derived for
t À [0, T

f
] as follows:

I
mf

(t,⇡
a
) = 2⇡�

u

(1 * p
b
)⇡

a

L

⌧1
2 + 1

↵ * 2

�

P
mf

(t),
(16)

where

P
mf

(t) =
E
max

 
0

P (t, e)m(t, e) de. (17)

PROOF. The proof is given in Appendix A.1.

Now, we turn our attention to determining the SINR
and the utility function, which are solely dependent on
a generic IoT device’s individual transmit power and
the mean-field. The new parameters of the game are
defined as:
÷ Mean-field SINR: Since the distance of a generic IoT
device from its serving BS has a probability density
function given by (2) with mean 1_(2

˘

�
s
), we define

the mean-field SINR as:

�
mf

(P , I
mf

) =
P (t,E)(2

˘

�
s
)↵

�0 + I
mf

(t,⇡
a
) . (18)

÷ Mean-field utility function: The mean-field utility
functions for a generic IoT device is generalized as
follows:

U
mf

(P , I
mf

, p
s
) =

E
max

 
0

T
f

 
0

F
mf

(P , I
mf

, p
s
)m(t, e) dt de,

(19)

where

F
mf

:= (1 * p
s
)P * p

s
log2(1 + �

mf
). (20)

3.3. Mean-Field Optimal Control
The mean-field optimal control problem of a generic

IoT device is derived based on (11) and consists in
finding the optimal power allocation strategy P

< and
the mean-field at equilibrium m

< satisfying:

inf
P

U
mf

(P , I<
mf

, p
s
) (21)

where I
<
mf

is the mean-field interference at the equi-
librium, by assuming that the interfering IoT devices

use their optimal power allocation strategy and m is a
solution of

T

)
t
m(t, e) * )

e

�

P (t, e)m(t, e)
�

= 0,
m(0, .) = m0.

(22)

Since F is convex in P , the mean-field optimal control
is a convex optimization problem. Therefore, the first-
order optimality conditions are necessary and su�cient
for the mean-field equilibrium.

3.3.1. First-Order Optimality Conditions:

The first-order optimality conditions of the mean-
field optimal control problem are derived using the
adjoint method. Note that even though this approach is
used formally in the following, it can be made rigorous.
We refer the interested reader to [50] for a rigorous
derivation of these first-order optimality conditions.
Let’s start by defining the Lagrangian of the minimiza-
tion problem (21) under the constraint (22) as

L(P ,m,�) = U
mf

(P , I<
mf

, p
s
) *

E
max

 
0

T
f

 
0

�(t, e)
�

)
t
m(t, e) * )

e

�

P (t, e)m(t, e)
��

dt de,

(23)

where �(t, e) represent the Lagrange multiplier.
The minimization problem (21) can be rewritten as a
saddle-point problem:

inf
(P ,m)

sup
�

L(P ,m,�). (24)

By using the integration by parts, the first-order condi-
tions characterizing the saddle-point (P <

,m
<
,�

<) of L
are expressed as (22) together with:

)
P
F
mf

* )
e
�
< = 0, (25)

)
t
�
< * P

<
)
e
�
< + F

mf
= 0, (26)

�
<(T

f
, .) = 0.. (27)

Note that the equation (26) reflects the adjoint equa-
tion of (22), popularly known as the Hamilton-Jacobi-
Bellman equation in mean-field game theory.
Finally, the mean-field equilibrium can be obtained as
the solution of the following mean-field system:

h

n

l

n

j

)
t
m * )

e
(Pm) = 0, m(0, .) = m0,

)
t
�
< * P

<
)
e
�
< + F

mf
= 0, �

<(T
f
, .) = 0,

)
P
F
mf

* )
e
�
< = 0,

(28)
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which consists of two coupled partial di�erential equa-
tions, one evolving forward in time (the Fokker-Planck
Kolmogorov) and the other one evolving backward in
time (the Hamilton-Jacobi-Bellman equation).

3.3.2. The Algorithm

The mean-field system (28) is solved iteratively
until the convergence point is reached to achieve the
mean-field equilibrium. We employ a successive sweep
method, which entails generating a series of nomi-
nal solutions P0,P1,… ,P

k
,… that converges to the

optimal power allocation strategy P
<. This iterative

approach, which has proven to be e�ective in [51], is
summarized in algorithm 1 in our context. Moreover, a
gradient-based implementation of this approach can be
found in [52]. Finally, we refer the reader to [53] for a
review of several aspects of numerical approaches for
mean-field control problems.

