LogoTeluq
English
Logo
Répertoire de publications
de recherche en accès libre

Scale-Based Monotonicity Analysis in Qualitative Modelling with Flat Segments [r-libre/208]

Brooks, Martin; Yan, Yuhong et Lemire, Daniel (2005). Scale-Based Monotonicity Analysis in Qualitative Modelling with Flat Segments. Dans Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Edinburgh, UK : IJICAI.

Fichier(s) associé(s) à ce document :
[img]  PDF - ijcai05_web.pdf  
Catégorie de document : Communications dans des actes de congrès/colloques
Évaluation par un comité de lecture : Oui
Étape de publication : Publié
Résumé : Qualitative models are often more suitable than classical quantitative models in tasks such as Model-based Diagnosis (MBD), explaining system behavior, and designing novel devices from first principles. Monotonicity is an important feature to leverage when constructing qualitative models. Detecting monotonic pieces robustly and efficiently from sensor or simulation data remains an open problem. This paper presents scale-based monotonicity: the notion that monotonicity can be defined relative to a scale. Real-valued functions defined on a finite set of reals e.g. sensor data or simulation results, can be partitioned into quasi-monotonic segments, i.e. segments monotonic with respect to a scale, in linear time. A novel segmentation algorithm is introduced along with a scale-based definition of "flatness".
Adresse de la version officielle : http://www.ijcai.org/papers/0890.pdf
Déposant: Lemire, Daniel
Responsable : Daniel Lemire
Dépôt : 05 juin 2007
Dernière modification : 16 juill. 2015 00:47

Actions (connexion requise)

RÉVISER RÉVISER