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Abstract: The geometry of the compact convex set of all ×n n doubly stochastic matrices, a structure fre-
quently referred to as the Birkhoff polytope, has been an active subject of research as of late. Geometric
characteristics such as the Chebyshev center and the Chebyshev radius with respect to the operator norms
from ℓ

n

p to ℓ
n

p and the Schatten p-norms, both for the range ≤ ≤ ∞p1 , have only recently been studied in depth.
In this article, we continue in this vein by determining the diameter of the Birkhoff polytope with respect to the
metrics induced by the aforementioned matrix norms.
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1 Introduction

A square matrix [ ]=A aij with nonnegative real entries is said to be row-stochastic (or right stochastic) if

∑ = ∀ =
=

a i n1, 1,…, .

j

n

ij

1

Similarly, it is said to be column-stochastic (or left stochastic) if

∑ = ∀ =
=

a j n1, 1,…, .

i

n

ij

1

A doubly stochastic matrix is one that is both row-stochastic and column-stochastic.
The theory of stochastic and doubly stochastic matrices was first developed alongside the Markov chain by

the Russian mathematician Andrei Andreevich Markov (1856–1922) at the beginning of the twentieth century.
Markov first began developing his ideas about chains of linked events (where what happens next depends

on the current state of the system) in 1906. The initial intended uses of the new branch of probability theory
that he was elaborating were for linguistic analysis. Delving into the text of Alexander Pushkin’s novel in verse
Eugene Onegin, Markov treated the text as a mere stream of letters. He spent hours sifting through patterns of
vowels and consonants with the aim of estimating to what extent there is an exaggerated tendency in
Pushkin’s text for vowels and consonants to alternate, thus violating the principle of independence.
Although Markov’s analysis remains on a superficial level from a linguistic point of view, it made a lasting
impression because the technique involved presciently extended the theory of probability in a new direc-
tion [27].
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In the 100 years since Markov’s early work, stochastic and doubly stochastic matrices have found use in
almost every field of science, from econometrics [31,35] to geology [37,38], ecology [23], and population
genetics [24,33].

The ubiquity of stochastic and doubly stochastic matrices in science as a tool for statistical analysis alone
justifies the study of these sets of matrices. But they are not without intrinsic interest. For instance, it is well
known that the set of doubly stochastic matrices of size ×n n, which we denote by Ωn, forms a semigroup with
respect to matrix multiplication. It is also a convex polytope (i.e., a compact convex set with a finite number of
extreme points) of dimension ( )−n 1 2 in the Euclidean space of dimension n

2. Most interestingly, it was shown
by Birkhoff [3] that the extreme points of Ωn are precisely the ×n n permutation matrices, denoted by �n, and
that each ∈D Ωn admits a (not necessarily unique) Birkhoff decomposition = ∑ =D α P

i

r

i i1 , where �∈Pi n, ≥α 0i ,
and ∑ == α 1

i

r

i1 . Due to this fundamental characterization, Ωn is sometimes referred to as the Birkhoff polytope.
In the last few decades, the geometric features of the Birkhoff polytope have been an active subject of

research. For instance, in the 1970s, Brualdi and Gibson studied the Euclidean geometry structure of Ωn. In a
series of four articles [7–10], they characterized the faces, the edges, and the facets of Ωn. At the turn of the
millennium, several teams of researchers sought to characterize the volume of the Birkhoff polytope. In
particular, formulas for the volume of Ωn were given by Sturmfels [36] for ≤n 7, by Chan and Robbins [13]
for =n 8, and by Beck and Pixton [2] for =n 9, 10. As for the case of ≤ ≤n10 15, estimates were obtained by
Emiris and Fisikopoulos in 2014 [21], and by Cousins and Vempala in 2016 [16]. In 2009, De Loera et al. [19]
presented a combinatorial formula for the volume of Ωn, while Canfield and MacKay [11] discovered an
asymptotic formula during the same year. In a different but related vein, an intensive investigation of
combinatorial and geometric properties of the acyclic Birkhoff polytope has been done in [14,15,22,29], and
interesting combinatorial peculiarities of the facial structure of the polytope consisting of the tridiagonal
doubly stochastic matrices of order n have been extensively considered in [12,17,18].

Despite their frequent applications in some areas of mathematics, geometric notions such as the radius
and the diameter of Ωn have so far received little attention. The few articles dealing with these issues include
papers from 1998 by Glunt et al. [25,26], by Khoury [30], and more recently by the authors of this manuscript
[5,6]. While studying numerical simulation of large linear semiconductor circuit networks, Glunt et al. [25]
naturally came across the following question: given a matrix B of order n subject to the constraints

⊤
e1 D

k = ⊤
e e1 1 B e

k

1, ≥k 1, where ( )= ⊤
e 1, 0, …,01 , which generalized doubly stochastic matrix D is closest to B

in the sense of Frobenius? They were able to give an algorithm to numerically find the solution. Khoury
[30] independently studied the same question, bar the constraints mentioned above. He showed that

= +D WBW J
n
, where = −W I Jn n

and J
n
is the ×n n matrix with every entry uniformly equal to ∕n1 . This

line of investigation was later pursued by Glunt et al. in [26] and further developed in the more specific case of
doubly stochastic matrices (as opposed to generalized doubly stochastic matrices) in [1] by Bai et al. in 2007.
Finally, in [5,6], the authors carried out a detailed analysis of Chebyshev’s center and radius of the Birkhoff
polytope, when equipped with the operator norms from ℓ

n

p to ℓ
n

p ( ≤ ≤ ∞p1 ) and that of the Schatten p-norms
( ≤ < ∞p1 ). Along the way, they discussed classical problems such as finding the radius of a minimal bounding
ball for the Birkhoff polytope and the smallest enclosing ball problem.