Algorithm 1: Mean-Field Equilibrium
Initialization:

1 Generate initial transmit power P0 ;

Learning pattern:
2 Find m using (22) with initial condition m0 ;
3 Find p

s
and ⇡

a
by solving algorithm 2 ;

4 Estimate interference I
mf

using (16);
5 Find � using (26) with final condition (27);
6 Update transmit power P using (25);
7 Repeat until convergence : go to step 2;

4. Grant-Free Markov Chain Model
In this section, we present a discrete-time Markov

chain to derive a closed form for the probability of hav-
ing at least one packet in an IoT device’s queue, which
implies the probability of attempting uplink transmis-
sions. To determine this probability analytically, we
must first acquire the transmission success probability
p
s
, which is defined as the probability that a packet is

successfully transferred when an IoT device executes
an uplink transmission.
It is worth mentioning that in this section, we will
assume that IoT devices use their optimal power allo-
cation strategy.
In our Markov chain model, each state represents the
queue length of a generic IoT device, where the queue
length implies the number of packets in the queue. The
state space S can be defined as

S = {0, 1, 2,… ,M}, (29)

where M represents the queue size. Let’s ⇡
i
(n) be the

state probability that the queue length equals i at time
n À {0, T

f
, 2T

f
,…}. Thus, the distribution of the state

probability at time n, ⇡(n), can be denoted as

⇡(n) =
⌅

⇡0(n),⇡1(n),… ,⇡
M
(n)

⇧

. (30)

The state transition probability from state j to state k,
denoted as q

j,k
, is given in (31).

4.1. Packet Transmission Success Probability
The transmission success probability at a generic

BS is used to estimate the successful transmission
probabilities of all IoT devices in the network. This
means that such probabilities are independent of loca-
tion and uncorrelated across time frames. Exploiting
this approximation and accounting for the mean-field
interference, the transmission success probability is
characterized by the following proposition:

Proposition 2. The transmission success probability
of a generic IoT device whose generic BS is at the origin
is

p
s
=
⇡�

s

T
f

J
…

j=0
P[N

a
= j]ù

T
f

 
0

E
max

 
0

b

f

f

d

ÿ

 
0

e
*ar

↵

2
e
*br

dr

c

g

g

e

m
<(t, e) de dt,

(32)

where
h

n

l

n

j

a =
✓(�0 + I

<
mf

(t))
P <(t, e) ,

b = ⇡�
s
.

(33)

Under urban areas where ↵ Ù 4, we have

p
s
=

⇡�
s

T
f

J
…

j=0
P[N

a
= j]

T
f

 
0

E
max

 
0

g(a, b)m<
de dt, (34)

where

g(a, b) =
u

⇡

a
exp( b

2

4a )Q
H

b
˘

2a

I

, (35)

with

Q(x) = 1̆
2⇡

ÿ

 
x

e
* u

2
2 du. (36)

The Q function is the tail distribution of the standard
normal distribution.

PROOF. The proof is given in Appendix A.2.
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q
j,k

=

h

n

n

n

n

l

n

n

n

n

j

1 * p
a
, j = k = 0

p
a
, j = 0, k = 1

(1 * p
a
)p

b
+ (1 * p

a
)(1 * p

b
)(1 * p

s
) + p

a
(1 * p

b
)p

s
, 1 f j f M * 1, k = j

1 * (1 * p
a
)(1 * p

b
)p

s
, j = k = M

p
a
(1 * p

b
)(1 * p

s
) + p

a
p
b

1 f j f M * 1, k = j + 1
(1 * p

a
)(1 * p

b
)p

s
, 1 f j f M , k = j * 1

0, Otherwise.

