LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

A fit index for latent class analysis of dichotomous scale [r-libre/3589]

Caron, Pier-Olivier (2025). A fit index for latent class analysis of dichotomous scale. Communication présentée au 11e congrès de l'European Association of Methodology (EAM), Tenerife.

Fichier(s) associé(s) à ce document :
[img]  PDF - Caron(2025)_EAM.pdf
Contenu du fichier : Diaporama
 
Catégorie de document : Communications à des congrès/colloques et conférences (non publiées)
Évaluation par un comité de lecture : Oui
Étape de publication : Non publié
Résumé : Latent class analysis (LCA) is a powerful statistical method for identifying unobserved subgroups within a population based on categorical data. However, selecting the optimal number of latent classes remains a challenge and there is no consensus on which fit index to use. Based on the properties of dichotomous variables, this paper introduces a new fit index that capitalizes on the recovery of the model implied covariance matrix from the response probabilities to measure its discrepancy with the sample covariance matrix S. Based on the pattern matrix Based on the pattern X where each row represents one of the 2^I binary I-tuples, such as X=[■(x_1,1&⋯&x_(1,I)@⋮&⋱&⋮@x_(2^I,I)&⋯&x_(2^I,I) )], where x_(i,j)∈{0,1} ∀i∈{1,2,…,2^I },j∈{1,2,…,I}, I is the number of item, the pattern probabilities are P_i=∑_(k=1)^K▒∏_(j=1)^I▒〖p(x_(i,j)^((k)) ) c_k 〗, where K is the number of classes and c the class probability, we derived the implied covariance matrix S(θ)=(XP)^' X-MM^', where M_j=∑_(i=1)^(2^I)▒〖X_(i,j) P_i 〗. Using the square difference of the Fisher transform of both covariance matrices, we derived a pseudo χ^2statistic. A Monte Carlo simulation was carried out to compare the accuracy and bias of three versions of this fit index with nine usual fit indices (AIC, BIC, saBIC, χ^2, CAIC, AIC3, Lo-Mendell-Rubin, Vuong-Lo-Mendell-Rubin, and the bootstrap LRT). The simulation shows new among the three versions tested, two had very good properties: less bias and more accurate than other indices. The other one had very good accuracy but tended to narrowly miss the correct number of classes leading excessive over-extraction when it failed. Future developments are discussed, i.e., investigating the asymptotic properties of the underlying pseudo-χ^2 distribution, improving the current criteria and extending the index for ordinal scales.
Adresse de la version officielle : https://wp.ull.es/eam2025/
Déposant: Caron, Pier-Olivier
Responsable : Pier-Olivier Caron
Dépôt : 29 juill. 2025 15:49
Dernière modification : 29 juill. 2025 15:49

Actions (connexion requise)

RÉVISER RÉVISER