The present article is fully in line with the latter two above-mentioned papers in that the question
addressed is centered around studying the geometry of the Birkhoff polytope when the ambient space is
endowed with the metric induced by the operator norm from ℓ

n

p to ℓ
n

p ( ≤ ≤ ∞p1 ) and, in turn, with the
Schatten p-norm ( ≥p 1).

This article is structured as follows. In Section 2, we establish the preliminaries needed for later use. More
precisely, we recall the definitions of the norms considered therein. We then state a few elementary results on
the spectrum of doubly stochastic matrices as well as on a special matrix that plays a central role in the theory
of doubly stochastic matrices. In Section 3, we briefly review the definition of the diameter of a nonempty set
in a metric space. In Section 4, we determine by fairly elementary means that the diameter of the Birkhoff
polytope in the case of the operator norms from ℓ

n

p to ℓ
n

p is 2 for ≤ ≤ ∞p1 . Finally, in Section 5, we first derive
that the diameter of the Birkhoff polytope with respect to the metric induced by the Schatten p-norms
( )≤ < ∞p1 is given by � �‖ ‖−∈ I PmaxP nn p

. A calculation then shows that
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for some positive integer n n,…, r1 such that + ⋯+ =n n nr1 . From this point onward, the problem of calculating
the diameter of the Birkhoff polytope becomes a trigonometric maximization problem. Using numerous
identities, we establish in turn that
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2 Definitions, properties, and preliminary results

In this section, we recall the definition of some standard matrix norms that will be considered in the rest of this
article. We also explore some properties of doubly stochastic matrices that are used extensively in the rest of
this article.

2.1 Operator norms induced by the vector p-norms

For ≥p 1, the p-norm of a given vector ( )=x x x, …, n1 is defined by:

‖ ‖ ∣ ∣∑⎜ ⎟=
⎛
⎝

⎞
⎠=

∕

x x ,p

k

n

k

p

p

1

1

and the ∞-norm is defined by:

‖ ‖ {∣ ∣ ∣ ∣}=∞x x xmax , …, .n1

We shall denote the space �n equipped with the vector p-norm by �ℓ ( )
n

p , or by ℓ
n

p for short.
Any ×n n matrix A can be interpreted as an operator from ℓ

n

p to ℓ
n

p. The operator norm of A induced by the
vector p-norm is given by:

‖ ‖
‖ ‖

‖ ‖
ℓ ℓ ≔→

≠
A

Ax

x

sup .

x

p

p0

n

p

n

p

For all ≤ ≤ ∞p1 , we have ‖ ‖ ‖ ‖ℓ ℓ ℓ ℓ=→
∗

→B B
n

p

n

p

n

q

n

q , where ∗
B denotes the conjugate transpose of B and q is the

Hölder conjugate exponent of p, i.e., + = 1
p q

1 1 [28, p. 357].
It is also worth mentioning two properties of the operator norms induced by the vector p-norms, which

will prove useful in the remainder of this article. Both easily derive from the definition. These are:
1. Sub-multiplicativity: For all [ ]∈ ∞p 1, and all ×n n matrices A and B,

‖ ‖ ‖ ‖ ‖ ‖ℓ ℓ ℓ ℓ ℓ ℓ≤→ → →AB A B ;
n

p

n

p

n

p

n

p

n

p

n

p
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2. Permutation invariance: For all [ ]∈ ∞p 1, , all ×n n matrix A, and all ×n n permutation matrices P and Q,

‖ ‖ ‖ ‖ℓ ℓ ℓ ℓ=→ →PAQ A .
n

p

n

p

n

p

n

p

Finally, since the sets of interest to us in what follows (i.e., Ωn and �n) are invariant under the conjugate
transpose action, many operators considered below have the same norm, whether we see them as ℓ ℓ→

n

p

n

p or
as ℓ ℓ→

n

q

n

q mappings. For the sake of concision, when such situations arise, we shall only consider the
case ≤ ≤p1 2.

2.2 Schatten p-norms

Given an ×n n matrix A, let λ λ,…, n1 denote the eigenvalues of ∗
A A, with repetitions counted. Note that for all

=i n1, 2,…, we have

‖ ‖ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩= = = ≥∗
λ x λ x x A Ax x Ax Ax, , , 0.i i2

2

Hence, λis are non-negative real numbers. Order these so that ≥⋯≥ ≥λ λ 0n1 . Let ≔σ λi i , so that ≥⋯≥σ1

≥σ 0n . These latter numbers are called the singular values of A.
It follows from the Courant-Fischer min-max theorem [28, Thm 4.2.6] that the ith singular value of A is

given by:

�
( ) ‖ ‖ ( )

( ) ‖ ‖

= =
⊆

= − +
∈

=

σ A Ax i ninf sup , 1, 2, …, .i

V

V n i

x V

xdim 1 1

2
n

2

It is easy to see that the largest singular value of A is equal to the operator norm of A induced by the vector 2-
norm. More explicitly,

( ) ‖ ‖ℓ ℓ= →σ A A .1
n n

2 2 (2.1)

