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Abstract –
The main goal of this research is to develop a a machine

learning based method in order to detect cough from
acceleration signals. In this study, two different methods
are proposed: a conventional one that uses Xgboost as
a classifier and a deep learning which uses CNN-1D
as an architecture. We found that these models were
able to distinguish between acceleration signals caused
by coughing and acceleration signals caused by other
activities such as clearing throat, talking, laughing and
movements in different directions with high accuracy.
This study affirms that cough monitoring based on
accelerometer measurements generated by the Hexoskin
device is possible, making it a new user-independent tool
of cough detection.

Keywords – Cough detection, connected textile sensors,
acceleration signals, supervised classification, machine
learning, deep learning.

I. Introduction

Cough can be described as a sudden and often repetitive
expulsion of air with a strong expiratory effort. It is
an important indicator of several health problems such
as upper and lower respiratory tract infections (common
cold, influenza, bronchitis bronchiolitis), asthma, chronic
obstructive pulmonary, pulmonary edema, pneumonia,
tuberculosis,... and recently COVID-19 [1].

Cough detection can be useful in a variety of purposes.
Some potential applications include monitoring respiratory
health (alert to infection presence of a chronic respiratory
condition for instance), early detection of respiratory
infections (useful in situations where it is not possible or
desirable to perform more invasive diagnostic tests), and
remote monitoring (using smart watches or fitness trackers,
allowing individuals to monitor their own respiratory health on
a continuous basis), surveillance in public settings (identifying
individuals who may be infected with a respiratory illness
and alert them to the need for further testing or isolation),
improving public health (detection and tracking the spread of
respiratory infections)...

There are several ways to detect coughs when using
wearable devices and the Internet of Things [2]. Coughs can

be detected using either audio signals or physiological signals
(such as heart activity, blood pressure, airflow, or respiratory
inhalation and expiration, movement signals,...). In this work,
we are interested with acceleration signals that detect the
sudden and forceful movement associated with a cough. In
fact, monitoring cough based on signals from an accelerometer
placed on a human body is less intrusive and it was proven to
be an efficient way of detection [3]. It was also proven that the
accelerometer could be used with other physiological sensors
such as ECG and respiration sensors [4].

Automatic cough detection can be carried using machine
learning. It involves training a machine learning model on
a dataset which will be able to predict whether a measured
information contains cough or not. Either conventional
machine learning or deep learning can be used. Conventional
machine leaning algorithms (such as decision trees, random
forests, and support vector machines) can learn patterns
in the data and make predictions based on those patterns.
Deep learning, on the other hand, involves the use of neural
networks composed of multiple layers of interconnected nodes
which can learn complex patterns in the data by adjusting
the connections between nodes. In this research, a machine
learning based method using Extreme Gradient Boosting
(XGBoost) as well as a deep learner Convolutional Neural
Network (CNN) based model are proposed to detect the
symptom of cough by using only accelerometer raw data.
This measurement tool is attached to a human body and the
acceleration is 3 dimensional (X, Y and Z axis) is acquired to
constitute data of interest.

Dealing with literature review, one of the recent related
works proposed deep learning methods to perform cough
detection based on measurements from an accelerometer
attached to the patient’s bed [5] . This study approach offers
cough monitoring for patients in their own bed without having
to move or attach an accelerometer in their own body. The
used classifiers are based on CNN, LSTM residual neural
network (Resnet50). In another related work [6], an automatic
cough detection system was considered to differentiate
between acceleration signals associated with coughs and
those associated with swallows, tongue movements and other
activities such as speech. The raw acceleration data was
represented in term of time-frequency meta features, a binary
genetic algorithm was used for feature selection and a support
vector machine (SVM) classifier was used.



In this work, we deal with a deep learner architecture based
on Convolutional neural networks (CNNs), along with the
XGBoost machine learning model, to explore the detection
of cough solely based on acceleration signals. These signals
were obtained in a non invasive way using the Hexoskin
device. Our specific objective was to know whether the
body movements associated with coughing exhibit distinctive
characteristics compared to other activities like throat
clearing, sniffling, speaking, laughing, etc...

The paper is organized as follows. Section II deals with
data collection procedure and preparation to make it ready
for classification. Section III gives an overview of selected
and adjusted deep learning based architectures and machine
learning model. Section IV adresses the classification results
methodology and results. Finally section V draws some
conclusions.

