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The mobile phone is no longer only a communication device, but also a powerful environmental sensing unit that can monitor a
user’s ambient context. Mobile users take their devices with them everywhere which increases the availability of persons’ traces.
Extracting and analyzing knowledge from these traces represent a strong support for several applications domains, ranging from
traffic management to advertisement and social studies. However, the limited battery capacity of mobile devices represents a big
hurdle for context detection, no matter how useful the service may be. We present a novel approach to online recognizing users’
outdoor activities without depleting the mobile resources. We associate the places visited by individuals during their movements
with meaningful human activities using a novel algorithm that clusters incrementally user’s moves into different types of activities.
To optimize the battery consumption, the algorithm behaves variably on the basis of users’ behaviors and the remaining battery
level. Studies using real GPS records from two big datasets demonstrate that the proposal is effective and is capable of inferring
human activities without draining the phone resources.

1. Introduction

Human’s activity recognition has represented an active topic
of research for several decades. However, only in the recent
years, with the increasing availability and facilities of collect-
ing movement datasets from GSM or GPS equipped devices
or even network wireless technologies like WI-FI [1] and
RFID [2], have we had the possibility to study users’ activities
from their movement traces.

Mobile tracking devices, for example, phones and navi-
gation systems, sense the movement of persons represented
by positioning records that capture geolocation, time, and a
number of other attributes. Sensing is based on a collection of
information related to the achieved activity from raw sensor
data (GPS,Wi-Fi, RFID, Bluetooth signals,microphone, cam-
era, accelerometers,magnetometers, gyroscopes, barometers,
proximity sensors, etc.) to extract a pertinent information
about the current activity. In context awareness systems, the
challenge relies on developing applications that sense and

react to environmental changes to provide a value-added user
experience.

As such, the mobile phone is no longer only a communi-
cation device, but also a powerful environmental sensing unit
that canmonitor a user’s ambient context, both unobtrusively
and in real time. Ambient sensing [3–5] has become a
primary input for a new class of mobile services like activity
recognition. In fact, real-time recognition of users’ activities
offers the possibility to understand what they are doing at the
presentmoment and estimates their actions in the future.This
context awareness propertymakes this field amajor piece that
provides services to a range of application domains such as
real-time traffic monitoring [6, 7], social networking [8], and
cognitive assistance.

Smartphones are ubiquitous and becoming more and
more sophisticated, with ever-growing computing, network-
ing, and sensing powers. This has been changing the land-
scape of individuals’ daily life and has opened the doors
for many interesting data mining applications like activity
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recognition. Sensors are the source for raw data collection in
activity recognition [9]; however, the limited battery capacity
of mobile devices represents a big hurdle for the quality and
the continuity of the service. The embedded sensors in the
mobile devices are major sources of power consumption.
Hence, excessive power consumption may become a major
obstacle to broader acceptance of context-aware mobile
applications, no matter how useful the service may be.

Context information can be related to the user environ-
ment, but also to the device itself. Since smartphones are
battery-powered, in an ideal scenario, the application will
self-adapt and adjust its behavior according to the current
battery status of the device. It is in this context that our
research lies; we will try to propose a battery-aware activity
recognition solution in order to preserve mobiles’ life battery.

We bring a novelty to the activity recognition field via
three points:

(1) We propose a novel self-adaptive clustering approach
that adjusts the computational complexity of the algo-
rithm on the basis of the remaining battery level. The
goal is to prevent the massive draining of the mobile
resources in order to capture users’ movements for
the longest time possible. Our mining method is
based on a new version of online𝐾-means, where we
propose a temporal data window that is characterized
by a variable size on the basis of a person’s moving
behavior and his phones’ remaining resources.

(2) The majority of related works are based on the clas-
sification of historical records of people’s trajectories
using density based approach (see, e.g., [10]), where
they try to identify the most visited place with post-
treatment processes, for example, end of the day and
every week. These methods fail in their ability to deal
with the places less visited by people but important in
their trajectories, for example, cemetery and airport,
and cannot be used in fields like assistance where we
need a real-time access to a person’s activity. That is
why we propose a new online solution which answers
those difficulties.

(3) This work handles not only stationary behaviors but
alsomoving activities like shopping.We introduce the
speed and the variance of the orientation of people’s
trajectories as a new variable in our system for this
purpose.

In this paper, we will demonstrate an innovative method
to online switch raw GPS data to meaningful human activi-
ties. This method uses only a mobile device without network
or historical record requirements, while consuming a mini-
mum of mobile resources. The presented approach aims to
enrich people’s movements, represented in real time during
their travel trajectories, with semantic information about the
visited places. Our method is based on the real-time recog-
nition of points of interest, “POI” (a place of interest is an
(urban) georeferenced object where a person may carry out a
specific activity), in users’ trajectories. This service increases
the use of this contribution, contrasting from economic uses
like traffic management, public transportation, commercials,

and advertising, tomore serious uses like security, police, and
risk management.

The following sections detail our contribution: Section 2
briefly reviews related work; Section 3 presents our approach
in terms of three major components, that is, trajectory
classification, spatial recognition, and activity discovery;
Section 4 describes the experimentation by highlighting two
dimensions: accuracy and power saving. Finally, conclusion
and future focus, as well as the expected contributions, are
summarized in Section 5.

2. Related Works

The emerging concept of activity recognition using mobile
devices is a new topic for trajectory data analysis; however,
research community’s efforts are increasing day by day to
carry clear definitions and common understandings [6].
We will highlight two parts of related works, works on
activity recognition and semantic trajectories and battery-
aware works.

2.1. Activity Recognition and Semantic Trajectory Works.
Kang et al. in [1] utilized the access point MAC address
of a WI-FI network to capture location data on a campus.
They developed a time-based clustering algorithm to “extract
places” taking advantage of the continuity of the WI-FI
positioning. A new place is found when the distance of the
new locations from the previous place is beyond a threshold
andwhen the new locations span a significant time threshold.
This algorithm is simple and works in an incremental way on
mobile devices. However, the algorithmdoes not consider the
reoccurrence of readings at the same location. More simply,
each time it discovers a place, it is a “different” place. This
also makes it difficult to discover places that are visited with
high frequency but short-dwell time. Moreover, this method
requires continuous location data collection with very fine
intervals and, thus, large storage. Another shortage of this
work is linked to the labeling of the discovered places; since it
is made manually by authors, the work needs to be improved
by providing an automatic way of labeling activities.