(31)

4.2. Steady-State Analysis
The steady-state distribution ⇡ for the M state

Markov chain with transition matrix [K], given by
using q

i,j
as the i

th
row and j

th
column element, is a

row vector that satisfies

⇡ = ⇡[K], where Í⇡, 1Î = 1 and ⇡
i
g 0. (37)

Thus, the steady-state probabilities can be expressed as

⇡0 = ⇡0q0,0 + ⇡1q1,0, (38)

⇡
i
= ⇡

i*1qi*1,i+⇡
i
q
i,i
+⇡

i+1qi+1,i, i À [1,M*1],
(39)

and

⇡
M

= ⇡
M*1qM*1,M + ⇡

M
q
M ,M

. (40)

Thus with above equations, we have

⇡
i
=
h

n

l

n

j

⇡0, i = 0,

⇡0

i*1
«

j=0

0

q
j,j+1

q
j+1,j

1

, i À [1,M].
(41)

By using the normalization condition
≥

i
⇡
i
= 1, ⇡0 can

be expressed as

⇡0 =
H

1 +
M
…

i=1

i*1
«

j=0
bigg(

q
j,j+1

q
j+1,j

1

I*1

. (42)

Therefore, the probability that an IoT device is active,
i.e., there exist at least a packet in its queue, is given by

⇡
a
= 1*⇡0 = 1*

H

1 +
M
…

i=1

i*1
«

j=0

0

q
j,j+1

q
j+1,j

1

I*1

. (43)

Note that the equations (32) and (43) form a non-
linear system given P

< and m
<, which means that

there is no closed-form solution that can be directly
calculated. Therefore, ⇡

a
and p

s
must be computed

numerically. The algorithm 2 summarizes the numer-
ical approach. The convergence of the algorithm 2

Algorithm 2: Learning p
s

and ⇡
a

Initialization:
1 Generate initial success probability p

s
;

2 Calculate ⇡
a

using (43) ;

Learning pattern:
3 Update p

s
using (32);

4 Update ⇡
a

using (43) ;
5 Repeat until convergence : go to step 3;

is guaranteed due to the uniqueness of steady-state
probabilities. In other words, given a fixed set of sys-
tem parameters, the steady-state probabilities of the
Markov chain are unique and can be obtained through
numerical methods. Our iterative approach is based on
updating the transmission success probability and the
probability that an IoT device is active in each iteration
until convergence is achieved.

4.3. Performance Metrics
By solving algorithm 1, we will obtain the optimal

power allocation strategy as well as the Markov chain
steady-state probabilities. As a result, we can now
exploit them to estimate the average steady-state per-
formance of grant-free access in terms of throughput,
queue size, number of transmissions, and delay.
Note that, because of the Bernoulli arrival process, the
packet generation is a geometric inter-arrival process
with parameter p

a
, i.e., the interval between two con-

secutive packet arrivals is a geometric random variable.
As a result, the Geo/Geo/1/M queue can be used to rep-
resent the discrete-time queuing system of a generic IoT
device. More precisely, since the success probability p

s
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is uncorrelated across time frames, the service time (in
number of frames) is also a geometric random variable
with the parameter (1 * p

b
)p

s
.

- Average throughput rate (service rate): The aver-
age throughput rate, denoted as T

h
, experienced by a

generic IoT device writes

T
h
= (1 * p

b
)p

s
. (44)

It should be noted that access barring can a�ect the
average throughput rate. More precisely, for a given
p
b
, the system can operate in either a saturated or

unsaturated state. When p
a
> (1 * p

b
)p

s
, the system

is saturated, which means that all IoT devices have at
least one packet to transmit. In contrast, when p

a
<

(1 * p
b
)p

s
, the system works in an unsaturated state.

- Average number of transmissions (service time):
Let N

t
represent the number of transmission attempts

before a generic IoT device’s packet is successfully
transmitted, which follows a geometric distribution
with parameter T

h
, and its probability mass function

can be written for k À {1, 2,…}, as

f
N

t
(k) =

�

1 * T
h

�k*1
T
h
. (45)

Thus, the average number of transmissions per packet
is given by:

E[N
t
] = 1

T
h

. (46)

- Average queue size: At steady state, the average
queue size of a generic IoT device can be estimated by

Q =
M
…

k=1
k⇡

k
. (47)

- Average delay: Let D denote the average delay ex-
perienced by a given packet at a generic IoT device,
i.e., the average number of frames that a packet spent
in the queue until successful transmission, which may
be represented as

D = QE[N
t
]

´Ø¨

queuing delay

+ E[N
t
]

Ǿ̈

transmission delay

. (48)

It should be emphasized that when the system is satu-
rated, the average delay increases dramatically.

