Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Bensalma, Fatima; Mezghani, Neila; Ouakrim, Youssef; Fuentes, Alexandre; Choinière, Manon; J. Bureau, Nathalie; Durand, Madelaine et Hagemeister, Nicola (2019). A multivariate relationship between the kinematic and clinical parameters of knee osteoarthritis population. BioMedical Engineering OnLine, 18 (1), Article 58. https://doi.org/10.1186/s12938-019-0676-8
Fichier(s) associé(s) à ce document :
PDF
- 2019-BMEO(Fatima).pdf
Contenu du fichier : Version de l'éditeur Licence : Creative Commons CC BY. |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Background: Biomechanical and clinical parameters contribute very closely to functional evaluations of the knee joint. To better understand knee osteoarthritis joint function, the association between a set of knee biomechanical data and a set of clinical parameters of an osteoarthritis population (OA) is investigated in this study. Methods: The biomechanical data used here are a set of characteristics derived from 3D knee kinematic patterns: flexion/extension, abduction/adduction, and tibial internal/external rotation measurements, all determined during gait recording. The clinical parameters include a KOOS questionnaire and the patient’s demographic characteristics. Canonical correlation analysis (CCA) is used (1) to evaluate the multivariate relationship between biomechanical data and clinical parameter sets, and (2) to cluster the most correlated parameters. Multivariate models were created within the identified clusters to determine the effect of each parameter’s subset on the other. The analyses were performed on a large database containing 166 OA patients. Results: The CCA results showed meaningful correlations that gave rise to three different clusters. Multivariate linear models were found explaining the subjective clinical parameters by evaluating the biomechanical data contained within each cluster. Conclusion: The results showed that a multivariate analysis of the clinical symptoms and the biomechanical characteristics of knee joint function allowed a better understanding of their relationships. Keywords: Biomechanics, Canonical correlation, Multivariate analysis, Multiple regression, Kinematic gait analysis, Knee osteoarthritis (OA) |
Adresse de la version officielle : | https://biomedical-engineering-online.biomedcentra... |
Déposant: | Mezghani, Neila |
Responsable : | Neila Mezghani |
Dépôt : | 17 mai 2019 14:50 |
Dernière modification : | 17 mai 2019 14:50 |
RÉVISER |