Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Prekopcsák, Zoltán et Lemire, Daniel (2012). Time Series Classification by Class-Specific Mahalanobis Distance Measures. Advances in Data Analysis and Classification, 6 (3). https://doi.org/10.1007/s11634-012-0110-6
Fichier(s) associé(s) à ce document :
PDF
- 1010.1526v6.pdf
Contenu du fichier : Manuscrit soumis (avant évaluation) |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | To classify time series by nearest neighbors, we need to specify or learn one or several distance measures. We consider variations of the Mahalanobis distance measures which rely on the inverse covariance matrix of the data. Unfortunately --- for time series data --- the covariance matrix has often low rank. To alleviate this problem we can either use a pseudoinverse, covariance shrinking or limit the matrix to its diagonal. We review these alternatives and benchmark them against competitive methods such as the related Large Margin Nearest Neighbor Classification (LMNN) and the Dynamic Time Warping (DTW) distance. As we expected, we find that the DTW is superior, but the Mahalanobis distance measures are one to two orders of magnitude faster. To get best results with Mahalanobis distance measures, we recommend learning one distance measure per class using either covariance shrinking or the diagonal approach. |
Adresse de la version officielle : | http://link.springer.com/article/10.1007%2Fs11634-... |
Déposant: | Lemire, Daniel |
Responsable : | Daniel Lemire |
Dépôt : | 18 sept. 2014 18:20 |
Dernière modification : | 16 juill. 2015 00:46 |
RÉVISER |