5. Numerical Analysis
In this section, we o�er some explanations below

on how to numerically solve the algorithm 1 using
a finite di�erence method and we present numerical
results.

Table 1
Parameters for Numerical Results

Parameter Values Description
�
s

1,5,10,20 BS/km2 BS density

�
u

3000 IoT/km2 IoT density

p
b

0.1 Barring probability

p
a

1-60 packet/hour Arrival rate

✓ 10 SINR threshold

J 1,3,5,7 MPR capability

L 30 Number of channels

M 10 The queue size

P
max

0.025 W Maximum power

T
f

10 ms Frame duration

E
max

0.1 mJ Maximum energy

�0 -200 dBm Noise power

↵ 4 Path-loss exponent

5.1. Finite Di�erence Method
In order to numerically solve our algorithm, we

consider a discretized grid within [0, T
f
] ù [0,E

max
].

Let us consider two positive integers, X and Y . We
define the time and space steps by �t = T

f
_X, �E =

E
max

_Y , and for n = 0,… ,X, i = 0,… , Y , we denote
f
n

i
the numerical approximations of f (n�t, i�E) for

any function f . The FPK equation (22) is computed
iteratively using a upwind-type finite di�erence scheme
by:

m
n+1
i

= m
n

i
+ �t

�E

�

P
n

i+1m
n

i+1 * P
n

i
m
n

i

�

. (49)

Moreover, for an arbitrary point (n, i), the optimality
conditions (25), (26) are discretized as follows:

)F
n

i

)P
n

i

*
�

�
n

i
* �

n

i*1
�

�E
= 0, (50)

�
n*1
i

= �
n

i
* �t

�E
P

n

i

�

�
n

i
* �

n

i*1
�

+ F
n

i
�t, (51)

where

F
n

i
= (1*p

s
)P n

i
*p

s
log2

H

1 +
P

n

i
(2
˘

�
s
)↵

�0 + I
mf

(t)

I

. (52)
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40
Figure 1: Optimal Power Allocation Strategies and transmission success probability for different BS densities with
p
a
= 1 packet / 5 min and J = 3.

(a) �
s
= 1 BS / km2 (b) �

s
= 5 BS / km2

(c) �
s
= 10 BS / km2 (d) �

s
= 20 BS / km2

5.2. Numerical Results
We present numerical results on the performance

of the algorithm 1. For all simulations, we choose
X = 100 and Y = 30 to form a discretized spaceXùY ,
and we consider a uniform initial energy distribution
m0. Table 1 shows the typical values of parameters used
for numerical results.

Optimal Power Allocation Strategy: The Figure 1
shows the optimal power allocation strategy and the
transmission success probability for di�erent BS den-
sities. In this simulation, we set the arrival rate p

a

to 1 packet / 5 min and the MPR capability J to
3. The IoT devices can adjust their transmit power
based on their available energy at any given time. As
the network becomes denser, both the transmission
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Figure 2: mean-field at equilibrium for different BS densities with p
a
= 1 packet / 5 min and J = 3.

(a) �
s
= 1 BS / km2 (b) �

s
= 20 BS / km2

Figure 3: Cross-section of the mean-field at equilibrium
for different BS densities and energy levels with p

a
= 1

packet / 5 min and J = 3.

success probability and the number of points for which
P

< = P
max

increase. It is worth noting that at the
end of transmission, IoT devices with lower energy
budgets empty their batteries, lowering the average
network interference. As a result, the remaining IoT
devices strategically boost their transmission power to
maximize throughput.

Evolution of Energy Distribution: The mean-field at
equilibrium is shown in Figure 2 for two BS densities.

The Figure 3 illustrates a cross-section of this mean-
field at fixed energy levels. Both figures illustrate the
temporal evolution of the energy distribution. As stated
before, a uniform initial energy distribution m0 is con-
sidered. It can be seen that the fraction of IoT devices
with higher energy reduces over time, especially in the
case of a dense network. This is because IoT devices
increase their transmit power since they can achieve a
better success probability. Meanwhile, when �

s
is set

to 1 BS/km2, approximately 13% of the IoT devices
use up their whole energy budget during transmission.
It is noteworthy that transmitting at maximum power
in less dense networks is not only ine�cient but also
leads to energy waste, o�ering minimal improvement
in success probability.

