
4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

A Secured Resource Access Management in

Educational Cloud Computing Environment

Saley Mato Idrissa, Karimou Djibo and Saley Bisso Hamadou Saliah-Hassane

Département de Mathématiques et informatique

Université Abdou Moumouni

Niamey, Niger

saleymato@gmail.com; djibo.karimou@gmail.com

TELUQ – Université du Québec

Montréal, Canada

hamadou.saliah-hassane@teluq.ca

Abstract— The paper discusses the problems of data security in

the Cloud Computing and proposes an approach based on

network technologies and algorithms. The main idea is to

establish a criterion of trust between the service provider and the

client to control data access and updates which are operated by

the owner or a third party. The method allows limiting and

filtering the access, to detect corrupted data and proposes

corrective action in the case of an illegal access to the cloud

computing services. Similarly, this approach examines the

strategies to secure the resources through a distributed cloud

computing.

Keywords— cloud computing, network complexity, collaborative

educational environment, resources as services, cloud security,

hash function algorithms.

I. INTRODUCTION

 The Cloud computing consists of a set of technologies that

allows to offer on demand services. These technologies are

offered in the form of three types of services: (1) Software as a

service (SAAS), (2) Platform as a service (PAAS) and (3)

Infrastructure as a service. They are generally grouped into

three types of cloud. The first type is the private cloud which

can be either internal or external to a given institution but

remains the owner of that institution. The second type is the

public cloud which in reality belongs to a service provider that

offers an infrastructure to institution in order to host its

resources. The management and supervision of this

infrastructure is the responsibility of the supplier who remains

the owner. The third type is the hybrid cloud formed generally

of two or several types and ensures the portability of data and

applications hosted by the cloud services. Nevertheless, apart

from the above mentionned types of cloud, other models of

cloud emerge. This is particularly the case of community

cloud which is a model put in place by several institutions

(communities) to share resources by using cloud services. The

use of cloud technology by the institutions raises several

questions with consequences heavy regarding data security,

confidentiality and integrity. Several institutions find

themselves before the obligation to question on how to

integrate these technologies into their areas of activities. This

distrust observed by the institutions is essentially due to the

risks incurred in terms of loss, data alteration and financial

impacts. For these institutions the issues related to security are

among others:

- Maintain and keep virtualized areas secured in a dynamic IT

environment;

- Maintain the existing security levels operational during

migration of traditional resources toward cloud services;

- Migrate the machines’ local security to a virtual and

sometimes remote security;

- Allow actors and collaborators to find the priority objectives,

the tools and their traditional environment of collaboration and

exchange. Currently, the proposed solutions for securing the

data in the cloud are particularly interesting because they

provide authentication mechanisms, confidentiality and data

integrity. This makes cloud environment less risky to the data.

Nevertheless, the solutions can be increased. It is in this

context that we propose this approach to strengthen data and

cloud infrastructure security.

 Our first motivation is to identify the network technologies

which provide the possibility to migrate local security

solutions toward a virtual and remote security. We rely on

techniques used often in networks as well as hash functions.

This approach is mainly applied at three levels:

- The first level is an authentication process filter that allows

users to connect to the data center and switch between the

virtual servers. This level filters access according to certain

criteria applied by the servers.

- The second level propagates the authentication of the first

level up to the virtual machines. This level uses filtering and

hash functions.

- The third level is a process that applies patches to find

corrupted data in the event of corruptions.

 In this article, we propose an approach that strengthens the

security in a cloud computing environment. This model is

based on the methods applied in the networks and the methods

of access controls that are implemented on the datacenter as

well as on the virtual servers that host the data and

applications. This approach, which is carried out in the

vicinity and by the propagation of the datacenter to the virtual

mailto:saleymato@gmail.com
mailto:djibo.karimou@gmail.com
mailto:hamadou.saliah-hassane@teluq.ca

4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

servers, is different from the existing methods but comes to

support them. The proposed platform allows clients

connections by authentication to the datacenter. Filters are

then applied to detect the unwanted customers. And to

propagate the safety criteria on the servers, we use the hash

functions. Strategies are put in place to ensure the dialog

between the Data Center and virtual servers. Due to the

information which is exchanged, it would be possible to apply

patches on the virtual servers to secure and restore the data.