For a given [ ]∈ ∞p 1, , the Schatten p-norm of an ×n n matrix A, which we denote by �‖ ‖A
p
, is defined as

the p-norm of the sequence of its singular values, i.e.,

�‖ ‖ ∣ ( )∣ ( )∑⎜ ⎟≔
⎛
⎝

⎞
⎠

≤ < ∞
=

∕

A σ A p, 1 ,

i

n

i

p

p

1

1

p

and

�‖ ‖ {∣ ( )∣ ∣ ( )∣} ( )≔ =∞A σ A σ A σ Amax , …, .n1 1

Remark that the definition of the Schatten ∞-norm coincides with that of the spectral norm 2.1.
Being closely related to vector p-norms, Schatten p-norms naturally inherit the following monotonic

behavior of the latter:

� � � �‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖≥ ≥ ≥ ∞A A A A ,
p q1

for all ×n n matrix A and for ≤ ≤ ≤ ∞p q1 .
Finally, the following two properties of Schatten p-norms are immediate consequences of the singular

value decomposition (SVD). These are as follows:
1. Sub-multiplicativity: For all [ ]∈ ∞p 1, and all ×n n matrices A and B,

� � �‖ ‖ ‖ ‖ ‖ ‖≤AB A B ;
p p p

2. Unitarily invariance (and a fortiori permutation invariance): For all [ ]∈ ∞p 1, , all ×n n matrix A, and all
×n n unitary matrices U and V ,

� �‖ ‖ ‖ ‖=UAV A .
p p
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2.3 Elementary spectral properties of doubly stochastic matrices

Let us recall some basic yet useful facts concerning doubly stochastic matrices, which will be needed in our
studies:
(i) The spectrum of a doubly stochastic matrix always includes 1. This eigenvalue is associated with the

“obvious” eigenvector ( )= ⊺
e 1, 1, …,1 . All other eigenvalues have magnitude at most 1 [34, Lemma 1].

(ii) The spectrum of a doubly stochastic matrix D is a subset of the unit circle if and only if D is a permutation
matrix [34, Theorem 5].

(iii) A convex real-valued function on Ωn attains its maximum at a permutation matrix [28, Corollary 8.7.4].

2.4 A special doubly stochastic matrix

The ×n n matrix where every entry is equal to ∕n1 , which we denote by J
n
, plays a central role in the theory of

doubly stochastic matrices and is quite special in a number of regards. But for the purposes of the following
discussion, it suffices to note that it acts as the absorbing element of Ωn, i.e.,

= =DJ J D J ,
n n n

for every ×n n doubly stochastic matrix D.

2.5 Minimum and maximum distance of an element of the Birkhoff polytope from
the origin

For the purposes of our study of the diameter of the Birkhoff polytope with respect to various norms, it will be
useful to have upper and lower bounds for the value of these norms when the operand runs through the
Birkhoff polytope. The following lemma provides such elementary bounds.

Lemma 2.1. Let ‖ ‖⋅ be a permutation invariant sub-multiplicative matrix norm and let D be an ×n n doubly
stochastic matrix. Then, ‖ ‖ ‖ ‖≤ ≤D I1 n , where In is the ×n n identity matrix.

Proof. On the one hand, it follows from the absorbing property of the special matrix J
n
that

‖ ‖ ‖ ‖ ‖ ‖‖ ‖= ≤J DJ D J .
n n n

(2.2)

Thus, ‖ ‖ ≥D 1. On the other hand, if ∑ = α P
i

r

i i1 is a Birkhoff decomposition of D, then

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖∑ ∑ ∑= ≤ = =
= = =

D α P α P α I I .

i

r

i i

i

r

i i

i

r

i n n

1 1 1

□

3 Definition of the diameter of a set

In any given metric space ( )X d, , the diameter of a nonempty set of points � ⊆ X is defined as the supremum
of the distances between pairs of points in � , i.e.,

�

�

( ) ( )≔
∈

d x ydiam sup , .d

x y,

If �( ) < ∞diamd , then B is called a bounded set (Figure 1).
In the following two sections, we determine the diameter ofΩn with respect to the operator norms from ℓ

n

p

to ℓ
n

p and also with respect to the Schatten p-norms ( )≤ ≤ ∞p1 . While the former is fairly straightforward, the
latter requires a few non-trivial results and identities and gives rise to quite a surprising answer.

The diameter of the Birkhoff polytope  5



4 Diameter of the Birkhoff polytope relative to the operator
norms from  n

p to  n
p for ≤≤ ≤≤p ∞1

First, we turn our attention to the diameter of the Birkhoff polytope relative to the operator norms from ℓ
n

p to
ℓ

n

p
( )≤ ≤ ∞p1 . Here, we find that this diameter is constant and independent of the parameter p. This elegant

and simple result mainly rests on Lemma 2.1.

Theorem 4.1. For every ≤ ≤ ∞p1 , ( )ℓ =diam Ω 2n
n

p .

Proof. One can easily check straight from the definition of the operator norm from ℓ
n

p to ℓ
n

p that ‖ ‖ℓ ℓ =→I 1n
n

p

n

p

for all ≤ ≤ ∞p1 . Lemma 2.1 therefore ensures that for any ∈D Ωn, ‖ ‖ℓ ℓ =→D 1
n

p

n

p . Thus,

‖ ‖ ‖ ‖ ‖ ‖ℓ ℓ ℓ ℓ ℓ ℓ− ≤ + =→ → →D S D S 2
n

p

n

p

n

p

n

p

n

p

n

p

for every ∈D S, Ωn. Hence, ( )ℓ ≤diam Ω 2n
n

p . Moreover, let = ⊕ ⎡
⎣

⎤
⎦−D I

0 1

1 0
n 2 and =S In. Then, − =D S

⊕ ⎡
⎣
−

−
⎤
⎦−0

1 1

1 1
n 2 . The singular values of this matrix are 2 with multiplicity 1, and 0 with multiplicity −n 1.