II. Data preparation

A. Data collection
This project is submitted to the research ethics committees

of University of Montreal Hospital Center (CHUM), École de
technologie supérieure (ÉTS) and TELUQ University. The
fundamental ethical principles as well as the guidelines of the
councils are respected during the project.
In this work, a total of 36 participants, men and women aged
from18 to 65, were recruited internally, at the Laboratory of
Simulation and Modeling of Motion (S2M) of the University
of Montreal or in the offices of Carré Technologies, Inc. which
is the provider of equipments acquisition 1. Participants were
in good health and had no chronic pain or known respiratory
problems. Pregnant women were not to be recruited for this
study.

The day of data acquisition, each participant weared
the Hexoskin device in order to allow acquisition of some
physiological signals 2. Among them, we mainly cite the ,
3-axis acceleration signals which are the signals of interest
in this study. The participants were asked to perform the
following 11 consecutive activities in different positions :
sitting position with 30-degree inclination, sitting position
with 90-degree inclination and lying position. Each session
for one particular position lasts between 10 and15 minutes. A
period of 2-5 minutes of rest between each position was also
considered. The 11 consecutive activities are :

• 2-3 minutes normal respiration without coughing
• 5 normal volume coughs
• 5 double coughs (2 consecutive coughs repeated 5 times)
• 5 throat clears
• 5 low volume coughs
• Laugh during 2-5 seconds
• 5 normal volume coughs
• speaking loudly 3 words (from the Harvard corpus)
• 5 loud coughs
• 5 cycles of deep breathing (inhalation through the nose /

exhalation through the mouth)

1Hexoskin
2Hexoskin

Fig. 1. Illustration of the acceleration signal during the experimental
protocol activities.

• 5 sniffles

The 3-axis acceleration signals are acquired and sampled at
fs = 64Hz. Computing the modulus of the triple components
is a simple solution to reduce the data dimension by 3 and
also to make data orientation independent. Let Ax, Ay and Az
the accelerations along respectively the x, y and z axes and G
the gravity constant. The norm A of the acceleration vector is
defined as : A =

√
A2

x +A2
y +A2

z/G.
Fig. 1 illustrates an acceleration norm signal example

of one participant. The different human body activities are
plotted in different colors either in the acceleration signal
or using vertical lines indicating the activity instance of
occurrence. The objective is to highlight the differences in
the acceleration signal according to the activity. For example,
the signal looks like an noise when no physical activity occurs.
During the coughing exercise, the acceleration signal appears
as a puff with an ascending session followed by a descending
one. A peak arises representing the maximal velocity. Some
other peaks appear also during other activities such as laughing
but the shape of the activity differs from that of cough. On the
other hand, sniffling and throat clearing look like coughing and
contrarily, speaking does not have effect of acceleration.
To conclude, this particular representation highlights the
importance to rigorously segregate the cough from the other
activities in the acceleration signal by taking into account the
morphology of each activity acceleration.

B. Data labeling
During acquisition, the original data was not completely

labeled, which means that cough frames are not precisely
identified. The only available information is a flag indicating
the presence of the cough (vertical lines in Fi.g 1). This flag
was raised manually by the user at the instant when he intented
to cough. To label the acceleration data, the audio data was
used as a reference and segmented based on the presence or
absence of silence in the signal. The minimum duration of
silence was set to 350 ms and the upper limit of the silence
level in full scale decibels (dBFS) was set to -55 dBFS. From
these segments, the active parts of the audio were determined,
which are the parts located between two silent segments.

To determine the type of activity associated with each
segment, a portion of the dataset was manually labeled
for supervised learning. The coughing and throat clearing
activities were grouped into the same "Cough" class due to
their similar auditory properties. The manually labeled portion



of the dataset represented 25% of the total dataset, which is
equivalent to about 2445 instances used for training. This
annotated section of the database makes it possible to use
supervised learning to classify the activities. The process
involves extracting various descriptors from segmented audio
files such as MFCC coefficient, RMS vector, spectral
bandwidth, zero crossing rate, and spectral contrast. Next, the
data is expanded, and the best features are selected to apply the
XGBoost model on the remaining data. The results are then
manually verified to avoid any errors caused by the model.

