Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Bouthat, Ludovick; Mashreghi, Javad et Morneau-Guérin, Frédéric (2024). The diameter of the Birkhoff polytope. Special Matrices, 12 (1).
Fichier(s) associé(s) à ce document :
PDF
- SPMA-2023-0113_P2.pdf
Contenu du fichier : Version de l'éditeur |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | The geometry of the compact convex set of all n * n doubly stochastic matrices, a structure frequently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms from l^p_n to l^p_n and the Schatten p-norms, both for the range p in the range from 1 to infinity, have only recently been studied in depth. In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the metrics induced by the aforementioned matrix norms. |
Adresse de la version officielle : | https://www.degruyter.com/document/doi/10.1515/spm... |
Déposant: | Morneau-Guérin, Frédéric |
Responsable : | Frédéric Morneau-Guérin |
Dépôt : | 23 janv. 2024 14:48 |
Dernière modification : | 01 avr. 2024 05:15 |
RÉVISER |