The interest in applying a model by authentication and by

phase is to differentiate the servers access policies from those

of applications while supporting the management of corrupted

data. This approach provides a great flexibility to enhance the

platform safety and security.
The rest of this work is organized as follows: some

definitions used and the working environment are presented in
sections 2 and 3. In section 4, we present our proposal to secure
the platform in several phases. A phase which covers the points
of the algorithms that are developed, a second phase which
applies filters for access to the datacenter and then a last phase
which makes use of hash functions, the networking
technologies and algorithms to propagate the criteria of safety
measures and apply patches in the event of corrupted data.
Sections 5 and 6 deal with the adaptation of the solution to a
model of Cloud in secure access. A conclusion ends this paper.

II. PREVIOUS WORK

 Given the popularity rise in cloud services, research in the

area of cloud platforms’ security are becoming crucial.

Certainly, nowadays data migration and institutions

infrastructures toward the cloud is done timidly but force is to

see that cloud services are growing rapidly. Therefore, it is

more than necessary to develop protocols to secure flows and

platforms. To get there, in this paper, we have exploited the

opportunities offered by network protocols and algorithmic

tracks. Indeed, the approaches to security in the cloud are

often proprietary. This is particularly the case of Cisco

approaches [2][3][4]. It proposes several approaches both

material and software (Cisco secureX, Cisco Axa). These

approaches are often incorporated by the providers or by the

client institution on the cloud services. These solutions

integrate an intelligent security control through the network

and cloud services. In their work [5], the authors present a

model based mainly on the algorithms. They calculate the

similarities of tokens and signatures which exist between the

clients and the provider of cloud services to secure the data. In

the same framework, they apply two complementary

algorithms. The first algorithm (Solomon algorithm) is

developing a process to recover corrupted data. The second

algorithm called the Byzantine fault tolerant algorithm allows

you to detect the reasons and causes in case where data on the

cloud platform are corrupted.

III. WORKING ENVIRONMENT

 Our working environment is a dynamic system of machines

and data comprised of two main entities:

• Users, applicants of cloud services. Their request concerns

the storage, the consultations or updates of the data or

applications hosted on the cloud;

• And the service provider (in cloud) which ensures client

authentication, storage as well as the management of data and

applications integrity.

The user U accesses its data x hosted on server X through a

control system. The latter is responsible for the user

authentication as well as the verification of its data integrity

based on a technique that we will define in the sections below.

 X: customers data servers;

 Y: backup servers for clients data which are on server

X;

 S: all of the servers to ensure the integrity of the

data. S={s1 , s2 ,...sn };

 h: Hash function for data repartition on system S ;

 P: let G= (V, E) be a graph with |V| =n and |E|

=m. A path P(si,sj)i,j ∈ {1...n} =(A,B) is defined by A=

{si}i ∈ {1...n} \ {i,j}, B={ei}i ∈ {1...m};

 Vertices-disjoint paths: two paths P1(si,sj) and

P2(si,sj) are called vertices-disjoint paths if they have

no common vertex except si and sj .

IV. THEORETICAL APPROACH

 We will use a set of n servers to ensure data integrity [1].

This security aspect being very important for the customers, it

would not be as least important to consider a number n very

large of these servers. In this case, we easily agree that the

system S can be represented by a planar graph G= (V, E), with

V=S and E The set of connections between the servers.

A. Model Formulation

 The data of the user U are on the data server with a backup

system. The user connects and accesses its data via the control

server by pre-calculating a hash h(u). The control server

receives at the same time a hash h(x) pre-calculated by the

data server, a hash h(y) pre-calculated by the backup, a pre-

calculated hashs h(P1) and h(P2). We made a random choice of

two servers si and sj then we determine two vertices-disjoint

paths:

P1(si,sj) =(A1,B1) and P2(si,sj) =(A2,B2) where |A1|= k1

and |A2|= k2.

We distribute data across k1 vertices (servers) constituting P1

and k2 on the vertices (servers) constituting P2.

