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Abstract. For several decades, the detection of epileptic seizures has been an active
research topic. The performance of current patient-specific algorithms is satisfac-
tory. However, due to significant variability of EEG data between patients, cross-
subject seizure characterization and detection remains a challenging task. The pur-
pose of this study is to propose and investigate a modified convolutional neural net-
work (CNN) architecture based on separable depth-wise convolution for effective
automatic cross-subject seizure detection. The architecture is conceived with a re-
duced number of trainable parameters to reduce the model complexity and storage
requirements to easily deploy it in connected devices for real-time seizure detec-
tion. The performance of the proposed method is evaluated on two public datasets
collected in the Children’s Hospital Boston and the University of Bonn respectively.
The method achieves the highest sensitivity-false positive rate/h of 91.93%–0.005,
100%–0.057 for the CHB-MIT and Ubonn datasets respectively.

Keywords. Epilepsy, Seizure detection, Deep learning, Convolutional Neural
Network, EEG

1. Introduction

Epilepsy is a neuro-degenerative disorder manifested by recurrent unprovoked seizures.
It is the second most frequent neurological disease [1]. Most often, EEG records are the
basis for a diagnosis. The visual inspection of hours of EEG data is impractical because
it is time consuming and requires interpretations by experts. Therefore, several studies
have been conducted to develop computer-aided diagnostic systems that can automati-
cally detect epileptic seizures [2, 3]. Several EEG-based epilepsy detection models have
been proposed. However, epileptic patterns are highly variable across seizures and across
patients, which makes real-time application of these models in clinical settings quite a
challenging task. Models go along two veins: General cross-subject modeling which ap-
ply to patients at large, and patient-specific modeling which applies to patients individ-
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ually. Patient-specific modeling is generally impracticable because it requires recording
sufficient seizure onsets for each patient, separately from others. Cross-subject modeling
does not have to treat each patient separately, but it faces the major problem of adapt-
ing the detection algorithm to unseen data of new patients, mainly due to the significant
cross-subject EEG pattern variability [4].

Recent studies of deep learning (DL) [5] for epilepsy detection, which automati-
cally encodes EEG features characteristic of epilepsy, have been much more potent than
traditional feature selection and classification methods [6]. One of the first deep learn-
ing studies on epilepsy detection [7] used a convolutional neural network (CNN) for
feature extraction in an image-based representation of EEG signals, followed by Long
Short Memory units (LSTM) for classification. The method was evaluated on the CHB-
MIT dataset for subject-specific (sensitivity = 95-100%) and cross-subject (sensitivity =
85%) models. Along this vein, [8] used CNNs to distinguish interictal epileptiform dis-
charges from normal activity. The method achieved the higher accuracy of 87.51% on
the CHB-MIT dataset. The study in [9] compared time domain and frequency domain
EEG representations in CNN feature coding for subject-specific seizure detection. On
the CHB-MIT and the Freiburg datasets, frequency domain modeling performed signif-
icantly better (97.5% vs 95.4% accuracy). The investigation of [10] proposed a pyrami-
dal one-dimensional convolution neural network architecture, achieving higher detection
sensitivity, specificity, and accuracy of 89%, 99% and 98.2% respectively. The experi-
ments, however, were carried out on a relatively small amount of data from 5 patients in
the Ubonn database. Although it did not address inter-ictal and ictal period classification,
the study in [11] used a relatively large EEG records dataset of 300 patients from the
Temple University Hospital EEG database to compare CNN with conventional classifica-
tion (support vector machine (SVM) and random forest (RF)) for distinguishing healthy
from epileptic patients in cross-subject EEG data. Performance was better in terms of
area under the precision-recall curve (AUPR) with the tiny visual geometry group CNN
architecture (AUPR = 0.9242), than SVM (AUPR = 0.8651) and RF (AUPR = 0.8578).

