Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Tshimula, Jean-Marie; Chikhaoui, Belkacem et Wang, Shengrui (sous presse). A New Approach for Affinity Relationship Discovery in Online Forums. Social Network Analysis and Mining. https://doi.org/10.1007/s13278-020-00644-9
Fichier(s) associé(s) à ce document :
PDF
- HARExtdSNAMRevised_final.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation) Accès restreint |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Accepté (sous presse) |
Résumé : | The concept of affinity relationship discovery is relatively new in the context of online discussion communities and there has been little work addressing it to date. This problem entails finding affinity relationships in a community by combining structural features and the content of interactions. Affinity discovery seeks not only to identify these affinity relationships, but also to quantify them so that the degree of affinity between individuals can be perceived in the form of a score. This paper proposes an algorithm based on Markov chain models, named HAR-search, for discovering hidden affinity relationships and deriving affinity scores between individuals in an online community. We demonstrate that our method is capable of tracking the evolution of affinity over time and predicting affinity relationships arising from the influence of certain community members. Comparison with state-of-the art methods shows that our method results in robust discovery and considers minute details. |
Déposant: | Chikhaoui, Belkacem |
Responsable : | Belkacem Chikhaoui |
Dépôt : | 06 mai 2020 20:30 |
Dernière modification : | 06 mai 2020 20:30 |
RÉVISER |