Répertoire de publications
de recherche en accès libre
de recherche en accès libre
Lemire, Daniel; Kaser, Owen; Kurz, Nathan; Deri, Luca; O'Hara, Chris; Saint-Jacques, François et Ssi-Yan-Kai, Gregory (2018). Roaring Bitmaps: Implementation of an Optimized Software Library. Software: Practice and Experience, 48 (4), 867–895. https://doi.org/10.1002/spe.2560
Fichier(s) associé(s) à ce document :
PDF
- 1709.07821.pdf
Contenu du fichier : Manuscrit accepté (révisé après évaluation) Licence : Creative Commons CC BY. |
|
Catégorie de document : | Articles de revues |
---|---|
Évaluation par un comité de lecture : | Oui |
Étape de publication : | Publié |
Résumé : | Compressed bitmap indexes are used in systems such as Git or Oracle to accelerate queries. They represent sets and often support operations such as unions, intersections, differences, and symmetric differences. Several important systems such as Elasticsearch, Apache Spark, Netflix's Atlas, LinkedIn's Pivot, Metamarkets' Druid, Pilosa, Apache Hive, Apache Tez, Microsoft Visual Studio Team Services and Apache Kylin rely on a specific type of compressed bitmap index called Roaring. We present an optimized software library written in C implementing Roaring bitmaps: CRoaring. It benefits from several algorithms designed for the single-instruction-multiple-data (SIMD) instructions available on commodity processors. In particular, we present vectorized algorithms to compute the intersection, union, difference and symmetric difference between arrays. We benchmark the library against a wide range of competitive alternatives, identifying weaknesses and strengths in our software. Our work is available under a liberal open-source license. |
Déposant: | Lemire, Daniel |
Responsable : | Daniel Lemire |
Dépôt : | 07 mars 2018 18:33 |
Dernière modification : | 01 mai 2019 05:15 |
RÉVISER |