A clustering method called CB-SMOT (Clustering-Based
Stops and Moves of Trajectories) is proposed in [10]; it is
a clustering method based on the speed variation of the
trajectory; it is used to infer semantic information from
trajectories. Firstly, this method evaluates the trajectory
sample points and generates clusters in places where the
trajectory speed is lower than a given threshold for aminimal
amount of time. In a second step, the method matches the
clusters with a set of relevant geographic places defined by
the user. However, the shortage in this solution is that data
processing is nonincremental; it is not possible to analyze in
real time users mobility using this solution. Moreover, as the
capture of users’ activities is based on stops, this solution fails
to recognize moving activities, such as walking in a park.

CityVoyager, presented in [11], is a recommendation
system designed for mobile devices, which recommends
shops to users based on data analyzed from their past location
history. Their system applies location data to the item-based
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collaborative filtering algorithm, an algorithm used in many
online recommendation systems, by transforming location
data history into a list that contains the names of each user’s
frequently visited shops and rating values indicating the user’s
preference for each shop. Authors track the visited shops by
the loss of GPS signal. Nevertheless, it is known that GPS
signals are frequently lost in urban areas even when the
user is outdoors; these situations increase the possibilities
of false detections. Furthermore, it is also known that it is
possible to visit a shop without losing GPS signal, in a case
where the shop does not include many obstacles hindering
the diffusion of the GPS signal; this situation makes these
shops unrecognizable by this work.

Authors claim to propose an approach designed for
mobile phones. However, there is no adaptation noted to
support this demanding environment. For instance, finding
frequented shops requires heavy manipulation of the histori-
cal records of the users’ visited shops. Authors seem to neglect
the limited mobile’s resources, since there is no support for
limited battery life and there is no effort perceived to online
detect and find the frequent shops.

In [12], an algorithm is proposed to associate each stop
in a user’s trajectory to a list of possible visited places and
each of these places is associated with a probability. Finally,
depending on the kinds of activities associated with the
identified place, the trajectory is classified into probable
trajectory behavior. In this work, authors assume the moving
object is a person that travels using transportation means
associated with a traceable (GPS) device (car, bus, metro, or
train). The person gets off the transportation means to walk
to the final destination. During this time interval, the person
is not traceable; accordingly, authors have used probabilities
to find the visited place. This work uses numerous thresholds
that are set manually as minimum duration of an activity.
Nevertheless, since these parameters may depend on user
profiles, this work may be ineffective on large datasets that
contain several profiles.

While developing a rich body of work for managing
moving objects, the research community has shown a little
interest in the online recognition of POI in users’ trajectories.
Themajority of relatedworks are based on the classification of
historical records excluding problems linked to mobile’s per-
formance, like battery life and low-computational capacities.

Moreover, nearly all approaches are based on the detec-
tion of stops within people’s movements, neglecting activities
with movements, and only a minority of these studies try to
automatically identify the background geographic informa-
tion, since generally we request a set of relevant geographic
places defined manually by the user.

The majority of outdoor activity recognition approaches
use a fixed activity’s minimum duration threshold that
represents the minimum time a user has to spend in the
POI (place of interest) to be declared as visited place. This
threshold prevents false activity detection, such as traffic
jams. However, previously fixing this threshold will increase
error probability because when set to a small value, it
will increase the number of false activities, like passing by
a POI; setting it to a high value will miss detection of
some short-dwell activities, such as buying cigarettes at the

convenience store. Thus, we propose a novel approach to
online recognize users’ visited places; our algorithm will be
totally unsupervised, which operates without any beforehand
fixed threshold.

2.2. Battery-Aware Works. The problem of power manage-
ment on mobile devices has been well-explored. Viredaz et
al. [13] surveyedmany fundamental but effective methods for
saving power on handheld devices. These methods concern
a range of phone components such as processor, memory,
display screen, audio system, and wireless networking. It has
been suggested from the architectural point of view that the
system hardware should be designed as a collection of inter-
connected building blocks that could function independently
to enable independent power management.

In [14], authors proposed a dynamic frequency/voltage
scaling (DVS) to reduce power consumption by configuring
the processor based on the requirements of the executing
applications. It is recognized as the basis of numerous
energy management solutions [15]. DVS exploits the fact that
dynamic power consumption is a strictly convex function
of the CPU speed and attempts to save energy by reducing
the supply voltage and frequency at runtime. Hence, the
power-saving scheme should be fully customized for real-
time power consumption situations and specific application
requirements. However, these methods are more suitable for
lower-level system design rather than application develop-
ment.

Shih et al. [16] introduced a technique to increase battery
lifetime of a personal digital assistant- (PDA-) based phone
by reducing its idle power, the power a device consumes in
a “standby” state. To do so, they essentially shut down the
device and its wireless network card when the device is not
being used, avoiding energy waste while not activated. The
device is powered only when an incoming call is received or
when the user needs to use the PDA for other purposes.

Authors in [17] have gone further by proposing a
whole framework of Energy Efficient Mobile Sensing System
(EEMSS) for automatic user-state recognition.The core com-
ponent of EEMSS is a sensor management scheme for mobile
devices that operates sensors hierarchically, by selectively
turning on the minimum set of sensors to monitor a user
state, and triggers new set of sensors if necessary to achieve
state transition detection. Energy consumption is reduced by
shutting down unnecessary sensors at any particular time.

As seen above, significant efforts have been undertaken
for a wise use of mobile resources; however, the proposed
techniques try to limit the calculation capacities to gain in
battery life. Our perspective is different from this one. We
propose a self-adaptive approach that changes dynamically
the calculation capacities on the basis of battery life and user
state. Our work will also stand out by the flexibility that it
offers to users, since they have the freedom to choose the
degree of austerity in the use of the battery.

3. Overview of the Approach

We assume the person is GPS traceable via a smart-
phone. Usually, a person’s activities are divided into two
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Figure 2: The overall process of our activity recognition approach.

behaviors: stationary and nonstationary, where the second
one is also divided into two categories moving to reach a goal
and moving to do a goal.

For example, working in the office is a stationary activity
while going from the workplace to a shopping center is
nonstationary activity; shopping itself is also a nonstationary
activity, but the goal is to do shopping, so it is an activity
with movements (see Figure 1). Based on these concepts we
introduce 3 types of clusters:

(1) Stop concept, represented by “𝐶
1
”, characterizes sta-

tionary activities.
(2) Activity with movements “𝐶

2
” is nonstationary activ-

ities that require movement over a time interval.
(3) Moves, represented by “𝐶

3
,” are a set of actions that

aim to move from a POI to another.

To deal with all these concepts, we present in Figure 2 the
overall approach of our activity recognition mechanism.

In the first step, we introduced a real-time classification
method based on 𝐾-means to classify every new position
data according to the three families (stops, moves, and
activity with movements). At the same time, we observe the
accumulation of types of clusters, such that, after a certain
threshold of the same cluster’s accumulation, we conclude

that the person is probably doing something interesting. For
the second step, we summarize the accumulated clusters to
a probable POI and we begin a geospatial research for the
closest and the most meaningful geographical entity. If the
research process succeeds, we determine this point as a POI.
The third step is to assign the POI to an activity, like amuseum
to a tourism activity and gym to a sports activity.

3.1. Step 1: Trajectory Classification. The aim of this step is
to incrementally classify the continuous users’ positions into
different kinds of activities.Themost recent sequence of GPS
collection is stored in a temporal window called TW.

Definition 1. GPS collection is an assembly of GPS points 𝑃 =

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
}. Each GPS point 𝑝

𝑖
∈ 𝑃 contains a latitude

(𝑝
𝑖
.lat), a longitude (𝑝

𝑖
.Lngt), a timestamp (𝑝

𝑖
.𝑇), a speed

(𝑝
𝑖
.𝑆), and a bearing (𝑝

𝑖
.𝐵). We add to this information the

variance of bearing (𝑝
𝑖
.𝑉) of the last 𝐿TW GPS points where

𝐿TW is the size of our temporal window TW and the weight
(𝑝
𝑖
.𝑊) represents the importance of the point 𝑝

𝑖
according to

the time generation.

Definition 2. Temporal window TW is a subgroup of a GPS
collection with a variable length 𝐿TW. In fact TW contains all
𝑝
𝑖
with not null weight 𝑝

𝑖
.𝑊 (see Figure 3 that represents the

relation between a GPS collection and TW; every point in the
GPS collection is a record row from the database).

Once new GPS data is received, we achieve three parallel
processes like below.

3.1.1. Process 1: Classification. At the arrival of new GPS data,
𝑝
𝑛
is stored in TW. Classification process is not launched on

every data arrival but after a threshold called 𝑇min that will be
exposed in process 3. We classify 𝑝

𝑖
in TW using online 𝐾-

means; we consider two variables, speed 𝑝
𝑖
.𝑆 and variance of

bearing 𝑝
𝑖
.𝑉.

The variance of bearing 𝑝
𝑖
.𝑉 is calculated using this

formula: 𝑝
𝑖
.𝑉 = ∑(𝑝

𝑖
− 𝑝
𝑖
)/𝑙, where 𝑝

𝑖
= ∑𝑝

𝑖
/𝐿TW; this

calculation is made before recording the new 𝑝
𝑖
in TW and

it represents the variance of user’s orientation in the last
𝐿TW 𝑝

𝑖
.

Stops behaviors are characterized by a very low 𝑝
𝑖
.𝑉

and 𝑝
𝑖
.𝑆; however, moves behaviors are characterized by

high 𝑝
𝑖
.𝑆 and low 𝑝

𝑖
.𝑉 because a person’s movements using

transportation tend to be in a quick and straight manner.
Moving activities are branded by a low 𝑝

𝑖
.𝑆 and high 𝑝

𝑖
.𝑉

(see Figure 4) since these activities are pedestrian actions
which generally require a frequent shift of orientation like
visiting a museum, shopping in a mall, or walking in a zoo.
As said previously, these three types of clusters represent
three families of activities and not three activities, each family
containing a set of activities depending on the user’s visited
places.

Note that it is known that when a user stops somewhere,
his positions during this stop may vary in the surroundings
of the stop due to the positioning error of the tracking
system. Consequently, in our algorithm, we automatically put
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Positions collection P

Location ID Latitude Longitude Time Speed Bearing Variance Weight

601 48.4210453 −71.0572413 Mon
Nov10.. 0.74 76.5 49.7 0.61

602 48.4210453 −71.0572532 Mon
Nov10.. 0.79 76.5 88.36 0.73

603 48.4210453 −71.0572567 Mon
Nov10.. 0.24 76.5 115.7 1.0

pn−(L+1) pn−L pn−1 pn· · ·

Temporal window TW with length L

Figure 3: The relation between the GPS collection 𝑃 and TW.
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Figure 4: Inferring activity type using speed and the variance of
orientation.

the bearing 𝑝
𝑖
.𝐵 → 0when we detect that the speed 𝑝

𝑖
.𝑆 → 0

to avoid any error linked to this situation.

3.1.2. Process 2: Distribution of Weights 𝑝
𝑖
.𝑊. Every 𝑝

𝑖
has a

weight which determines the degree of resemblance of 𝑝
𝑖
’s

class to the current activity. Our methodology is inspired
from the work in [18]; the weight of each data point decreases
exponentially with the time 𝑡 via a fading function 𝑤

𝑖
=

𝑓(𝑡) = 2
−𝜆𝑡, where 𝜆 > 0. The exponentially fading function

is widely used in temporal applications where it is desirable
to gradually discount the history of the past behaviors. The
parameter 𝜆 is called exponential decay constant; the higher
the value of 𝜆, the lower the importance of the historical data
compared to more recent data. The overall weight of the data
stream is a constant 𝑊 = ∑

𝑡=𝑡
𝑐

𝑡=0
2
−𝜆𝑡

= 1/(1 − 2
−𝜆
) where

𝑡
𝑐
(𝑡
𝑐
→ ∞) is the current time. 𝜆 can also be seen as the

determining parameter of TW’s length.When𝜆 approaches 1,
TW shrinks to its smallest size. Inversely, when 𝜆 approaches
0, TW spreads to its maximum size (see Figure 5).

Unlike [18], we chose a variable value of 𝜆 between 0 and 1
depending on twoparameters, the remaining battery level “𝛽”
and the disorder of data “𝐸” that already exists in TW (class
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Figure 5: The impact of varying 𝜆 on TW’s length.

of every 𝑝
𝑖
); the disorder is introduced in order to have an

idea of the user instant state; for instance, if we have enough
information on the user instant activity, there is no need to
use a lot of data since the decision about the instant activity
is already made; however, when the user state is difficult to
be recognized, we will need more data to be able to detect the
user activity; this ability tomake a decision is called “disorder
of data.” Thus, these parameters are defined in the following
definitions.

