LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

Monotonicity of certain left and right Riemann sums [r-libre/2684]

Bouthat, Ludovick; Mashreghi, Javad et Morneau-Guérin, Frédéric (2023). Monotonicity of certain left and right Riemann sums. Dans Alpay, Daniel; Behrndt, Jussi; Colombo, Fabrizio; Sabadini, Irene et Struppa, Daniele C. (dir.), Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis. IWOTA 2021, Chapman University. Birkhäuser/Springer, Cham, coll. « Operator Theory: Advances and Applications », vol. 290. ISBN 978-3-031-21459-2

Fichier(s) associé(s) à ce document :
[img]  PDF - MONOTONICITY OF CERTAIN LEFT AND RIGHT RIEMANN SUMS-ISAAC-2022.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation)
 
Catégorie de document : Chapitres de livres
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : In an otherwise instructive 2012 article, Szilard provided a flawed argument purportedly establishing that the left (resp. right) Riemann sum of f(x) = 1/1+x^2 with respect to the uniform partition of [0,1] into n equal intervals is monotonically decreasing (resp. increasing) relative to n. A few years later, D. Borwein, J. M. Borwein and B. Sims developed a symmetrization technique that allowed them to provide a rectified proof that the right Riemann sum of f(x) = 1/1+x^2 really is monotonically increasing relative to n. They also provided numerical evidence suggesting that the left Riemann sum is decreasing but they did not succeed in proving it. In the first part of this paper, we exploit the symmetrization technique to provide a proof that the left Riemann sum is indeed decreasing with respect to n. Subsequently, we show, using elementary calculus techniques, some trigonometry computations as well as calculations involving generalized binomial coefficients, that the left and right Riemann sums with respect to the uniform partition of [0,1] of the family of functions of the form sin^p(pi x) are monotonically increasing relative to n, regardless of the value of p in (0,2). In so doing, we answer a problem that came up in the context of foundational research on questions situated at the intersection of matrix theory and metric geometry,
Adresse de la version officielle : https://link.springer.com/book/9783031214592
Déposant: Morneau-Guérin, Frédéric
Responsable : Frédéric Morneau-Guérin
Dépôt : 23 juin 2022 13:31
Dernière modification : 08 nov. 2022 13:52

Actions (connexion requise)

RÉVISER RÉVISER