Impact of Network Densification and MPR Capabil-
ity on Average Delay: The benefits of increasing base
station density and improving multi-packet reception
capability are highlighted in Figure 4 and Figure 5
by investigating the average delay. More precisely,
Figure 4 illustrates the average delay in number of
frames as a function of BS densities for various arrival
rates. The reduction in average delay with increasing
BS density aligns with expectations, as a higher density
shortens the distance between IoT devices and their
serving BSs, enhancing reliability. This insight gains
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Figure 4: Average delay as a function of BS densities for
various arrival rates with J = 3.

Figure 5: Average delay as a function of BS densities for
various multi-packet reception capabilities with p

a
= 1

packet / 1 min.

prominence in the context of grant-free communica-
tion, where e�cient transmission is critical due to
the absence of handshaking procedures. The figure
further demonstrates that as the BS density grows, the
di�erence in the average delay between di�erent arrival
rate scenarios narrows. This is because a higher density
of BSs can handle more tra�c and reduce network
congestion. Thus, the delay of an IoT device is reduced,
regardless of the arrival rate.
Moreover, Figure 5 shows the average delay as a
function of BS densities for various multi-packet recep-
tion capabilities. It shows that as the MPR capability
improves, the average delay reduces. However, the
figure clearly demonstrates that the advantage of MPR
capability fades as the network becomes denser. This
is due to the fact that the number of resources, such

as channels and MPR, increases with the number of
BSs. Hence, the additional resources have little or
no e�ect on reducing the average delay. Thus, This
insight highlight the need for a balanced approach in
optimizing network resources.

Impact of IoT Density on Average Delay: The influ-
ence of IoT density on average delay is highlighted
in Figure 6 and Figure 7. In Figure 6, the average
delay is illustrated as a function of IoT density for
di�erent arrival rates. The Figure 7, on the other hand,
shows the average delay as a function of IoT density for
various BS densities. Both figures indicate that as the
IoT density increases, the average delay also increases.
This is because an increase in IoT density leads to
more IoT devices contending for the same resources,
resulting in congestion and increased delay. However,
in low-tra�c conditions, the average delay remains
acceptable even as the IoT density increases. Moreover,
the Figure 7 underscores the importance of carefully
managing network densification to enhance reliability
and minimize delays as IoT density increases.

Impact of IoT Density and Arrival Rate on Success
Probability: Finally, the influence of IoT density and
arrival rate on the success transmission probability is
highlighted in Figure 8 and Figure 9. It is worth noting
that the success probability in these figures represents
the probability of successfully transmitting a packet in
a single frame. This probability can be compared to
the success probability of the slotted Aloha protocol,
which is approximately 18% for a single device. The
Figure 8 shows the success probability as a function
of the arrival rates for di�erent MPR capabilities and
BS densities. It suggests that in low-tra�c scenarios,
maintaining a high success probability is achievable
without extensive network densification or advanced
MPR capability. However, under high-tra�c condi-
tions, these enhancements prove beneficial. On the
other hand, Figure 9 illustrates the success probability
as a function of IoT densities for di�erent arrival rates
and BS densities. It emphasizes the inverse relation-
ship between IoT density and success probability. It
also indicates, reinforcing prior findings, that network
densification improves success probability, particularly
in massive IoT environments.

6. Conclusion
The paper explores grant-free access with multi-

packet reception capabilities, focusing on low-end IoT
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Figure 6: Average delay as a function of IoT device
densities for various arrival rates with �

s
= 10 BS / km2

and J = 3.

Figure 7: Average delay as a function of IoT device
densities for various BS densities with p

a
= 1 packet /

1 min and J = 3.

devices characterized by small data sizes, sporadic
activity, and strict energy constraints. The main con-
tribution lies in introducing a tra�c-aware distributed
power allocation algorithm for grant-free massive IoT
networks. The algorithm ensures that IoT devices meet
their throughput expectations while minimizing energy
usage. Thus, each IoT device autonomously computes
its optimal power allocation strategy based only on
its individual energy level and the initial energy dis-
tribution, considering the given arrival rate. Our ap-
proach leverages the mean-field framework to capture
population behavior and employs the Markov chain
framework to derive the transmission success probabil-
ity. The numerical results illustrate the optimal power
allocation strategy and examine how network densifi-
cation, MPR capability, IoT density, and arrival rate

Figure 8: Success probability as a function of arrival
rates for various multi-packet reception capabilities and
BS densities.