Definition 3. The remaining battery level is represented by
𝛽 = 𝛽

𝑟
/𝛽th, where 𝛽𝑟 is the real remaining battery level.

𝛽th represents a battery threshold specified by the user from
which the algorithm starts to minimize calculation (see
Figure 6). This user-defined parameter adds some flexibility
to the application. For instance, if the user prefers to keep
good precision even if it drains the mobile battery, 𝛽th should
take a small value (e.g., 10%). Conversely, when the user aims
for a good preservation of the mobile battery, 𝛽th should be
given a higher value of around 90% or 100%. Again, when the
user knows that he will not spend much time outside, he can
adjust 𝛽th to a small value to promote the precision and vice
versa.

Definition 4. The disorder of data 𝐸 represents the quality of
TW’s data that has a link with the ability to make a decision.
When one is sure that an activity is performed, one needs less
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Figure 6: An example of 𝛽 variation using a threshold 𝛽th = 50%.

data to make a decision so 𝐸 → 1, and 𝐸 → 0 when one
has problems finding out what type of activity is executed.
In other terms, when the user behavior is unpredictable
(because the data in TW is heterogeneous) one says that there
is a disorder in his data (𝐸 → 1). Contrariwise, when one sees
that the user behavior is stable, one says that there is a stability
in the user data (𝐸 → 0).

The disorder of data is often calculated using the entropy,
which is a measure of unpredictability of information con-
tent, or, in other terms, itmeasures the homogeneity in a set of
information. Consequently, 𝐸 is calculated using the entropy
of Shannon [19]; 𝐸 of the new 𝑝

𝑛
is calculated using the

entropy of the old data set in TW.The value of 𝐸 is calculated
as follows:

𝐸 = 1 − 𝐻
2
(𝑝
𝑖
) = 1 −

𝑛−1

∑

𝑖=0

𝑝
𝑖
log
2
𝑝
𝑖
, (1)

where 𝑝
𝑖
= 𝑤
𝑖
/𝑊.

After introducing the remaining battery level 𝛽 and the
data disorder 𝐸, we propose a relation between the two
parameters to calculate 𝜆; we put

𝜆 = 1 − 𝛽 + 𝐸𝛽. (2)

The equation demonstration is shown below.

Demonstration. Our reflection starts from the following
logical rules:

(1) We shrink the TW’s length to reduce the number of
clustered points (in order to reduce battery consump-
tion) when the battery is low or when we have some
certitude about the user’s activity, in other terms,
stability in the user’s behavior characterized by a low
disorder of data.

(2) We spread the length of TWwhen we need numerous
position points to make a decision (high disorder in
the user’s TWdata) as long as we have enough battery
level.

Table 1: Mathematical representation of the user, battery, and TW
states.

Characteristic Interpretation
Battery high 𝛽→ 100%
Battery low 𝛽→ 0%
High disorder 𝐸 → 0
Low disorder 𝐸 → 1
TW spreads 𝜆 → 0
TW shrinks 𝜆 → 1

Table 2: Parsing 𝛽, 𝐸, and 𝜆 to Boolean parameters.

Interpretation Boolean parameters
𝛽 → 100% 𝛽 true
𝛽 → 0% 𝛽 false
𝐸 → 1 𝐸 true
𝐸 → 0 𝐸 false
𝜆 → 1 𝜆 true
𝜆 → 0 𝜆 false

Table 3: The truth table of 𝛽, 𝐸, and 𝜆.

𝛽 𝐸 𝜆

True False False
True True True
False True True
False False True

These conditions are sited as follows:

Battery high + high disorder → TW spreads,

Battery high + low disorder → TW shrinks,

Battery low + high disorder → TW shrinks,

Battery low + low disorder → TW shrinks.

(3)

If we parse the characteristics mentioned in (3) into a
mathematical representation using the relations presented in
Table 1, then, (3) will be written as follows:

𝛽 → 100% + 𝐸 → 0 ⇒ 𝜆 → 0,

𝛽 → 100% + 𝐸 → 1 ⇒ 𝜆 → 1,

𝛽 → 0% + 𝐸 → 0 ⇒ 𝜆 → 1,

𝛽 → 0% + 𝐸 → 1 ⇒ 𝜆 → 1.

(4)

Let 𝛽, 𝐸, and 𝜆 be Boolean parameters that take values as
mentioned in Table 2.

The logical rules in (4) can be illustrated in the truth table,
Table 3.

We notice that the truth table, Table 3, is that one of the
Boolean implication function, where

𝜆 ≡ 𝐹 (𝛽, 𝐸) ≡ 𝛽 ∧ ¬𝐸 ≡ 𝛽 →
boolean

𝐸. (5)
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Figure 7: 𝜆 variation on the basis of 𝛽 and 𝐸.

In Boolean logic, the truth values of variablesmay only be
0 or 1; however, our parameters 𝛽, 𝐸, and 𝜆 take continuous
values between 0 and 1. For instance, 𝛽 = 1means full battery
and 𝛽 = 0 means empty battery. Yet, in real life, there are
many states between full and empty states. As such, the fuzzy
logic was introduced [20] which is a form of many-valued
logic in which the truth values of variables may be any real
number between 0 and 1. Fuzzy logic has been extended to
handle the concept of partial truth, where the truth valuemay
range between completely true and completely false. In this
context, our equation is called fuzzy implication:

𝜆 ≡ 𝐹 (𝛽, 𝐸) ≡ 𝛽 →
fuzzy

𝐸. (6)

Using the inequality of Reichenbach [21], the fuzzy
implication can be written as

𝜆 = 𝐹 (𝛽, 𝐸) = 1 − 𝛽 + 𝛽𝐸. (7)

This equation has been tested in Figure 7 where we varied the
two parameters 𝛽 and 𝐸 to observe the sensitivity of 𝜆 (the
length of TW) to these changes.

In Figure 7, we notice that the sensitivity of TW’s size (the
value of 𝜆) is linked to the battery level 𝛽 and disorder 𝐸;
however, when 𝛽 begins to drop, the size of TW continuously
ignores the disorder 𝐸 until it reaches a total ignorance when
𝛽 = 0 (see Figure 7 when 𝛽 = 0).

