LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

Bayes classification of online Arabic characters by Gibbs modelling of class conditional densities [r-libre/424]

Mezghani, Neila; Mitiche, Amar et Cheriet, Mohamed (2008). Bayes classification of online Arabic characters by Gibbs modelling of class conditional densities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30 (7), 1121-1131. https://doi.org/10.1109/TPAMI.2007.70753

Fichier(s) associé(s) à ce document :
  PDF - Arabic-character.pdf
Contenu du fichier : Version de l'éditeur
Accès restreint
 
Catégorie de document : Articles de revues
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : This study investigates Bayes classification of online Arabic characters using histograms of tangent differences and Gibbs modeling of the class-conditional probability density functions. The parameters of these Gibbs density functions are estimated following the Zhu et al. constrained maximum entropy formalism,originally introducedfor image and shape synthesis. We investigate two partition function estimation methods: one uses the training sample, and the other draws from a reference distribution. The efficiency of the corresponding Bayes decision methods, and of a combination of these, is shown in experiments using a database of 9,504 freely written samples by 22 writers. Comparisons to the nearest neighbor rule method and a Kohonen neural network method are provided.
Déposant: Mezghani, Neila
Responsable : Neila Mezghani
Dépôt : 24 oct. 2014 16:48
Dernière modification : 30 oct. 2019 15:33

Actions (connexion requise)

RÉVISER RÉVISER