LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

EEG oscillatory power and complexity for epileptic seizure detection [r-libre/2836]

Abou-Abbas, Lina; Jemal, Imene; Henni, Khadidja; Ouakrim, Youssef; Mitiche, Amar et Mezghani, Neila (2022). EEG oscillatory power and complexity for epileptic seizure detection. Applied Sciences, 12 (9), 4181. https://doi.org/10.3390/app12094181

Fichier(s) associé(s) à ce document :
[img]  PDF - Abou-Abbas2022.pdf
Contenu du fichier : Version de l'éditeur
Licence : Creative Commons CC BY.
 
Catégorie de document : Articles de revues
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : Monitoring patients at risk of epileptic seizure is critical for optimal treatment and ensuing the reduction of seizure risk and complications. In general, seizure detection is done manually in hospitals and involves time-consuming visual inspection and interpretation by experts of electroencephalography (EEG) recordings. The purpose of this study is to investigate the pertinence of band-limited spectral power and signal complexity in order to discriminate between seizure and seizure-free EEG brain activity. The signal complexity and spectral power are evaluated in five frequency intervals, namely, the delta, theta, alpha, beta, and gamma bands, to be used as EEG signal feature representation. Classification of seizure and seizure-free data was performed by prevalent potent classifiers. Substantial comparative performance evaluation experiments were performed on a large EEG data record of 341 patients in the Temple University Hospital EEG seizure database. Based on statistically validated criteria, results show the efficiency of band-limited spectral power and signal complexity when using random forest and gradient-boosting decision tree classifiers (95% of the area under the curve (AUC) and 91% for both F-measure and accuracy). These results support the use of these automatic classification schemes to assist the practicing neurologist interpret EEG records more accurately and without tedious visual inspection.
Adresse de la version officielle : https://www.mdpi.com/2076-3417/12/9/4181/htm
Déposant: Ayena, Johannes
Responsable : Neila Mezghani
Dépôt : 16 janv. 2023 19:53
Dernière modification : 07 août 2024 19:13

Actions (connexion requise)

RÉVISER RÉVISER