Fig. 1. Example of disjoint paths

4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

si = s3 ; sj = s5 ;

P1 = (A1,B1) where A1 = {s1} and B1 = {e5,e2};

P2 = (A2,B2) where A2 = {s6, s7} and

B2 = {e6,e7,e11}.

B. Data access and recovery algorithm

1. Hash (U)

{A: H is a function which allows manage the authentication of

the user}

2. If h(u) ≠ H(p) then the user is not the one that it claims to be

end

{A: implies a connection error of the user}

3. Otherwise H(U) = h(p) then the user is who he claims to be.

{A: No login error}

If h(x) = h(y) = h(p) then

the data are healthy

END.

4. If h(x) ≠ H(p), then the data on the sever X is not valid.

{A: There is data corruption}

Correct the data x from P1 or P2.

{A: the user data is retrieved}

5. If h(y) ≠ H(p) , then the data on server backup is not valid.

{A: There is data corruption}

Correct the data y from P1 or P2.

{A: the user data is retrieved}

C. Description of the hash function

 To the user U join data du = {x1,x2,...xn}, then we can

define a hash function h such as:

For general case:

H : du ⟶ {0,1,...m-1}

 xi ⟼ h(xi)

 where H = ∑ h(xi) , |du| = n and m << n.

For the servers X and Y :

Hx : x ⟶ {0,1,...mx-1}

 xi ⟼ h(xi)

 where Hx = ∑ h(xi) , |x| = nx and mx << nx.

Hy : y ⟶ {0,1,...my-1}

 yi ⟼ h(yi)

 where Hy = ∑ h(yi) , |y| = ny and my << ny.

For paths P1 et P2:

H1 : A1 ⟶ {0,1,...m1-1}

 si ⟼ h(si)

 where H1 = ∑ h(si) , |A1| = k1 and m1 << k1.

H2 : A2 ⟶ {0,1,...m2-1}

 si ⟼ h(si)

 where H2 = ∑ h(si) , |A2| = k2 and m2 << k2.

 For example, we can consider that the value of the hash

function is the size of user's data on the server. We can also

consider that to access his data, this user presents the value

h(u) that the control server assigned to him/her during his/her

last disconnection. To significantly reduce the complexity of

algorithms, we will consider the following hash table:

TABLE I. HASH TABLE

Index h P1 P2

u1 h(u1) P1
1 P1

2

u2

……

……

……

h(u2)
……

……

…...

P2
1

……

……

…...

P2
2

……

……

…...

Algorithm of hash (U)

 calculate Hx in h(x)

 calculate Hy in h(y)

 determine P1 and P2

 calculate H1 in h(p1)

 calculate H2 in h(p2)

 IF H1 = H2 THEN

 h(p) = H1

 return h(x), h(y), h(p)

 return h(x), h(y), h(p1), h(p2)

D. Determination of disjoint paths

 It is a linear time algorithm which allows to find the

maximum number of paths to disjoint summits between any

two vertices s and t in a planar graph. In the planar graphs non

oriented, this problem is most often resolved by applying flow

techniques with a complexity around O(n3/2), O(kn) and

O(n). The best known algorithm is based on the technique of

divide and rule and its complexity is around O(n log n) [1].

 Let be G= (V,E) a Non-oriented planar graph, we transform

the initial graph G in a directed graph. For this, we replace

each edge {u,v} ∈ E by the arcs (u,v), and (v,u), and each edge

{s,v} ∈ E by (s,v) only. We note A, the set which contains all

the arcs. The problem is to find two disjoint summits (s,t)-

paths (oriented from s to t).

 The algorithm consists of a loop on all the arches e1 ,..., ek

(in an arbitrary order) leaving s. For any ei, i ∈ [1,k], it tries to

establish a (s,t)-path using the technical research in depth. At

each step, all the arches leaving the current summit are

searched from the right toward the left (with the exception of

the reverse of the main arc of the current search path). The ith

iteration ends when one reaches t or when it returns to s (by

backward steps). We must consider the conflicts of the path of

the current research with itself and with the other paths. We

resolve a conflict by doing backward steps. The idea is to

manipulate all conflicts so that it removes any arc of G once it

performs a return back with him. It performs a return in the

4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

background whenever an occupied summit (s it is internal to a

(s,t)-path already achieved) is reached on the left side. If the

path of the current search reached a peak occupied by another

path from the right, it resolves the conflict by the following

manner:

 Let be v the summit where the conflict occurs, p and q

designating the segments of the other path from s to v and v to

t, respectively, and let be r the path of the current search (see

Figure 2).

