
CHAPTER 1

Ontology Evolution and the Referencing of

Resources in Semantic Web Context

Delia ROGOZAN and Gilbert PAQUETTE

LICEF Research Center, TELUQ, Québec, CANADA

In Dicheva, D., Mizoguchi, R., & Greer, J. (Eds.). (2009). