Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Belhaj Messaoud, Ines; Ben Cheikh, Elyes; Chiboub, Assaad; Loulou, Karim; Ouakrim, Youssef; Ben Jebara, Sofia; Dixon, Philippe C. et Mezghani, Neila (2023). Machine Learning based Approaches for Cough Detection From Acceleration. Dans IEEE 22th International Conference on Cyberworlds (CW2023). Sousse, Tunisia. https://doi.org/10.1109/CW58918.2023.00056
Fichier(s) associé(s) à ce document :
PDF
- Messaoud2023.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation) |
|
Catégorie de document : | Communications dans des actes de congrès/colloques |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | The main goal of this research is to develop a a machine learning based method in order to detect cough from acceleration signals. In this study, two different methods are proposed: a conventional one that uses XGBoost as a classifier and a deep learning which uses CNN-1D as an architecture. We found that these models were able to distinguish between acceleration signals caused by coughing and acceleration signals caused by other activities such as clearing throat, talking, laughing and movements in different directions with high accuracy. This study affirms that cough monitoring based on accelerometer measurements generated by the Hexoskin device is possible, making it a new user-independent tool for cough detection. |
Adresse de la version officielle : | https://ieeexplore.ieee.org/abstract/document/1033... |
Déposant: | Ayena, Johannes |
Responsable : | Neila Mezghani |
Dépôt : | 29 janv. 2024 14:00 |
Dernière modification : | 07 août 2024 13:25 |
RÉVISER |