 We concatenate now r with q and take p as the new path of

the current search. As in the first case, it performs a backward

step, it eliminates from G the corresponding arc and continues

the search with the new path. Of the fact that we are not able

to deal with the path conflicts in the current research (where

we reach a summit occupied), we want to avoid these conflicts

in advance. To do this we maintain a time counter overall and

for each summit a local timestamp (time_stamp). The global

time counter is incremented by 1 each time that the path of the

current Search Change. The timestamp of a summit takes the

value of the global time counter when this summit becomes

the main summit of the current research path.

 Every time that we consider an arc in order to go forward,

first, it compares the two timestamps of its two summits. If the

two are equal, it eliminates this arc, otherwise it uses it to go

forward.

Determine Max (s,t)Paths Algorithm

time_counter := 0 ;

FOR i:=1 TO k DO right_first_search(ei) ;

PROCEDURE right_first_search((s,u) ∈ A) ;

 time_counter := time_counter + 1 ;

 let the current path be s → u ;

 v := u

 REPEAT

 time_stamp(v) := time_counter ;

 IF the current search path touches some path

 at v from the left

 THEN perform a backtrack/ remove step

 ELSEIF the current search path touches some

path at v from the right

 THEN time_counter := time_counter + 1 ;

 let p be the segment of this path from s

to v, and let q be the remaining

segment ;

 connect the current search path with q ;

 let p be the current search path ;

 perform a backtrack / remove step ;

 ELSEIF at least one arc leaving v is not yet seached

(except of the reverse of the in- going arc)

 THEN let (v,w) be the first such arc to appear after

the in-going arc in reverse

 clockwise ordering ;

 IF time_stamp(v) = time_stamp(w)

 THEN remove (v,w) ;

 ELSE go forward via (v,w)

 ELSE performe a backtrack/ remove step

 UNTIL v ∈ {s,t} ;
See [1].

 Given that this algorithm returns the maximum number of

disjoint paths between two vertices s and t, we use it in the

following algorithm to determine the two paths P1 et P2.

Determine P1 and P2 Algorithm

 i= random(0..n) //n : number of servers on S

 j= random[(0..n)\{i}] // i ≠ j

 P1 = first path of determineMaxPaths (si,sj)

 P2 = second path of determineMaxPaths (si,sj)

 return P1 and P2.

 If we observe well an example of a cloud environment, we

can easily see that a machine can use another machine’s

services. Particularly in the case where a laboratory equipment

is used on line. It is to add a module for controlling access to

these resources. The control will be function of the type of

user access. As in all the clouds generally, we are going to

separate the storage system of other services (on line labs, on

line libraries…).

 Regarding the first aspect (storage) it is to ensure user

authentication and data integrity. We can say that a user has

all the rights on its data, therefore there is no management role

at this level. However the access rights and users’ roles are

different according on the groups to which they belong. In the

field of education, a student has not, most often, the same

rights as the teacher. For example, a teacher of network

security course can access the cloud for a virtual network and

give access to a student group to detect the security flaw.

Fig. 2. Example of disjoint paths Search

4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

As well the control system filled three functions:

 To ensure the authentication of users;

 Check and ensure users data integrity during each

access;

 Allow users accessing resources in a cloud according

on their rights.

To achieve this solution, we must separate the data system and

the resources system. In this case the server X is unknown in

advance, it is rather a parameter in the Algorithm IV.B.

So we have:

 Q = S ⋃ Ri where Ri = all the machines of the

resources system;

 X = qi ∈ Q, qi is the machine that the user requests to

access;

 A new integrity system S = Q \ {qi};

 And Y does not change.

V. PRACTICAL APPROACH

 We used openvz as cloud server. The figure 3 shows

explicitly the servers provision in this last. However it should

be noted that the Control Server (control on the figure 3) is the

only one which access to Internet because we have used the

iptables commands to block the other servers. Data Access

and Recovery Algorithm supports two aspects when a user

requests to be connected. The first aspect is the authentication.