After having distributed the weights of each 𝑝
𝑖
in TW and

calculated the size of TW on the basis of the battery level 𝛽
and disorder 𝐸, it is time to see if the user is performing some
interesting activity.

3.1.3. Process 3: Cluster’s Accumulation Search. The algorithm
recognizes that someone is doing an activity if the weight of
its cluster 𝑊

𝑗
exceeds a value 𝜇, where 𝜇 = 𝑊/𝐾 with 𝐾

representing the number of clusters (activities) used by 𝐾-
means to classify TW; in our case𝐾 = 3 because we are trying
to identify three families of clusters: stops;moves; andmoving
activities.

The most important question is “when do we search
for a cluster accumulation?” To minimize the use of device
resources, it is recommended to handle this step carefully.
The research process is not launched on every data arrival 𝑇
but after a time called 𝑇min in which it is expected to have an
activity.
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Figure 8: The relation between 𝜆 and 𝑇min.

Proposition 5. 𝑇min is the time from which 𝑤
𝑖
= 𝑓(𝑡) = 2

−𝜆𝑡

reaches 𝜇; this is verified in this following condition 2−𝜆𝑇min𝜇 +

1 = 𝜇; after development 𝑇min = (1/𝜆) log(𝜇/(𝜇 − 1)), where
𝜆 = 1 − 𝛽 + 𝛽𝐸.

Consequently, on every 𝑇min we check if there is any
activity that its weight𝑊

𝑗
exceeds 𝜇; if found, we summarize

the points 𝑝
𝑖
to one point 𝐶

𝑗
(𝐺
𝑗
,𝑊
𝑗
), where 𝑊

𝑗
= ∑
𝑛

𝑖=0
𝑤
𝑖𝑗

and 𝐺
𝑗
= ∑𝑝

𝑖𝑗
/𝑛, 𝑛 is the number of points in this cluster,

and 𝑝
𝑖𝑗
represents the points 𝑝

𝑖
in the cluster 𝑗. After that we

move to the spatial recognition of the summarized point 𝐶
𝑗
.

As said previously, 𝜆 is not static. It varies between 0
and 1 depending on the disorder of data in TW and the
remaining battery level. From the relation between 𝜆 and
𝑇min in Figure 8, we note that 𝑇min is also affected by these
parameters. When 𝜆 is near 1, TW will contain a minimum
number of position points (see Figure 5) for the reason that
the battery is low or there is some stability in the user’s
behavior (e.g., staying at home); in this case, there is no
need to process the calculations on every step; otherwise, this
useless calculation depletes the battery. Consequently, 𝑇min
will take a maximum value (see Figure 8).

Conversely, when 𝜆 is near 0, TW will contain a maxi-
mum number of position points (see Figure 5) for the reason
that the battery is well charged and there is a big disorder
in TW which troubles the users’ activity identification. In
this case the algorithm will process the calculations on every
position-point arrival to quickly determine which type of
activity the user is performing. Accordingly, 𝑇min will take a
small value (see Figure 8).

Algorithm 1 achieves two processes; the first is to store
every GPS data 𝑝

𝑖
when it arrives; the second is performed

every 𝑇min to reduce the calculation. First step is to classify
every point 𝑝

𝑖
in TW and then update the value of 𝜆

depending on the disorder of the activities types in TW and
the remaining battery level. After calculating the center of
gravity 𝐶

𝑗
of each cluster and the threshold 𝜇, we start to

search for an accumulation of a cluster that is verified by the
condition max(𝑊

𝑗
) > 𝜇; we use the max of clusters’ weight to

avoid the case where two clusters exceed 𝜇 in the same time;
if condition is verified we start to recognize the geographic
environment of 𝐶

𝑗
. Finally, we update the value of 𝑇min that

will determine the next repetition of the process.
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Input:
A GPS point 𝑝

𝑖
;

Output:
The activity of the person;
(1) For each 𝑇
(2) Store 𝑝

𝑖
in TW;

(3) End for each
(4) For each 𝑇min
(5) Classify every point in TW;
(6) Update 𝜆;
(7) Update the centers of clusters 𝐶

𝑗
(𝐺
𝑗
,𝑊
𝑗
);

(8) Calculate the threshold 𝜇;
(9) //Cluster’s accumulation search
(10) If (max (𝑊

𝑗
) > 𝜇) then

(11) POI = spatial recognition (𝐺
𝑗
);

(12) Activity = activity discovery (POI);
(13) End if
(14) Update 𝑇min;
(15) Return Activity
(16) End for each

Algorithm 1: Trajectory classification.

After searching for a cluster’s accumulation, we move to
Step 2, spatial recognition of 𝐶

𝑗
.

3.2. Step 2: Spatial Recognition. This task aims further to
understand themovement behavior of users, in terms ofmore
semantically meaningful POI. In this step, we are going to
transform a cluster of GPS points to an expressive human
activity. First we are going to search for the nearest geographic
entities to this cluster; thereafter, we are going to associate an
activity type to the entity found.

We search for the closest and the most significant geo-
graphical feature compared to 𝐶

𝑗
; it is performed using a

spatial query in a spatial database.Our database is powered by
OSM (OpenStreetMap (OSM) is a community-driven project
aimed at producing a high-quality detailed map of the world;
OSM datasets are freely available under the Open Database
license terms) and stored in the users’ device for local use.
This technique aims to discard networks use by offering
offline services that will save a user’s money and a phone’s
battery.

In fact, many mobile GIS solutions [22, 23] offer an
offline version to avoid the constraints linked to the use
of networks. For instance, Esri company [24] (one of the
world’s biggest GIS companies) has provided awhole runtime
called “ArcGIS Runtime mobile SDK” [25] to support offline
mapping; it includes map viewing, interaction, editing, and
routing while fully disconnected from wireless.

Consequently, offline processing of geographic data has
become easier. However, the limit of this technique is the size
of the stored data, since geographic data may cause a massive
use of the storage capacity; for instance, the size of the OSM
planet database is over 666GB [26]. The usual solution to
face this problem is to download a specific database to each
user depending on the cities where they live (e.g., the size of
the whole New York region is only 140MB [27] including all

geodata types such as roads, highways, buildings, and public
parks); this can be done manually by the user, since he can
define his area of interest while being online by choosing
the area to download and panning/zooming to the area of
capture. The second way is to download the geographic
database automatically by the application by detecting the
user’s daily staying area; for instance, if the application detects
that the user is living in Montreal city, it will wait until
being online to download the OSM data of Montreal and its
surroundings.

