Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Ben Nasr, Mohamed Chiheb; Ben Jebara, Sofia; Otis, Samuel; Abdulrazak, Bessam et Mezghani, Neila (2020). Respiratory activity classification based on ballistocardiogram analysis. Dans The Impact of Digital Technologies on Public Health in Developed and Developing Countries, vol. 12157 (p. 79-88). Springer. ISBN 978-3-030-51517-1 https://doi.org/10.1007/978-3-030-51517-1_7
Fichier(s) associé(s) à ce document :
PDF
- ChihebBenNasr2020.pdf
Contenu du fichier : Version de l'éditeur Licence : Creative Commons CC BY. |
|
Catégorie de document : | Communications dans des actes de congrès/colloques |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Ballistocardiogram signals describe the mechanical activity of the heart. It can be measured by an intelligent mattress in a totally unobtrusive way during periods of rest in bed or sitting on a chair. The BCG signals are highly vulnerable to artefacts such as noise and movement making useful information like respiratory activities difficult to extract. The purpose of this study is to investigate a classification method to distinguish between seven types of respiratory activities such as normal breathing, cough and hold breath. We propose a feature selection method based on a spectral analysis namely spectral flatness measure (SFM) and spectral centroid (SC). The classification is carried out using the nearest neighbor classifier. The proposed method is able to discriminate between the seven classes with the accuracy of 94% which shows its usefulness in context of Telemedicine. |
Adresse de la version officielle : | https://link.springer.com/chapter/10.1007/978-3-03... |
Déposant: | Ayena, Johannes |
Responsable : | Neila Mezghani |
Dépôt : | 12 janv. 2023 21:24 |
Dernière modification : | 07 août 2024 19:19 |
RÉVISER |