C. Data preprocessing
The normalized raw data underwent denoising using

discrete wavelet transform with interval-dependent
thresholding. To remove noise from detail coefficients,
Daubechis wavelet db10 at three levels was utilized. [7]
Subsequently, the denoised signal was divided into short
time windows, resulting in frames that are useful for cough
detection. Each frame lasts 1.5 seconds with an overlap of
25%. During this processing step, each acceleration in the
three axes is considered. The information that needs to be
fed into the classifier input has a two-dimensional shape, with
columns relating to the three directions of accelerations, and
rows representing the samples of each acceleration frame.

D. Data balancing
Before dividing the data into segments, we initially had

18% of the samples belonging to the "Cough" class, while
the remaining 82% belonged to the "Non-Cough" class. It is
essential to maintain this proportional distribution even after
segment creation. Following the segmentation process, which
involved splitting the acceleration signal into frames and
generating 3D data samples, we obtained a dataset consisting
of 50,008 samples. Remarkably, 19.5% of these samples
corresponded to cough frames. This imbalanced dataset
highlights the need for oversampling techniques to enrich the
cough data. In this research, the Synthetic Minority Over-
sampling Technique (SMOTE) was employed to address the
class imbalance [8]. By oversampling the small cough class,
the dataset length increased to 39306, and the class imbalance
was fixed to 3.1. This method helps to provide a balanced
and more representative dataset for training machine learning
models, thereby improving their accuracy and generalization
performance.

III. Classification models

A. Traditional machine learning method
Traditional machine learning methods have been widely

applied in cough detection systems. These methods
typically involve several stages as shown in figure 2 top
diagram, starting with feature extraction from cough segments.
Following this step, feature selection techniques are applied
to capture only the most pertinent information. For this
task, The XGBoost model was selected due to its ability
to handle large datasets with a high number of features
effectively. It is trained using labeled cough data, with features
as input and corresponding cough or non-cough labels as
output. Hyperparameter tuning is then employed to optimize
the model’s performance.

Fig. 2. Block diagram of the two approaches

1) Feature extraction and selection: The system generates
a feature vector for each frame in order to help the machine
learning module in learning the underlying characteristics
from the raw signals. This feature vector is a combination
of three vectors, each consisting of 51 features extracted from
the acceleration data in the three axes (X, Y, and Z). These
features can be categorized into two groups: those extracted
from the time domain and those from the frequency domain
after applying a Fast Fourier Transfrom (FFT) to the time
signal. The frequency domain features include statistical
features like mean, standard deviation, average absolute
deviation, minimum and maximum values, difference between
maximum and minimum values, median, median absolute
deviation, interquartile range, count of negative values, count
of positive values, number of values above mean, number of
peaks, skewness, kurtosis, and energy. [9] The set of features
estimated from time domain signals include similar features
to those from the frequency domain, plus Hjorth features
( Activity, mobility and complexity) as in [10] and Auto-
regression coefficients with Burg order equal to three [11].
Furthermore, the system extracts the maximum and minimum
index and their difference from both the time and frequency
domain signals.

To enhance the performance of a classifier, it is crucial

Fig. 3. Precision according to feature number

to select the most relevant and informative features that are
closely related to the activity being recognized. This involves



discarding any redundant or irrelevant features before feeding
the feature set into the classifier. By doing so, the classifier
can focus on the essential features and improve its overall
performance. By selecting the top 30 most important features,
Figure demonstrates that the model achieved a maximum
precision of 72% before undergoing any tuning.

2) XGBoost model: The XGBoost algorithm is widely
recognized as one of the most powerful and efficient machine
learning models. By combining many weak classifiers into a
single, robust classifier, XGBoost is able to achieve high levels
of accuracy and predictive power. This ensemble algorithm
is based on decision trees and uses a gradient refinement
framework [12]. The output of a tree in gradient boosting can
be expressed as follows:

f (x) =Wq(xi)

where x is the input vector and Wq is the score of the
corresponding leaf q. The output of an ensemble of K trees
will be :

yi =
K

∑
k=1

fk(xi)

At step t, the algorithm in gradient boosting aims to minimize
the following objective function J:

J(t) =
n

∑
i=1

L(yi, ŷi
t−1 + ft(xi))+

t

∑
i=1

Ω( fi)

where the first term contains the train loss function L
(e.g.mean squared error) between the real class y and predicted
output ŷ for the n samples and the second term is the
regularization term, which controls the complexity of the
model and helps to avoid overfitting. In XGBoost, the
complexity is defined as :

Ω( f ) = γT +
1
2

λ

T

∑
j=1

w2
j

In this equation, γ and λ are hyperparameters that control the
complexity of the model. γ is the minimum loss reduction
required to make a further partition on a leaf node, and λ is the
regularization term on the weights of leaf nodes. T represents
the total number of leaf nodes in the tree, w j represents the
weight of leaf node j and the term 1

2 λ ∑
T
j=1 w2

j penalizes the
weights to avoid overfitting. The complexity term is added
to the objective function to balance the trade-off between
minimizing the training loss and controlling the complexity of
the model, promoting simpler and more generalized solutions.