Consequently, the diameter of Ωn relative to the operator norm from ℓ
n

p to ℓ
n

p is equal to 2. □

Remark 4.2. In the space of ×n n matrices with real coefficients equipped with the metric induced by the
‖ ‖ℓ ℓ⋅ →

n

p

n

p norm, the Birkhoff polytope Ωn has certain properties reminiscent of those of the unit circle. For
example, ‖ ‖ℓ ℓ =→D 1

n

p

n

p for all ∈D Ωn and ( ) =diam Ω 2p n .
Note, however, that the unit circle also verifies a property that is easily taken for granted: its diameter is

equal to twice its radius (in Chebyshev’s sense). A set in a metric space that verifies both of the aforementioned
properties of the unit circle as well as this latter property is called a centrable set.

The authors of this article have shown in [5, Theorem 6.8] that the Chebyshev radius of the Birkhoff
polytope with respect to the metric induced by the spectral norm is 1, which makes Ωn a centrable set with
respect to this metric space. However, for ≠p 2,Ωn is not a centrable set with respect to‖ ‖ℓ ℓ⋅ →

n

p

n

p since its radius
is strictly greater than 1.

5 Diameter of the Birkhoff polytope relative to the Schatten
p-norms for ≥≥p 1

We begin by using the fact that �‖ ‖−D S
p
is convex relative to both operand ∈D S, Ωn to deduce from property

(iii) of doubly stochastic matrices in Section 2.3 that �� �( ) ( )=diam Ω diamn np p
. But, since Schatten p-norms are

unitarily-invariant (and thus permutation-invariant), we have

�
�

�
�

�
�

�( ) ‖ ‖ ‖ ‖ ‖ ‖= − = − = −
∈ ∈

∗
∈

P Q I QP I Pdiam Ω max max max .n

P Q P Q

n

P

n

, ,
p

n

p

n

p

n

p

Figure 1: Diameter of the nonempty closed bounded set � with respect to the metric d .
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Now observe that ( ) ( )− − = − −∗ ∗
I P I P I P P2n n n and that, if ( )λ x, is an eigenpair of the permutation matrix P,

then

( ) ( )− − = − −∗ −
I P P x λ λ x2 2 .n

1

Thus, if λk( )≤ ≤k n1 are the eigenvalues of P , then the singular values of −I Pn are equal to − − −
λ λ2 k k

1 .
But, the eigenvalues of the permutation matrices are unimodular. So if ≔λ ek

iθk , we find

( ( )) ( )− − = − = ⎛
⎝

⎞
⎠ ≤ ≤−

λ λ θ

θ

θ π2 2 1 cos 2 sin
2

, 0 2 .k k k

k

k

1

It follows that
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⎠
⎞
⎠=
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2 sin
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p
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1

p

p

1

where θk are the arguments of the eigenvalues of P. Recall that the eigenvalues of a permutation matrix are of
the following particular form: there exist natural numbers n n n, ,…, r1 2 satisfying + + ⋯+ =n n n nr1 2 for which
the eigenvalues of P are ∕

e
πik n2 1( )≤ ≤k n1 1 , ∕

e
πik n2 2( )≤ ≤ ∕

k n1 ,…, e πik n

2
2 r ( )≤ ≤k n1 r [20]. Therefore,
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r1 1 1 2 1
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1 2

1

and thus,

� ( ) ∑ ∑⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎛
⎝

⎛
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⎞
⎠
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k

n

p

k

n

p

r1 1 1

p

j

r
p

1

1

Finding this maximum is a difficult problem. Indeed, a partition maximizing the aforementioned quantity
not only depends on the parameter p, but also, as we shall see, on the parity of n when >p 2. We therefore
divide the problem into three subcases. In the first case, where ≤ <p1 2, we will use some non-trivial
identities to achieve our goal. In the second case, certain peculiarities of the Schatten 2-norm will be exploited
to find precisely for which doubly stochastic matrices the diameter is realized. Finally, we will characterize the
case >p 2 using estimates.

5.1 Case ≤≤ <<p1 2

In [4], it is shown that for every [ )∈p 0, 2 , the function

( ) ∑≔ ⎛
⎝

⎞
⎠=

S n

n

πk

n

1
sin

k

n

p

1

is monotonically increasing relative to the natural numbers n. It thus follows that
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∑
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p

p

1

1

1

1

1

1
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The reverse inequality being realized by the trivial partition ( )n , it follows that

� ( ) ( )∑⎜ ⎟=
⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠

≤ <
=

πk

n

pdiam Ω 2 sin , 1 2 .n

k

n

p

1

p

p

1

Hence, the following holds true:

Theorem 5.1. For ≤ <p1 2, the diameter of Ωn relative to the Schatten p-norm is

� ( ) ∑⎜ ⎟=
⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠=

πk

n

diam Ω 2 sin .n

k

n

p

1

p

p

1

Remark 5.2. It can be shown (see [4]) that

( )
( )∫∑ ⎜ ⎟

⎛
⎝

⎞
⎠ = ⎛

⎝
− ∕
∕

⎞
⎠→∞ =n

πk

n

πx x

p

p

lim
1

sin ~ sin d
1 2

2
,

n
j

n

p p

1
0

1

where ( )