Figure 9: Success probability as a function of IoT device
densities for various arrival rates and BS densities with
J = 3.

collectively impact average delay and transmission suc-
cess probability. A noteworthy aspect of the proposed
algorithm is its o�ine execution capability without the
need for information exchange with the base station, a
significant advantage in grant-free networks. However,
a limitation of the current model is the assumption of
a uniform arrival rate for all IoT devices, diverging
from the heterogeneous tra�c patterns observed in
practical scenarios. To address this, we are particularly
willing to examine various classes of IoT devices, each
characterized by its own unique tra�c profile. Such an
investigation aims to o�er a more realistic representa-
tion of IoT tra�c dynamics, thereby augmenting the
algorithm’s practical applicability.
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A. Appendix
A.1. Proof of proposition 1

Without loss of generality, we derive the finite
mean-field interference for an IoT device i whose BS
is at the origin.
The mean-field interference in C

R
for a given time

instant t À [0, T
f
] is expressed as:

I
i,mf

(t) = E
b

f

f

d

N
R


…

j=1,jëi
P (t,E

j
(t))H

i,j
(t)D

i,j
(r)

c

g

g

e

. (53)

It is worth noting that, in the mean-field regime, the
IoT devices become essentially indistinguishable, and
a single IoT device has a negligible e�ect on the overall
mass behavior. Thus, we can focus on a generic IoT
device while dropping the index i from (53). Since the
transmit power of a generic IoT device is independent
of the point process and h is exponentially distributed
with unity mean, the previous formula writes

I
mf

(t) = E [P (t,E)]E
�
a

b

f

f

d

N
R


…

j=1,jëi
D(r)

c

g

g

e

, (54)

where

E[P (t,E)] =
E
max

 
0

P (t, e)m(t, e) de. (55)

Then, by using Campbell’s formula, we write:

E
�
a

b

f

f

d

N
R


…

j=1,jëi
r
*↵
c

g

g

e

= 2⇡�
u

(1 * p
b
)⇡

a

L  
R

0
D(r)rdr.

(56)

Since the received power cannot be greater than the
transmitted power, the path-loss is assumed to be 1
when r < 1. Then, we have

R

 
0

D(r)rdr =
1

 
0

rdr +
R

 
1

r
1*↵

dr

= 1
2 + 1 * R

↵*2

2 * ↵
.

(57)

Finally, considering a large-scale network and taking
R ô ÿ concludes the proof.

A.2. Proof of proposition 2
The transmission success probability is given by

p
s
=

J
…

j=0
P[N

a
= j]

≠́≠≠≠≠≠Ø≠≠≠≠≠≠̈

probability of no packet collision

ù p
✓

(58)

where p
✓

is the probability that the SINR of a generic
IoT device, whose generic BS is at the origin , is greater
than ✓ over a given frame with duration T

f
expressed

as

p
✓
= 1

T
f

T
f

 
0

P
4

P
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5
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P
4

P
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<
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5

dt.

(59)

Conditioning on the energy and the distance from a
generic IoT device to its nearest BS, we get

p
✓
= 1

T
f

T
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E
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(60)

where a = ✓(�0 + I
<
mf

(t))_P <(t, e).
Using the fact that H Ì exp(1), we have

P
⌅

H g ar
↵
⇧

= e
*ar↵

. (61)

Thus, replacing the probability density function f
r

by
its expression given in equation (2), yields

p
✓
=

2⇡�
s

T
f

T
f

 
0

E
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0

b

f

f

d

ÿ

 
0

e
*ar↵

e
*br2
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c

g

g

e

m
<(t, e) de dt.

(62)

where b = ⇡�
s
.

Using the substitution s = r
2 in the inside integral of

(62) and combining with (58), we obtain the result.
Finally, in the special case where ↵ = 4, we have the
following result:

ÿ

 
0

e
*ar2

e
*br

dr =
u

⇡

a
exp

0

b
2

4a

1

Q

H

b
˘

2a

I

, (63)
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where

Q(x) = 1̆
2⇡

ÿ

 
x

e
* u

2
2 du. (64)

This concludes the proof.
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