Convolutional neural networks have recently received a lot of attention in the field
of seizure detection. CNNs [5] can learn effective nonlinear local features of increasing
complexity as processing progresses from the input layer to the output layer. CNNs were
first described by [12] as neural networks composed of a sequence of convolution and
pooling layers. The original CNN was subsequently upgraded to have a larger architec-
ture, called AlexNet, which was followed by even more complex structures keeping the
original basic ideas. The investigation of [13] introduced the Inception-V1 architecture
(GoogLeNet) with processing steps that express correlation between channels followed
by spatial pattern learning. The architecture allowed richer pattern feature learning using
less network parameters. Similar in concept, the Xception architechture [14] starts with
depth-wise convolution applied on channels to be followed by a point-wise convolution
to combine the coded features. It has the particularity of not using non-linearity between
layers. The architecture showed better performances than Inception-V3 in classification
tasks on the ImageNet dataset and a larger image classification dataset comprising 350
million images and 17,000 classes.

The purpose of this study is to investigate epilepsy detection in EEG data by a novel
CNN architecture based on separable depth-wise layers. Unlike others, the initial layer
of this CNN performs a convolution to learn a representation of the raw signal in terms
of frequency components. This is in agreement with feature extraction by filter bank sig-
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nal decomposition [15]. The architecture also includes separable depth-wise layers: this
necessitates significantly fewer network parameters than the standard 2D convolution
layer, which has the effect of: 1) lowering model complexity and subsequent execution,
2) reducing storage requirements to allow execution on connected devices and, 3) allow-
ing model training on either small or large datasets. This architecture, pertinent to cross-
subject modeling, is investigated here to distinguish between ictal and inter-ictal periods
in EEG data. The cross-subject modeling can significantly increase the applicability of
the algorithm because it allows processing of data from unseen subjects, unlike models
that are patient-specific.

This CNN architecture was evaluated using the publicly available CHB-MIT and
Ubonn databases. As described in detail subsequently, it reached high performance, with
91.82% (5 patients in CHB-MIT) and 99.60% (23 patients in Ubonn).

The remainder of this paper is organized as follows. Section 2 presents the method
in detail. The experimental setup is presented in Section 3. Finally, Section 4 contains
the results and a discussion.

2. Methods

In this section, we first explain the difference between standard convolution and depth-
wise separable convolution operations. Afterward, a detailed description of the deployed
architecture is presented.

2.1. Standard vs Separable depth-wise convolution

A standard convolution layer simply applies a convolution operation between the input
and learnable weighted filters to obtain a new representation of the data called a feature-
map (See figure 1a). The purpose of the learned filters is to simultaneously capture spatial
correlation and cross-channel correlation.

A separable convolution layer splits the convolution kernel into two smaller kernels,
which has the effect of reducing the number of parameters. A classic example is the
decomposition of the Sobel edge detector kernel into two smaller kernels as shown in the
following Equation 1:
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The depth-wise separable convolution [16] is similar to the separable convolution.
However, the convolution operation is decomposed differently into two steps : (1) a
depth-wise convolution to learn local patterns for each channel and (2) a point-wise con-
volution to find linear combination of the extracted feature capturing the correlations
between the channels (See figure 1b).

• Depth-wise convolution : This type of layer is so named because it takes into con-
sideration the depth dimension (the number of channels) where the convolution of
each channel with a different kernel is performed separately as shown in Figure
1b. This step allows learning filters for each channel.
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(b) Separable depth-wise convolution.

Figure 1. Illustration of different convolution layer types.

• Point-wise convolution : This convolution uses a 1x1 kernel with depth equal to
the number of channels to iterate through each point to learn a linear combination
of the feature-maps (output from the depth convolution). This step allows captur-
ing the correlation across the channels.

Figure 1 shows an example of standard and separable depth-wise convolution. Normal
convolution transforms the input 256 times using Kernels of size 5∗3∗3 which lead to
a total number of parameters of 5 ∗ 3 ∗ 3 ∗ 256. On the contrary, separable depth-wise
convolution applies a single transformation (kernel of size 5∗3∗3) and simply elongate
it to 256 channels using 256 kernels of size 3∗1∗1. The number of parameters is reduced
to 5∗3∗3+3∗1∗1∗256.