( ) ( )

⎛
⎝

⎞
⎠ ≔ → →

+
+ − +lim lim

z

w
u z v w

Γ u

Γ v Γ u v

1

1 1
Hence, for ≤ <p1 2, we have

� ( )
( )∑ ⎜ ⎟= ⋅ ⎛

⎝
⎞
⎠

⎛
⎝

− ∕
∕

⎞
⎠=

n

n

πk

n

p

p

ndiam Ω 2
1

sin ~2
1 2

2
.

p

n

p

k

n

p p

1

p

The case for the Schatten 1-norm, also known as the nuclear norm, trace norm, or Ky Fan norm, is of

marked interest. Using the trigonometric identity ∑ ⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠= sin cot

k

n πk

n

π

n1 2
, Theorem 5.1 yields:

Corollary 5.3. The diameter of Ωn relative to the nuclear norm is given by � ( ) = ⎛
⎝

⎞
⎠diam Ω 2 cotn

π

n21
.

Finally, note the argument presented in this section for the case ≤ <p1 2 holds just as true for p verifying
≤ <p0 1. For such p, though the function �‖ ‖⋅

p
defines only a quasi-norm, the function �( ) ‖ ‖= −d x y x y,

p

p
is

still a metric and the following holds true:

Proposition 5.4. For ≤ <p0 1, the diameter of Ωn relative to the metric �( ) ‖ ‖= −d x y x y,
p

p
is given by:

� ( ) ∑= ⎛
⎝

⎞
⎠=

πk

n

diam Ω 2 sin .n

p

k

n

p

1

p

5.2 Case ==p 2

Recall that �� �( ) ( )=diam Ω diamn np p
. This implies that there exists a pair of permutation matrices P1 and P2

such that �( ) ‖ ‖= −P Pdiam Ωn 1 2 p
. For the particular case of the Schatten 2-norm, we can use some more

precise knowledge about the norm of a doubly stochastic matrix to derive a stronger result.

Theorem 5.5. The diameter of Ωn relative to the Schatten 2-norm is equal to n2 . Moreover, it is realized by a
pair ∈D D, Ωn1 2 if and only if �∈D D, n1 2 and ( ) =∗

D Dtr 01 2 .

Proof. Let ∈D D, Ωn1 2 . Using Lemma 2.1, we have

� � �

�

‖ ‖ ‖ ‖ ‖ ‖ ( )

‖ ‖ ( )

− = + −

≤ − ≤

∗

∗

D D D D D D

I D D n

2tr

2 2tr 2 .n

1 2
2

1
2

2
2

1 2

2
1 2

2 2 2

2

(5.1)

8  Ludovick Bouthat et al.



Taking the supremum on each side yields � ( ) ≤ ndiam Ω 2n2
. We easily obtain the reverse inequality by taking

the pair of doubly stochastic matrices In and Q, where Q is any permutation matrix with trace zero.
Hence, � ( ) = ndiam Ω 2n2

.
Note that we have equality in both inequalities of (5.1) if and only if � �‖ ‖ ‖ ‖= =D D n1

2
2

2

2 2
and ( ) =∗

D Dtr 01 2 .
The former condition holds if and only if ( ) =σ D 1i j for all =i n1,…, and for =j 1, 2. Hence, the SVD of Dj is
given by = ∗

D U I Vj j n j
, whereUj andVj are the unitary matrices. Thus, the Djs are the unitary matrices and their

eigenvalues must then all lie on the unit circle. It therefore follows from property (ii) mentioned in Section 2.3
that the Djs are permutation matrices. □

5.3 Case >>p 2

Clearly, ( ) ( )≤x xsin sinp 2 for any [ ]∈x π0, and >p 2. Moreover, it is easy to show (using Euler identity) that

∑ ⎛
⎝

⎞
⎠ == sin

k

n πk

n

n

1
2

2
for ≥n 2 and ∑ ⎛

⎝
⎞
⎠ == sin 0

k

πk

1

1 2

1
. The combination of these basic facts gives us the following

estimate:

∑ ∑ ∑ ∑⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

+ ⋯+ ⎛
⎝

⎞
⎠
≤ ⎛

⎝
⎞
⎠

+ ⋯+ ⎛
⎝

⎞
⎠

≤ + ⋯+ =

= = = =

πk

n

πk

n

πk

n

πk

n

n n n

sin sin sin sin

2 2 2
.

k

n

p

k

n

p

r k

n

k

n

r

r

1 1 1 1

2

1 1

2

1

r r1 1

It follows that � ( ) ≤ ⎛
⎝

⎞
⎠diam Ω 2n

n

2p

p

1

for >p 2. If n is even, the partition of n into 2s yields the reverse inequality,
and thus,

� ( ) ( )= ⎛
⎝

⎞
⎠ >

n

p ndiam Ω 2
2

, 2, even .np

p

1

If n is odd, the situation is trickier. Clearly, any partition of n must contain at least one odd term, say =n mr .
Proceeding as before, we have

� ( ) ∑ ∑ ∑

∑

∑

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟=
⎛
⎝

⎛
⎝

⎞
⎠

+ ⋯+ ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠
⎞
⎠

≤
⎛
⎝

+ ⋯+ + ⎛
⎝

⎞
⎠
⎞
⎠

=
⎛
⎝

−
+ ⎛

⎝
⎞
⎠
⎞
⎠

∑

∑

= = = − =

=

−

=

≤ ≤ =

−
πk

n

πk

n

πk

m

n n πk

m

n m πk

m

diam Ω 2 max sin sin sin

2 max
2 2

sin

2 max
2

sin .