Many techniques to extract geographic data from OSM
exist; the easiest way is to download and extract it from the
OSM website. There are various web services that provide
data extracts for a geographic area. For example, GeoFabrik
is a company which specializes in working with Open-
StreetMap.They provide a variety of free extracts in Shapefile
(the Shapefile format is a geospatial vector data format
for geographic information system (GIS) software) and raw
OSM format on their download website (http://download
.geofabrik.de/). After downloading rawOSMdata and storing
it in a spatial database, we use Algorithm 2 to search for the
nearest spatial feature to 𝐶

𝑗
.

The querying process to search for the closest geographic
entity is a famous technique based on identifying a prox-
imity buffer; proximity analysis determines the relationship
between selected geographic elements by identifying the loca-
tions of other elements within a specified distance (50m in
our case). Creating buffer zone regions is the most common
method used in proximity analysis; formore details about the
querying method please refer to the paper described in [28].

If the spatial recognition step finds a geographic entity in
the neighborhood of the positions’ cluster we can declare that
the user has visited this place.

3.3. Step 3: Activity Discovery. Activity discovery is based
on the exploitation of tags in OSM. OpenStreetMap data
adhere to a simple XML schema with three basic elements: (i)
nodes, that is, single geospatial points; (ii) ways, intended as
ordered sequences of nodes; (iii) relations, grouping multiple
nodes and/or ways. Each element includes a unique identi-
fication code, latitude and longitude coordinates, versioning
information, and optional general-purpose informative tags.
A tag is a key-value pair of Unicode strings of up to 255
characters. Each tag describes a specific feature of a spatial
data element (see [29] for more details). This step permits
having a human meaningful semantic information about the
user visited place.

Tags are written in OSM documentation as key = value.
The key describes a broad class of features (e.g., highways
or names). The value details the specific feature that was
generally classified by the key; for example, the geographic
entity that contains a tag “building = apartment” represents a
building arranged into individual dwellings, often on separate
floors.

We assume that each tag represents an activity and each
activity belongs to an activity family (see Figure 9).

Activities are organized in a taxonomy which generalizes
the kinds of activities of interest for the movement analysis.
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Figure 9: The taxonomy of activities.

Input:
A center of clusters 𝐶

𝑗
;

Output:
POI, Date;

(1) If (there are some geographic entities in the neighborhood) then
(2) //search in the geographic database
(3) POI = the nearest geographic entity;
(4) Date = Get current date();
(5) Else
(6) POI = null;
(7) End else
(8) Return POI, Date

Algorithm 2: Spatial recognition.

For example, the “going to college” activity can be specialized
in “education.” Subsequently, for example, if the nearest geo-
graphic entity to 𝐶

𝑖
has a tag “amenity = library” we deduce

that the user is doing an educational activity in the library.
This is performed using an algorithm (see Algorithm 3) that
searches for the nearest geographic entity and extracts its tags
to deduce the activity achieved.This taxonomy is also used to
mine quickly users’ past activities; for instance, if we search
for the public transportation taken by the user, we just have
to specify the activity type as “Transportation” in the SQL
request and search for the transportation mode (bus station,
taxi station, etc.).

Depending on the application requirements, the activity
discovery process can extract further information about the
visited POI, such as the address, the number of floors,
the opening hours, and the building height. This semantic
information permits enhancing the way users perceive and
interact with their surroundings; for instance, authors in [30]
proposed a system for a mobile navigation assistant fit for
the purpose of moving within a complex built space. Their

process of semantic-enhanced POI discovery is based on
the exploitation of OSM tags, the same as our method; the
results are used in an augmented indoor/outdoor navigation
system.

4. Experimental Evaluation

In order to test our approach, we will divide the experimen-
tation section into two parts: first, we will test the accuracy
of our approach using the Family Coordination dataset [8]
by comparing it with CB-SMOT method; then, we will test
our approach’s ability to save battery life by comparing our
solution to LifeMap application described in [31].

4.1. Family Coordination Test

4.1.1. Dataset. We used the dataset described in [8] where
researchers have conducted experiments in order to reveal
the underlying causes of coordination breakdowns that a
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Input:
POI;
Output:
Activity;

(1) If (POI = null) then
(2) Activity = “no activity”;
(3) Else
(4) Tag = Get the tag of POI;
(5) Activity = Search for activity taxonomy (Tag);
(6) End else
(7) Return Activity

Algorithm 3: Activity discovery.

Buildings

Figure 10: An example of our Spatialite database that contains the
geographic entities of Pittsburgh.

routine learning system might be able to address. They
tracked GPS locations of the members of six families during
six months in Pittsburgh City in Pennsylvania, USA (see
Figure 10); researchers made an effort to recruit a wide
cross section, selecting families from a variety of ethnic
and economic backgrounds, as well as expressing a variety
of planning styles, child-rearing models, and transportation
preferences. The GPS sampling for every family member
including children (a total of 26 persons) was set at one-
minute intervals which led to gatheringmore than two billion
and half of GPS points. Moreover, every night during the
study, a member of the research team would call the families
and interview each parent about that day’s management of
their kids’ activities. In preparation for the interviews, family
members were asked to input their daily activities into a web-
based survey. Researchers then used the survey to scaffold
the phone interview, probing and documenting the overall
family logistical plan at each point throughout the day. We

used this information to compare the inferred activities to the
real executed activities.

4.1.2. Test Scenario. We compared our solution to CB-SMOT
algorithm [10] described in the related works; CB-SMOT
is widely used to extract visited places from locations’ tra-
jectories; we have implemented this algorithm using Weka-
STPM platform [32], an extension that adds trajectory pro-
cessing tools to Weka (Waikato Environment for Knowledge
Analysis) and includes CB-SMOT as a clustering algorithm;
however, since Weka-STPM is a desktop solution, we have
created a mobile version using the CB-SMOT class included
in Weka-STPM. The input was the Family Coordination
dataset parsed into a Postgresql/PostGIS database and the
output was the inferred semantic trajectories (tracking visited
places retrieved using Weka-STPM).