3) Hyperparameter tuning: In order to optimize the
performance of the model, we tuned various hyperparameters.
The XGboost best performance were obtained with the
following hyperparameters : number of estimators =100,
Maximum depth of a tree = 18, Minimum loss reduction
required to make a further partition on a leaf node of the
tree = 3, L1 regularization term on weights = 75, Minimum
sum of instance weight needed in a child=3, L2 regularization
term on weights=0.6, the subsample ratio of columns when

constructing each tree=0.7

B. Deep learning Approach
For this task, deep learning models utilizing Convolutional

Neural Networks (CNNs) were employed. The selection of a
CNN-based architecture was motivated by its ability to process
acceleration data with consideration for its spatial structure.

1) CNN Architecture: In this study, we applied a
convolutional neural network (CNN) architecture for the
classification of pre-processed and segmented data. The
network architecture, as illustrated in Figure 4, comprised
three stages: an input stage, a feature extraction stage with
five convolutional layer blocks, and an output provision
classification stage. The input stage received pre-processed
and segmented data, denoted as X, containing the training
dataset with a size of (N × H × D). Here, N represents the size
of the dataset, H represents the time series sample number
(also known as frame size), which we set to 96, equivalent
to one and a half seconds of data. Additionally, D represents
the number of sensor axes (also referred to as acceleration
dimensions), which we set to 3.

The feature extraction stage, consisting of five
convolutional layer blocks, played a crucial role in identifying
and extracting relevant features. Each block utilized
convolutional layers with varying filter sizes ranging from
32 to 512 (32, 64, 128, 256, 512), with each layer having
more filters than the previous one. Batch normalization and
max pooling with a pool size of 2 were applied after each
convolutional layer to reduce computational requirements and
identify crucial features. The max pooling technique allowed
the network to identify important features and compress
layer sizes through subsampling, thereby helping to prevent
overfitting and reduce computational requirements. Following
the convolutional layers, a flatten layer was employed
to transform the output into a 1-dimensional array. The
architecture further included one fully connected layers with
288 nodes, respectively. Both layers utilized the rectified
linear unit (ReLU) activation function, kernel regularization
with a value of 0.01, and a dropout rate of 0.5. These layers
played a role in capturing higher-level representations and
enabling more complex feature interactions.

For the final classification stage, the output layer employed
the sigmoid activation function for binary classification. The
model was compiled with binary cross-entropy loss and
utilized the Adam optimizer, which helped optimize the
network’s weights and biases to minimize the loss function
and improve classification performance.

2) Hyperparameters optimisation: Deep learning models
contain a considerable number of hyperparameters and their
setting is very complex. Part of the configuration of the neural
network is to decide how many hidden layers of nodes will be
used between the input and output layers of the network.The
number of nodes used for each layer must also be determined.
These configuration variables are set manually and are part
of the hyperparameter tuning of an artificial neural network.
It is also possible to draw inspiration from the choice of
hyperparameters from related topics that have dealt with raw
data like the ones treated in this subject.



For the CNN-1D model, the best performance were
obtained with the following hyperparameters: batch size=32,
number of epochs=30, number of convolutional filters=32,
kernel size=3, learning rate= 0.001, dropout rate= 0.5 and
dense layer sizes are 1024 and and 288 respectively.

Fig. 4. CNN network illustration.

IV. Classification results

A. Evaluation metrics
In this supervised classification work, some metrics were

used to evaluate the performance of the classification model,
including:

• Accuracy: it is the ratio of correct predictions of cough
segments to the total number of predictions made.

• Precision: This metric measures the proportion of true
cough frames predictions among all positive predictions
made by the model. It is calculated as the number of true
cough frames prediction divided by the total number of
positive predictions made.