n

n n
k

n

p

k

n

p

r k

m

p

n n

r

k

m

p

m n

m

k

m

p

1 1 1 1 1

1 1

1

1

odd
1

p

j

r
p

j

p

p

1 1

1

1

1

The reverse inequality is readily obtained by considering the partition ( )m2, …,2, , and thus,

� ( ) ( )∑⎜ ⎟=
⎛
⎝

−
+ ⎛

⎝
⎞
⎠
⎞
⎠

=
⎛

⎝
⎜⎜ +

⎞

⎠
⎟⎟≤ ≤ = ≤ ≤

n m πk

m

n

S mdiam Ω 2 max
2

sin 2
2

max ,n

m n

m

k

m

p

m n

m

p

1

odd
1

1

odd

p

p

p1

1

where

( ) ∑≔ ⎛
⎝

⎞
⎠ −

=
S m

πk

m

m

sin
2

.p

k

m

p

1
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We therefore seek to determine for which odd numbers m the term ( )S mp (seen as a function of p) attains its
maximum. To achieve this, we shall use the following trigonometric identity twice [32, Corollary 1]:

∑ ⎛
⎝

⎞
⎠ =

⎧

⎨
⎪⎪

⎩
⎪
⎪

=

=

≥
=

πk

m

m

m

m

m

sin

0, if 1,

27

32
, if 3,

5

16
, if 5.

k

m

1

6 (5.2)

Let us first suppose that ≥p 6. Note that under this additional hypothesis, the fact that ( )≤ ≤x0 sin 1 for
[ ]∈x π0, implies that ( )S mp decreases relative to p for any integer m. So,

( ) ( ) ( ) ( )≤ ≤ ≥
≤ ≤ ≤ ≤

S S m S m p1 max max , 6 .p

m n

m

p

m n

m

1

odd

1

odd

6

The trigonometric identity (5.2) then ensures that

( ) ∑= ⎛
⎝

⎞
⎠ − =

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− =

− =

− ≥
=

S m

πk

m

m

m

m

m

m

sin
2

1

2
, if 1,

21

32
, if 3,

3

16
, if 5.

k

m

6

1

6

But − < − < −m3

16

21

32

1

2
for every odd integer ≥m 5, and it follows that the maximum of ( )S m6 is realized when

=m 1. Moreover, observe that ( ) = −S 1p

1

2
for every �∈p . Therefore, we have

( ) ( ) ( ) ( ) ( ) ( )≤ ≤ = = ≥
≤ ≤ ≤ ≤

S S m S m S S p1 max max 1 1 , 6 .p

m n

m

p

m n

m

p

1

odd

1

odd

6 6

Thus, the maximum of ( )S mp when m is an odd integer and ≥p 6 is realized by =m 1.
Let us then go back to the case where < <p2 6. By Hölder’s inequality,

( )

( )

( )

∑ ∑

∑ ∑⎜ ⎟ ⎜ ⎟

+ = ⎛
⎝

⎞
⎠ = ⎛

⎝
⎞
⎠ ⋅ ⎛

⎝
⎞
⎠

≤
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⋅
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

= =

−

= =

−

S m

m πk

m

πk

m

πk

m

πk

m

πk

m

2
sin sin sin

sin sin ,

p

k

m

p

k

m pt p t

k

m pta

k

m p t b

1 1

1

1 1

1a b

1 1

for each ≤ ≤t0 1 and every ≥a b, 1 such that + = 1
a b

1 1 . By choosing = −
t

p

p

6

2
and = −a

p

4

6
, we find that

≤ ≤t0 1 and < < ∞a b1 , and we obtain

( )

( )

∑ ∑

∑

⎜ ⎟ ⎜ ⎟

⎜ ⎟

≤
⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠

⋅
⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠

−

≤ ⎛
⎝

⎞
⎠ ⋅

⎛
⎝

⎛
⎝

⎞
⎠
⎞
⎠

− ≕

= =

=

− −

− −

S m

πk

m

πk

m

m

m πk

m

m

T m

sin sin
2

2
sin

2
.

p

k

m

k

m

k

m

p

1

2

1

6

1

6

p p

p
p

6

4

2

4

6

4

2

4

Once again, we use the trigonometric identity (5.2) to obtain

( ) ( )≤ =

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

− =

⎛
⎝

⎞
⎠ − =

⎛

⎝
⎜⎛⎝

⎞
⎠ −

⎞

⎠
⎟ ≥

−

S m T m

m

m

m

m

1

2
, if 1,

2
3

4

3

2
, if 3,

5

8
1

2
, if 5.

p p

p

p

2

2

4
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Note that ⎛
⎝

⎞
⎠ −

−

1
5

8

p 2

4

is a decreasing function of p, and thus,

⎛
⎝

⎞
⎠ − ≤ ⎛

⎝
⎞
⎠ − =

− −
5

8
1

5

8
1 0.

p 2

4

2 2

4

Hence, ( )T mp is decreasing relative to m for each p with < <p2 6, and every odd integer ≥m 5. It follows that
( ) ( )≥T T m5p p for any such p and every odd integer ≥m 5. Moreover,

( ) ( )≥ ↔ ≥ ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

−

T T3 5 2 5
5

8
4

3

4
.p p

p p2

4 2

It is straightforward to verify that ⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠

−

5 4
5

8

3

4

p p2

4 2

is a decreasing function of p whenever >p 2, and thus,

( )
⎛
⎝

⎞
⎠ − ⎛

⎝
⎞
⎠ ≤ ⎛

⎝
⎞
⎠ − ⎛

⎝
⎞
⎠ = >

− −

p5
5

8
4

3

4
5

5

8
4

3

4
2, 2 .

p p2

4 2

2 2

4

2

2

Hence, ( ) ( )≥T T3 5p p for every p with < <p2 6, and it follows that

( ) ( ) { ( ) ( )} ( )⎜ ⎟≤ ≤ =
⎧
⎨
⎩
−

⎛
⎝

⎞
⎠

−
⎫
⎬
⎭

< <S m T m T T pmax 1 , 3 max
1

2
, 2

3

2

3

2
, 2 6 .p p p p

p

Moreover, one can readily verify that ( ) = −S 1p

1

2
and ( ) = ⎛

⎝
⎞
⎠ −S 3 2p

p

3

2

3

2
. Therefore, this upper bound on ( )S mp

is also realized by ( )S 1p and ( )S 3p . Hence,

( ) { ( ) ( )} ( )⎜ ⎟= =
⎧
⎨
⎩
−

⎛
⎝

⎞
⎠

−
⎫
⎬
⎭

< <
≤ ≤

S m S S pmax max 1 , 3 max
1

2
, 2

3

2

3

2
, 2 6 .

m n

m

p p p

p

1

odd

It then follows from a few elementary computations that ( ) ( )≤S S1 3p p if and only if − ≤ ⎛
⎝

⎞
⎠ −2

p

1

2

3

2

3

2
, i.e., to

say if and only if ( )

( )
≤ ≕ ≈∕p c 4.819

log 4

log 4 3
. Therefore, for p satisfying < ≤p c2 , the maximum of ( )S mp is

reached for =m 3, whereas for p verifying ≤ <c p 6 (and thus on for ≤ < ∞c p ), the maximum is reached
for =m 1. Moreover, a direct calculation and some simplifications reveal that one can write the results of this
section in the following closed form for every �∈n :

Theorem 5.6. For >p 2, the diameter of Ωn relative to the Schatten p-norm is

� ( )

( ) { ( ) }

=
⎛

⎝
⎜

− − ∕ ⎞

⎠
⎟

n

diam Ω 2

sin min 1, 3 4 3 2

2
.n

nπ
p2

2

p

p

1

(5.3)

In particular, if n is even, then � ( ) ( )= ∕ ∕
ndiam Ω 2 2n

p1

p
.

5.4 Summary

The following theorem condenses the results derived in this section concerning the diameter of Birkhoff’s
theorem when the metric used is the one induced by Schatten’s p-norms.

Theorem 5.7. Given p with ≥p 1, the diameter of Ωn relative to the Schatten p-norm is given by:

� ( )

( ( ) )

∑
=

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛
⎝

⎞
⎠ ≤ ≤

− ⎛
⎝

⎞
⎠ − ∕

≤ < ∞

=

πk

n

if p

n

if p

diam Ω

2 sin , 1 2,

2

sin min 1, 3 4 3 2

2
, 2 .

p

n

p

k

n

p

p

nπ
p

1

2

2

p

(5.4)
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In particular,

(i) � ( ) = ⎛
⎝

⎞
⎠diam Ω 2 cotn

π

n21
,

(ii) � ( ) = ndiam Ω 2n2
,

(iii) � ( ) ( )= ∕ ∕
ndiam Ω 2 2n

p1

p
if n is even and ≥p 2.

Acknowledgements: We thank the anonymous reviewers for their careful reading of our manuscript and
their many insightful comments and suggestions.

Funding information: This work was partially supported by a research grant from NSERC, a research grant
from Fonds de recherche du Québec-Nature et technologies, and the Vanier scholarship.

Conflict of interest: The authors declare no conflicts of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.

References

[1] Z.-J. Bai, D. Chu, and R. C. E. Tan, Computing the nearest doubly stochastic matrix with a prescribed entry, SIAM J. Sci. Comput. 29 (2007),
2, 635–655.

[2] M. Beck and D. Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom. 30 (2003), no. 4, 623–637.
[3] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucumán. Revista A. 5 (1946), 147–154.
[4] L. Bouthat, J. Mashreghi, and F. Morneau-Guérin,Monotonicity of certain left and right Riemann sums, Recent developments in operator

theory, mathematical physics and complex analysis, Oper. Theory Adv. Appl. vol. 290, Birkhäuser/, Springer, Cham, 2023, pp. 89–113.
[5] L. Bouthat, J. Mashreghi, and F. Morneau-Guérin, On the Geometry of the Birkhoff Polytope. I. The operator ℓp-norms, Acta Sci. Math.

(Szeged) (2024, submitted).
[6] L. Bouthat, J. Mashreghi, and F. Morneau-Guérin, On the Geometry of the Birkhoff Polytope. II. The Schatten p-norms, Acta Sci. Math.

(Szeged) (2024, submitted).
[7] R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices, IV, Linear Algebra Appl. 15 (1976), no. 2, 153–172.
[8] R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function, J. Comb.

Theory Ser. A 22 (1977), no. 2, 194–230.
[9] R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices: II. Graph of Ωn, J. Comb. Theory, Ser. B. 22 (1977),

175–198.
[10] R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices. III. Affine and combinatorial properties of Ωn, J. Comb.