Our solution was implemented using Huawei P7 android
phone where we have deployed our application that con-
tains the online recognition algorithm, Family Coordination
dataset, and a SQLite database that contains the geographic
entities of Pittsburgh city needed in the spatial recognition
process. Note that, as said previously, this first part of the
experimentation is dedicated to testing our approach in terms
of accuracy; consequently we will suppose that the phone’s
battery is fully charged during all the processes principally
because we do not have access to the battery’s life data in
Family Coordination dataset. The ability to save the phone’s
battery and its impact on the accuracy will be presented in the
second part.

4.1.3. Results. Results presented in Table 4 represent the
comparison of our approachwith three versions ofCB-SMOT
algorithm, by varying its MinTime parameter each time; it
was set to 60 s in version 1, to 180 s in version 2, and to 500 s
in version 3.

We have tested 10525 activities gathered from the activi-
ties of the 24 members of families.

Correct activities represent the number of activities rec-
ognized successfully, missed activities represent the number
of activities that the users did but the algorithms have failed
to recognize, and false activities represent the number of
meaningless discovered activities like recognizing the stop of
a car in a traffic jam as going to gas stations.The accuracy and
the error are calculated as follows:

Accuracy = Correct
number of tested activities

,

Error = missed + false
number of tested activities

.

(8)

Globally, our algorithm behaves better than CB-SMOT in
terms of accuracy and error. We have recorded the accuracy
of 78% in our solution and 61% for the average accuracy of the
three versions of CB-SMOT.On the other hand, our error was
around 22%, while the average error of the three versions of
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Table 4: Comparison of our approach to CB-SMOT algorithm.

Our approach CB-SMOT V1
MinTime = 90 s

CB-SMOT V2
MinTime = 180 s

CB-SMOT V2
MinTime = 500 s

Tested activities 10525 10525 10525 10525
Correct 8313 4028 7157 8257
Missed 1812 6497 3368 2268
False 578 181 909 2789
Accuracy 78% 38% 68% 78%
Error 22% 63% 40% 48%

A

B

C

Buildings
Users’ locations

Figure 11: An example of one user’s GPS locations projected on the
geographic entities layer of Pittsburgh; (A) stationary activity, (B)
moving activity, and (C) moves.

CB-SMOTwas around 50%; these results are explained in the
following points:

(i) Our algorithm succeeds in recognizing more activ-
ities because it supports the recognition of moving
activities; contrariwise CB-SMOT recognizes only
stop and move activities (see Figure 11).

(ii) CB-SMOT shows a higher error because of the
MinTime threshold that is set manually (the time of
staying from which the algorithm considers that the
user has visited this place). Setting this threshold to a
small value will increase the number of false alarms
(see CB-SMOT V1 in Table 4), while setting it to high
value will increase the number of missed activities
(see CB-SMOT V2 in Table 4), and, in both cases,
the error will be increased since it is calculated on the
basis of the number of false and missed activities.

After having tested the accuracy of our approach, we
will go further in the experimentation of our battery saving
technique.

4.2. LifeMap Test

4.2.1. Dataset. Researchers in LifeMap project collected
real traces from 68 persons over four weeks using HTC
Hero, HTC Desire, and Samsung Galaxy S smartphones.
The tracking application (called LifeMap) was running as
a background service to automatically collect the user’s
mobility and to trace sensor usage time. To collect the ground
truth, the participants explicitly labeled the place names and
kept a diary of places they had visited with the entrance
and departure times. Moreover, the advantage of using such
dataset is the ability to compare the power consumption of
our method to the authors’ one, since authors tracked the
battery status during all the experimentation process.

4.2.2. Test Scenario. In this step we will compare our
approach to the LifeMap application used to recognize users’
motility; the project can be found in [2], the LifeMap dataset
can be found in [33], and the LifeMapmobile application can
be found on android play store.

We used the LifeMap dataset to test our battery-aware
approach; to do so, we developed an android application that
is fed by LifeMap datasets; the main idea is to make it out as if
the users havemoved holding our application in their phones;
the application recuperates the GPS coordinates one by one
and processes each point using our online approach; after that
we compare the battery consumption of our application with
LifeMap application’s one (see Figure 12).

LifeMap application uses a set of sensors to recognize
users’ activities; these sensors include GPS, accelerometer,
digital compass, and Wi-Fi; the application uses a combina-
tion of these sensors to retrieve the activity performed by the
user; it is clear that the use of all these sensors represents
a major source of power consumption. Consequently, in
order to bring an objective comparison between the LifeMap
application and our application, it is logical that we have
to include the same sensors even if we use only the GPS
sensor. Indeed, we have enriched our application with the
same sensors used in LifeMap application but the processing
of this information is made under the rules defined by our
battery-aware approach; for example, the processing of data
is made on the estimated 𝑇min that is calculated on the basis
of the remaining battery level and the user’s behavior.

Moreover, even if the GPS is activated, the application
consumesmore resources when it requests the users’ position
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Figure 12: Test scenario to compare our solution with LifeMap
application using LifeMap dataset.

from the GPS satellites (the case of LifeMap) than when
it retrieves it from a database (the case of our applica-
tion); consequently, in order to compare objectively the two
approaches, we continue to obtain the user position from the
database; however, on every point retrieved, we request the
GPS satellite for a GPS position. Surely, this position is useless
but it enables consuming the same resources used by LifeMap
application to get a GPS position.

In order to automatically recognize users’ activities, we
have constructed a Spatialite geodatabase [34] where we
stored the background geographic data needed in our spatial
recognition (see Figure 13). Note that users’ locations are
recorded on different frequencies; authors in LifeMap dataset
have linked the activity declared by the user to the sampling
frequency in order to minimize the size of the database and
the power consumption, which has sometimes led to low
frequencies (e.g., every 10 minutes). In our approach, we try
to recognize accurately users’ activities while protecting their
phones’ battery; to test this service, we need to increase the
sampling frequency to see if our work well behaves using a
lot of location points. Consequently, we have implemented an
interpolation algorithm that estimates the missing locations
when the sampling frequency is high (more than oneminute).

Our application was deployed on Samsung Galaxy S
smartphone, one of the smartphones’ models used by
LifeMap application to recognize activity.

After having filled the necessities regarding the compar-
ison between the two approaches, we will present the results
of both of them.

