Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Benmakrelouf, Souhila; Mezghani, Neila et Kara, Nadjia (2015). Towards the Identification of Players’ Profiles Using Game’s Data Analysis Based on Regression Model and Clustering. Dans Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (p. 1403-1410). ACM. ISBN 978-1-4503-3854-7 https://doi.org/10.1145/2808797.2809429
Fichier(s) associé(s) à ce document :
PDF
- 07403727_002.pdf
Accès restreint |
|
Catégorie de document : | Communications dans des actes de congrès/colloques |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Personalization of serious games is an important factor for motivating and engaging players. It requires the identification of players’ profiles through the analysis of large volume of data including game data. This research study aims at identifying relevant data from an online serious game and the appropriate data mining methods for deduction of players’ profiles. Multiple linear regression is applied to analyze the influence of player’s characteristics on his performance. Moreover, clustering technique is used, in particular K-means, to extract players’ clusters and to identify their common characteristics. The regression models showed that the number of access to the game, completed quests and advantages used contribute significantly to the scores and the gaming duration, while the clustering revealed three forms of players’ participation: beginner, intermediate and advanced; who interact with the game according to their experiences. |
Adresse de la version officielle : | http://dx.doi.org/10.1145/2808797.2809429 |
Déposant: | Mezghani, Neila |
Responsable : | Neila Mezghani |
Dépôt : | 30 mars 2016 13:52 |
Dernière modification : | 28 oct. 2019 17:48 |
RÉVISER |