To facilitate the implementation of the model, we have used a

simple authentication system (user and password). For the

second aspect (Integrity management), we used SSH to access

server X and the si. After we use scripts to allow user to

connect and disconnect to its data.

 After all the checks, the user i has access to the server X

(only his partition: X/home/useri). The dialog between the user

and the server is done in passing by the control server with an

FTP client (proFTP) because, as a reminder, the server X is not

accessible via Internet. This is an important safety factor. It

should also be noted that theoretically we have used graph

course method to have the servers that will be responsible to

ensure user's data integrity at each time he/she connects and

disconnects. In practice, however, we have used a random

function which allows you to randomly select three servers of

the system of integrity S to accommodate the three partitions

of the user data. The numbers returned by the Random

function correspond to the servers numbers. For example if the

function reviews n1=12, n2=16 and n3=24, then it will be the

servers s12, s16 and s24. The numbers (12, 16, 24) of these three

servers are backed up in a file which is consulted when the

user requests to connect again. When the user requests to

disconnect, it deletes the following file to avoid a useless

occupation of the disk space on the different servers.

 To materialize the fact that the integrity system lodges the

user’s data on two distinct groups of servers si (let us recall of

the notion of disjoint paths), we have simply used a backup

system Rsync. This allows the backup of the server X on the

server Y and the backup of the first group of si, that is to say sai

which constitute the nodes of the path P1, on the second group

of si, that is to say the sbi constituting the nodes along the path

P2. We have installed openVz server which has allowed us to

build our work environment. We have installed openssh server

or client (on all servers including those of the system of

integrity) to allow a secure execution of scripts on the servers

constituting the cloud. We used proFTP to allow users to

manage the transfer of their data on the server X. We have

installed Rsync to automate the backup of all servers requiring

a backup.

TABLE II. INSTALATIONS SUMMARY TABLE

servers ssh-server ssh-client Rsync proFTP
control x x

Server X x x x
Server Y x x x

Si x x x x

VI. CONCLUSION

 The migration to the cloud is more than necessary for

businesses and even for education and research institutions.

This allows a gain not negligible from financial and temporal

view point. However, the future users of the cloud have a

certain reluctance to this migration due to the guarantee

uncertainty about their data integrity and availability. To go in

the direction of the prime criterion (integrity) and bring a more

to existing work, we relied on a cloud environment in the form

of a planar graph. This has allowed us to apply the methods of

graph traversal, quite complex but to linear time, already

existing as well that a simple hash function to ensure user

authentication and his data integrity.

Fig. 3. Secure cloud model Architecture

4th International Symposium on Digital Forensics and Security, ISDFS 2016, April 25-27, 2016, Little Rock, Arkansas, USA

REFERENCES

[1] H. Ripphausen-Lipa, D. Wagner and K. Weihe, “The vertex-disjoint
Menger Problem in planar graphs”, Proceedings of the fourth annual
ACM-SIAM Symposium on Discrete algorithms, 1993, pp. 112-119.

[2] Cisco Cloud Security Accelerates Cloud Adoption
http://www.cisco.com/c/en/us/solutions/collateral/security/cloud-web-
security/white_paper_c11-674558.html.

[3] Cisco ASA 5500-X Series Next-Generation Firewalls. http://www.
Cisco.com/go/asa.

[4] Cisco Cloud Security:
http://www.cisco.com/en/US/netsol/ns1066/index.html.

[5] P .Dhanalakshmi, V .Ramesh, “Remote Data integrity in cloud security
services”, International journal of emerging technology and advanced
engineering. Vol.3 January 2003.

[6] A. Juels, A. Oprea, “New Approaches to Security and Availability for
Cloud Data”, Communications of the ACM, Volume 56 Issue 2, pp. 64-
73, February 2013.

http://www.cisco.com/c/en/us/solutions/collateral/security/cloud-web-security/white_paper_c11-674558.html
http://www.cisco.com/c/en/us/solutions/collateral/security/cloud-web-security/white_paper_c11-674558.html
http://www.cisco.com/en/US/netsol/ns1066/index.html