2.2. Architecture design

In this section, we introduce a convolution neural network architecture inspired by [15,
17]. The architecture uses a reduced number of parameters, allowing it to be trained with
very limited data as well as with larger data sets. Full details of the network architecture
are summarized in the table 1.

• The network starts with a 2D convolution to learn F1 frequency filters. Indeed,
this block is inspired by the concept of the filter bank, which is a set of band-pass
filters that separate the input signal into several components, each corresponding
to a single frequency sub-band of the original signal. This technique is usually
performed before the feature extraction step [15].

• Subsequently, we alternate between separable depth-wise convolution layers and
pooling layers. As mentioned above, the separable depth-wise convolution begin
with the depth-wise convolution to learn specific filters for each channel (signal
component in a specific frequency sub-band). This is followed by a point-wise
convolution combining the learned features across channels. Pooling layers are
used to reduce the dimensions. We applied batch normalization before the non-
linear activation to stabilize the training. In order to regularize the model, we
added a dropout layer.
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• Finally, the features are flattened by the fully connected layer and fitted to a soft-
max classification.

Table 1. The detailed network architecture, where C = number of channels, T, T’, T” = signal duration, F1,
F2, F3 = number of convolution kernels to learn, N = number of classes, respectively.

Layer #Filters Size #Output Activation

Input (1,C,T)
Conv2D F1 (1,128) (F1,C,T) Linear
BatchNorm2d (F1,C,T)
Reshape (F1*C,1,T)
DepthwiseConv F2 (1,32) (32*F2*F1*C,1,T’) Linear
PointwiseConv 2 (1,1) (2,1,T’) Linear
BatchNorm2D (2,1,T’)
Activation (2,1,T’) Relu
AveragePool2D (1,8) (2,1,T’//8)
Dropout (2,1,T’//8)
DepthwiseConv F3 (1,16) (16*F3*2,1,T”) Linear
PointwiseConv 2 (1,1) (2,1,T”) Linear
BatchNorm2D (2,1,T”)
Activation (2,1,T”) Relu
AveragePool2D (1,4) (2,1,T”//4)
Dropout (2,1,T”//4)
Linear (2*T”//4)
Dense N=2 Softmax

3. Experimental setup

3.1. EEG data

We evaluated the proposed architecture on two publicly available datasets of EEG data
(see Table 2).

3.1.1. CHB-MIT database

The database collected at the Boston Children’s Hospital [18] contains scalp EEG data of
23 patients. The EEG data were recorded through 19 electrodes distributed over the scalp
according to the international standard 10/20. The signals were amplified and sampled
with a frequency of 256 Hz. During 940 hours of EEG recording, 198 epileptic seizures
were recorded. The time of onset of a seizure and its duration has been identified by
experts. Signals were filtered to remove artifacts and noise. We divided the records into
5-seconds-long non-overlapping windows. The selected window length yielded 601,689
and 2,157 inter-ictal and pre-ictal samples respectively.
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3.1.2. UBonn university database

The data were collected from 5 monitored patients at Bonn University [19]. It consists
of five sets (denoted A-E) each containing 100 single-channel EEG segments of 23.6
seconds. Sets A and B contain surface EEG recordings from healthy people. Sets C and
D were recorded from epileptic patients in seizure-free intervals. Set E is the only set that
contains activity recorded during seizures. The data was sampled at a rate of 173.61 Hz.
The segments were selected after a visual inspection for artifacts like muscle activity or
eye blinking. For classifying seizure-free and seizure EEG segments, set A-D are labeled
as normal EEG records and set E is reserved for seizure events.

Table 2. Public databases for seizure detection

Dataset CHB-MIT UBonn

Number of subjects 23 5
Number of seizure 198 100∗

Total duration(hour) 940 3.24
Recording type Scalp Scalp and Intracranial
Number of channels 17 1∗∗

Sampling frequency(Hz) 256 173.73
∗100 seizures file each of 23.36 s duration.
∗∗Multi-channel data was converted to a single channel.