• Recall: This metric measures the proportion of cough
frames predictions that were actually correct. It
is calculated as the number of true cough frames
predictions divided by the number of cough frames in
the dataset.

• F1 score: This metric is the harmonic mean of precision
and recall, and is calculated as the product of precision
and recall divided by their sum. It is a good metric to use
when we want to balance precision and recall.

B. Performances per subject
Due to the relatively small dataset size when usind deep

learning based machine learning models, the Leave-One-
Person-Out Cross Validation (LOOCV) is the type of cross

validation technique used to evaluate the performance of the
implemented models. In this work, a particular LOOCV is
chosen : the dataset is divided into K = 36 folds since 36
persons participated to the experience and each fold contains
exclusively data of one participant. The model is trained on
all the folds except for one, which is held out as the test
set. This process is repeated for each fold (equivalent to
each participant) in the dataset, so that every participant is
used as the test set once. This particular choice of LOOCV
configuration guarantees that the model is not suited to certain
participants.

Figures 5, 6 and show, for each model, the accuracy (right
side) values for every participant, whose identifier (chosen
as a number) is given in the left side. One can notice the
good performances obtained with XGBoost for all participants
(accuracy range is [0.81;0.96]). The CNN model demonstrates
excellent performance across major participants, (accuracy
range is [0.84;0.97]). This conclusion confirms the CNN
optimisation architecture and confirms its use.

C. Overall performances
The final model performance is calculated as the average

performance across all the folds. The performance of
the classifiers can be evaluated by examining the metrics
presented in the table I. In terms of accuracy, the CNN
achieves the highest score of 91%, closely followed by
XGBoost with 90%. Regarding precision, all three classifiers
demonstrate relatively similar performance, with XGBoost
and CNN achieving 77%. In terms of recall, the CNN
performs the best, achieving an impressive score of 82%,
while XGBoost achieve 74%. Similarly, the CNN also
achieves the highest F1 score of 79%, followed by XGBoost
with 74%. Overall, the CNN classifier demonstrates the
strongest performance across multiple metrics, exhibiting
higher accuracy, recall, and F1 score compared to XGBoost.
However, it is worth noting that each classifier has its strengths
and weaknesses, and the choice of the most suitable model
ultimately depends on the specific requirements and objectives
of the task at hand.

XGBoost CNN
Accuracy 90% 91%
Precision 77% 77%

Recall 74% 82%
F1 Score 74% 79%

TABLE I
Performance metrics of the different classifiers.



Fig. 5. XGBoost model accuracy results for each participant.

Fig. 6. CNN model accuracy results for each participant.

V. Conclusion and Future work

In this research, a machine learning-based method was
developed for the detection of cough using acceleration
signals. Two approaches were proposed: a conventional
method using XGBoost as a classifier and a deep learning
method using CNN-1D as an architecture. Both models
achieved high accuracy in distinguishing coughing signals
from other activities like clearing throat, talking, laughing,
and movements in different directions. The study results
demonstrate the feasibility of cough monitoring using the
Hexoskin device’s accelerometer measurements. The use of
wearable connected textile sensors presents new possibilities
for user-independent cough detection. This technology
holds potential for applications such as respiratory health
monitoring, early detection of respiratory infections, remote
monitoring, and surveillance in public settings.

Future work in this field can focus on several aspects.
Firstly, exploring Signal Preprocessing techniques could
enhance cough detection accuracy by improving performance
and precise identification of cough signals. Additionally,
expanding the dataset to include a more diverse population,
including individuals with chronic respiratory conditions
or specific respiratory diseases, would enhance the
generalizability and robustness of the developed models.
Furthermore, integrating accelerometer measurements with
other physiological sensors like ECG and respiration sensors
can provide a comprehensive analysis of cough-related
signals, potentially improving accuracy and reliability.
Additionally, deploying the developed cough detection
system in real-world scenarios and integrating it with existing
healthcare infrastructure warrants exploration. This involves
validation studies in clinical settings and evaluating the
system’s performance in detecting cough in various real-life
situations.

In conclusion, this research contributes to the advancement
of cough detection using machine learning and accelerometer
signals. The developed models exhibit promise in accurately
identifying coughing events and have the potential to be
implemented as user-independent tools for cough detection,
benefiting various healthcare applications and public health
initiatives. Continued research and development in this
area will lead to improved respiratory health monitoring and
management.
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