Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Jemal, Imene; Mitiche, Amar; Abou-Abbas, Lina; Henni, Khadidja et Mezghani, Neila (2021). An effective deep neural network architecture for cross-subject epileptic seizure detection in EEG data. Dans Proceedings of CECNet 2021: The 11th International Conference on Electronics, Communications and Networks (CECNet). IOS Press. https://doi.org/10.3233/FAIA210389
Fichier(s) associé(s) à ce document :
PDF
- Jemal2022_2.pdf
Contenu du fichier : Version de l'éditeur Licence : Creative Commons CC BY-NC. |
|
Catégorie de document : | Communications dans des actes de congrès/colloques |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | For several decades, the detection of epileptic seizures has been an active research topic. The performance of current patient-specific algorithms is satisfactory. However, due to significant variability of EEG data between patients, cross-subject seizure characterization and detection remains a challenging task. The purpose of this study is to propose and investigate a modified convolutional neural network (CNN) architecture based on separable depth-wise convolution for effective automatic cross-subject seizure detection. The architecture is conceived with a reduced number of trainable parameters to reduce the model complexity and storage requirements to easily deploy it in connected devices for real-time seizure detection. The performance of the proposed method is evaluated on two public datasets collected in the Children’s Hospital Boston and the University of Bonn respectively. The method achieves the highest sensitivity-false positive rate/h of 91.93%–0.005, 100%–0.057 for the CHB-MIT and Ubonn datasets respectively. |
Adresse de la version officielle : | https://ebooks.iospress.nl/volumearticle/58755 |
Déposant: | Ayena, Johannes |
Responsable : | Neila Mezghani |
Dépôt : | 16 janv. 2023 19:49 |
Dernière modification : | 07 août 2024 18:27 |
RÉVISER |