Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Zhao, Wayne Xin; Zhang, Xudong; Lemire, Daniel; Shan, Dongdong; Nie, Jian-Yun; Yan, Hongfei et Wen, Ji-Rong (2015). A General SIMD-based Approach to Accelerating Compression Algorithms. ACM Transactions on Information Systems, 33 (3). https://doi.org/10.1145/2735629
Fichier(s) associé(s) à ce document :
PDF
- TOIS_final.pdf
Contenu du fichier : Manuscrit soumis (avant évaluation) Licence : Creative Commons CC BY. |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Compression algorithms are important for data oriented tasks, especially in the era of Big Data. Modern processors equipped with powerful SIMD instruction sets, provide us an opportunity for achieving better compression performance. Previous research has shown that SIMD-based optimizations can multiply decoding speeds. Following these pioneering studies, we propose a general approach to accelerate compression algorithms. By instantiating the approach, we have developed several novel integer compression algorithms, called Group-Simple, Group-Scheme, Group-AFOR, and Group-PFD, and implemented their corresponding vectorized versions. We evaluate the proposed algorithms on two public TREC datasets, a Wikipedia dataset and a Twitter dataset. With competitive compression ratios and encoding speeds, our SIMD-based algorithms outperform state-of-the-art non-vectorized algorithms with respect to decoding speeds. |
Adresse de la version officielle : | http://doi.acm.org/10.1145/2735629 |
Déposant: | Lemire, Daniel |
Responsable : | Daniel Lemire |
Dépôt : | 06 févr. 2015 13:43 |
Dernière modification : | 16 juill. 2015 00:46 |
RÉVISER |