4.2.3. Test Results. The total number of recorded hours of
battery status in LifeMap dataset is 48900 hours; in order
to experiment on all the hours using one smartphone, we
will need over five years of experimentations. Accordingly,
we chose to use one random day of each user (rather than
30 days) using five smartphones; the total number of hours
compared is 1632 hours. Due to insufficient space, we present

Buildings
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2

Public transport station 
Users’ locations

Figure 13: An example of one user’s trajectory projected on (1)

OpenStreetMap raster layer and (2) vector layer retrieved from our
geodatabase.
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Figure 14: Results comparison between LifeMap and our solution
for 72 hours of activity recognition. (1) LifeMap, (2) our solution
using 𝛽th = 100%, (3) our solution using 𝛽th = 70%, and (4) our
solution using 𝛽th = 40%.

in Figure 14 the tracking of one user’s battery life for 72 hours
using LifeMap and three versions of our approach where we
vary each time the value of the threshold 𝛽th from where the
application starts to save battery life.
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Table 5: The impact of varying 𝛽th on the accuracy.

𝛽th = 100% 𝛽th = 70% 𝛽th = 40% LifeMap
Accuracy 68.7% 77.1% 85.4% 78%

Our approach shows an interesting battery saving capac-
ity. Globally, it consumes less resources than LifeMap even
when 𝛽th is set to a low level (40%).

We notice that, in our approach, battery consumption
varies on the basis of𝛽th.When it is set to 100%, our algorithm
starts to save the battery from the first moments, which
explains the long battery life noticed in graph (2) of Figure 14.
However, when 𝛽th is set to 40%, we notice that the life of the
battery (graph (4)) looks a bit like LifeMap’s one (graph (1));
in this case, the algorithm consumption behaves like LifeMap
between 100% and 40%, but when it falls under 40%, the
algorithm starts saving batteries (see the horizontal dotted
line in graph (4)).

Thus, 𝛽th has an impact on the resource consumption, but
what about the accuracy? Is it affected by the change of𝛽th? To
answer these questions, we have tracked the accuracy of our
algorithm when varying 𝛽th; results are presented in Table 5.

The authors of LifeMap reported in [35] that the accuracy
is around 78%. In our case, when 𝛽th is set to a value less than
70%, the accuracy of our approach exceeds the LifeMap’s one
(see Table 5); this is justified by the fact that the LifeMap’s
technique for detecting important places is based on the time
spent by the user around the POI. When a user stays at a
given location for more than 10 minutes, the user state is
considered stationary and the place is labeled as a POI. This
technique fails to recognize moving activities that require a
movement to be executed; furthermore, using a fixed time
threshold leads to missing some short activities or falsely
detecting some activities when the time threshold is set to a
small value.

Varying 𝛽th has an impact on the accuracy; the more
the 𝛽th is set to high value, the more the accuracy drops;
this is justified by the fact that when 𝛽th takes a high value,
the temporal window TW shrinks to take less examples and
the next processing time 𝑇min will be set further. So if we
try to save the battery, we will automatically lose a little bit
of accuracy, but is there a compromise between 𝛽th and the
accuracy? Is it possible to find a 𝛽th value that saves as much
as possible the accuracy and the battery at the same time?

We have tracked the accuracy of one user’s data from
LifeMap dataset when varying slowly 𝛽th; results are pre-
sented in Figure 15 where the accuracy and an estimation of
battery life are presented on the basis of 𝛽th. We notice that
the higher the value of 𝛽th is, the more we save resources and
lose precision.

In order to find an optimal solution that enables saving
both battery life and accuracy, we have to resolve the opti-
mization problem that maximizes the battery life function
𝐿(𝛽th) and the accuracy function 𝐴(𝛽th) at the same time;
this is a multiobjective optimization problem where we try to
optimize two different functions; one of the existing solutions
is the weighted sum method [36]; the solution is based on
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Figure 15: The impact of varying 𝛽th on the accuracy.
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Figure 16: Optimization of 𝛽th to maximize the accuracy and the
battery life.

selecting a scalar weight 𝑠
𝑖
and maximizing the following

composite objective function:

𝑈 = 𝑠
1
∗ 𝐿 (𝛽th) + 𝑠2 ∗ 𝐴 (𝛽th) . (9)

In our case the importance of the accuracy and the battery
life are equal, so the weights of the two variables 𝑠

1
and 𝑠
2
are

equal too (𝑠
1
= 𝑠
2
= 1); after addition, the value of 𝛽th that

maximizes𝑈 is 𝛽th = 60% (see Figure 16).Thus, if we need to
maximize the accuracy and the battery life at the same time,
𝛽th should be set around 60%.

The average precision of our approach when varying 𝛽th
from 0% to 100% is 79% (see Figure 15); for a system that pro-
poses an activity recognition system keeping a long lifetime
of the battery, we think that these results are promising.

The threshold 𝛽th from which the system starts to save
the phone’s battery can be set automatically depending on the
activity performed. Indeed, after having learned users’ habits,
we can link𝛽th to the predicted activity; for instance, whenwe
predict that the user is going to spend a small time outdoors,
we set 𝛽th to promote the accuracy and vice versa.

5. Conclusions and Future Works

In this paper we proposed a new battery-aware technique
for extracting semantically and incrementally important
geographical locations from users’ moves. We associate the
places visited by individuals during their movements to
meaningful human activities using an algorithm that clusters
incrementally user’s moves into different types of activities
using two parameters, speed and the variance of the moves
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orientation. After detecting an important accumulation in a
cluster’s weight, the cluster is summarized into one point and
another process will be launched that aims to search themost
meaningful geographic entity near this point (POI); when
found, we associate a semantic activity to it. Aiming to save
phone batteries, our algorithm was implemented to change
its computational complexity on the basis of the remaining
battery level and the users’ behaviors.

Our approach has been experimented in a real case
study to test the accuracy of our recognition mechanism
and to observe the impact of our technique on phone’s
resources. These tests demonstrate that, with a minimum of
information, our proposals are capable of online recognizing
a person’s activities without depleting the phone resources.

Several promising directions for future works exist. First
is the enhancement of spatial recognition process with the
introduction of probability to assign a cluster to a geographic
entity; this probability approach can take advantage of pre-
viously recognized activities; for example, a person doing
tourist activities all day has more probability to finish his
day in a restaurant or in a hotel than in other places. The
second enhancement that can be applied to our inferring
process is users’ profiling. In factmove’s pattern of individuals
varies between young and old, healthy and sick, andmale and
female. The implementation of such reflections will improve
the accuracy of our activity recognition process.
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