3.2. Model training

The CNN (Table 1) was trained using each dataset (Table 2) separately. Classifiers were
implemented using Pytorch [20] , while data pre-processing was performed using MNE-
Python package [21]. The three-way holdout method was employed to optimise the per-
formances in the hyper-parameter tuning step. In fact, we divided the data into three
stratified (having same classes proportions) sets: the training set, the validation set, and
the test set, each containing data from different patients. To tackle the problem of imbal-
anced data set, we used a cost-sensitive cross-entropy loss. The Adam optimizer was pro-
posed as a gradient-based method with β1 = 0.9, β2 = 0.999 and a learning rate of 0.002.
We used the early stopping criteria to prevent over-fitting where training runs up to 500
epochs, or until the validation loss does not decrease anymore for at least 20 epochs.

4. Results and Discussion

We evaluated the performance of the proposed cross-subject method on the CHB-MIT
and Ubonn university public databases. Figure 2 shows the learning curves: the cross-
entropy loss and the model accuracy curves, for training and validation data, as a function
of epochs. The training and validation loss decreases to a point of stability, with a small
gap between the loss values indicating that the models are well fitted.

Table 3 shows the accuracy, sensitivity, F1-score, and the false positive rate per
hour obtained by evaluating the neural network with unseen data from new patients. The
results reveal that the proposed architecture performs very well. Indeed, for the CHB-
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(a) Training and validation Loss and accuracy of the model trained on CHB-MIT dataset.

(b) Training and validation Loss and accuracy of the model trained on Ubonn.

Figure 2. Learning curves for all three datasets.

MIT data set, our method achieved a maximum accuracy rate of 91.82% with a sensi-
tivity of 91.93% and a false alarm rate of 0.005/hour. With the Ubonn database, results
were boosted to an accuracy of 99.60%, a sensitivity of 100%, and a false alarm rate of
0.057/hour.

Table 3. Model’s performances for different datasets.

Database Accuracy Sensitivity F-measure FRP

CHM-MIT 91.82 91.93 95.73 0.005
UBonn 99.60 100 99.75 0.057

The results clearly show that CNNs are capable to extracting discriminative features
in EEG data to allow cross-subject classification of inter-ictal and ictal data intervals. The
hyper-parameters related to the network structure ( number of layers, size of convolution
filters), the parameters of the activation and regularization functions, as well as the train-
ing parameters (learning rate and batch size, and optimization algorithm parameters),
have been carefully chosen with the three-hold out method by observing the train and
validation learning curves. Although not done in this study, performance can potentially
benefit from further extensive fine-tuning of the hyperparameters.

A comparison of our method with other CNN-based solutions is given in Table 4. For
a fair comparison, we focused on networks evaluated on the same data sets. However, un-
like our cross-subject solution, all models are patient-specific except for [10]. Regarding
the CHB-MIT dataset, our method performs significantly better than the patient-specific
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CNN-based model in [8]. Although the method has slightly lower accuracy than [9],
it has the significant advantage of the ability to generalize across patients. In addition,
the method had a better performance, although slightly, on the Ubonn university data
than [10].

Table 4. Comparison of Benchmarking of recent seizure detection CNN-based studies and our work.

study Dataset Model Method Acc

[8] CHM-MIT patient-specific
CNN on raw
EEG signals

87.51

[9] CHM-MIT patient-specific
CNN on frequency

domain signals
95.4

This work CHM-MIT cross-subject
CNN with

separable depth
-wise convolutions

91.82

[10] Ubonn cross-subject
pyramidal one-

dimensional CNN
98.2

This work Ubonn cross-subject
CNN with

separable depth
-wise convolutions

99.60

Thanks to the specific choice of the type of layers in our study, the proposed archi-
tecture has no more than 2,700 parameters in total. the minimal number of used param-
eters promotes the deployment of this model in connected devices for real-time seizure
detection. In comparison, other neural networks for epileptic seizure detection [10] [11],
used 8,326 and 16,401 parameters.

Overall, the classification results show that this study CNN architecture, which uses
depth-wise convolution layers, performs well for epileptic seizure detection, using both
a small and a fairly large database. Future work will focus on evaluating the architecture
on even larger datasets, as well as applying it to other EEG-based classification tasks,
such as epilepsy prediction, rather than detection, and seizure types categorization.
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