Theory Ser. A 22 (1977), no. 3, 338–351.
[11] E. R. Canfield and B. D. McKay, The asymptotic volume of the Birkhoff polytope, Online Online J. Anal. Comb. (2009), no. 4, 4.
[12] L. Cao, D. McLaren, and S. Plosker, The complete positivity of symmetric tridiagonal and pentadiagonal matrices, Spec. Matrices 11

(2023), 20220173.
[13] C. S. Chan and D. P. Robbins, On the volume of the polytope of doubly stochastic matrices, Experiment. Math. 8 (1999), no. 3, 291–300.
[14] L. Costa, C. M. da Fonseca, and E. A. Martins, The diameter of the acyclic Birkhoff polytope, Linear Algebra Appl. 428 (2008), no. 7,

1524–1537.
[15] L. Costa, C. M. da Fonseca, and E. A. Martins, Face counting on an acyclic Birkhoff polytope, Linear Algebra Appl. 430 (2009), no. 4,

1216–1235.
[16] B. Cousins and S. Vempala, A practical volume algorithm, Math. Program. Comput. 8 (2016), no. 2, 133–160.
[17] C. M. da Fonseca and E. Marques de Sá, Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope,

Discrete Math. 308 (2008), no. 7, 1308–1318.
[18] G. Dahl, Tridiagonal doubly stochastic matrices, Linear Algebra Appl. 390 (2004), 197–208.
[19] J. A. De Loera, F. Liu, and R. Yoshida, A generating function for all semi-magic squares and the volume of the Birkhoff polytope,

J. Algebraic Combin. 30 (2009), no. 1, 113–139.
[20] J. J. Dionísio, A rule for computing the eigen-values and the eigen-vectors of a permutation matrix, Rev. Fac. Ci. Univ. Coimbra 23

(1954), 53–55.
[21] I. Z. Emiris and V. Fisikopoulos, Efficient random-walk methods for approximating polytope volume, Computational geometry

(SoCGa14), ACM, New York, 2014, pp. 318–327.

12  Ludovick Bouthat et al.



[22] R. Fernandes, Computing the degree of a vertex in the skeleton of acyclic Birkhoff polytopes, Linear Algebra Appl. 475 (2015), 119–133.
[23] J. Fieberg and S. P. Ellner, Stochastic matrix models for conservation and management: a comparative review of methods, Ecology Letters

4 (2001), no. 3, 244–266.
[24] K. Gladstien, The characteristic values and vectors for a class of stochastic matrices arising in genetics, SIAM J. Appl. Math. 34 (1978), 4,

630–642.
[25] W. Glunt, T. L. Hayden, and R. Reams, The nearest ‘doubly stochastic’ matrix to a real matrix with the same first moment, Numer. Linear

Algebra Appl. 5 (1998), no. 6, 475–482 (1999).
[26] W. Glunt, T. L. Hayden, and R. Reams, The nearest generalized doubly stochastic matrix to a real matrix with the same first and second

moments, Comput. Appl. Math. 27 (2008), no. 2, 201–210.
[27] B. Hayes et al., First links in the Markov chain, Amer. Sci. 101 (2013), no. 2, 92.
[28] R. A. Horn and C. R. Johnson, Matrix Analysis, second ed. , Cambridge University Press, Cambridge, 2013.
[29] D. Jojić, Some remarks about acyclic and tridiagonal Birkhoff polytopes, Linear Algebra Appl. 495 (2016), 108–121.
[30] R. N. Khoury, Closest matrices in the space of generalized doubly stochastic matrices, J. Math. Anal. Appl. 222 (1998), 2, 562–568.
[31] J. LeSage and R. K. Pace, Introduction to Spatial Econometrics, Chapman and Hall/CRC, New York, 2009.
[32] M. Merca, On some power sums of sine or cosine, Amer. Math. Monthly. 121 (2014), no. 3, 244–248.
[33] I. Paniello, Stochastic matrices arising from genetic inheritance, Linear Algebra Appl. 434 (2011), no. 3, 791–800.
[34] H. Perfect and L. Mirsky, Spectral properties of doubly-stochastic matrices, Monatsh. Math. 69 (1965), 35–57.
[35] R. Solow, On the structure of linear models, J. Econ. Soc. 20 (1952), no. 1, 29–46.
[36] B. Sturmfels, Equations defining toric varieties, Algebraic geometry–Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math.

Soc., Providence, RI, 1997, pp. 437–449.
[37] A. B. Vistelius, Mathematical geology and the progress of geological sciences, J. Geol. 84 (1976), no. 6, 629–651.
[38] E. H. T. Whitten, Stochastic models in geology, J. Geol. 85 (1977), no. 3, 321–330.

The diameter of the Birkhoff polytope  13


	1 Introduction
	2 Definitions, properties, and preliminary results
	2.1 Operator norms induced by the vector p-norms
	2.2 Schatten p-norms
	2.3 Elementary spectral properties of doubly stochastic matrices
	2.4 A special doubly stochastic matrix
	2.5 Minimum and maximum distance of an element of the Birkhoff polytope from the origin

	3 Definition of the diameter of a set
	4 Diameter of the Birkhoff polytope relative to the operator norms from &#x2113;np to &#x2113;np for 1&#x2264;p&#x2264;&#x221E;
	5 Diameter of the Birkhoff polytope relative to the Schatten p-norms for p&#x2265;1
	5.1 Case 1&#x2264;p&#x003C;2
	5.2 Case p=2
	5.3 Case p&#x003E;2
	5.4 Summary

	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


