Open access research
publication repository

EEG oscillatory power and complexity for epileptic seizure detection [r-libre/2836]

Abou-Abbas, Lina; Jemal, Imene; Henni, Khadidja; Ouakrim, Youssef; Mitiche, Amar, & Mezghani, Neila (2022). EEG oscillatory power and complexity for epileptic seizure detection. Applied Sciences, 12 (9), 4181. https://doi.org/10.3390/app12094181

File(s) available for this item:
[img]  PDF - Abou-Abbas2022.pdf
Content : Published Version
License : Creative Commons Attribution.
Item Type: Journal Articles
Refereed: Yes
Status: Published
Abstract: Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Official URL: https://www.mdpi.com/2076-3417/12/9/4181/htm
Depositor: Ayena, Johannes
Owner / Manager: Johannes Ayena
Deposited: 16 Jan 2023 19:53
Last Modified: 16 Jan 2023 19:53

Actions (login required)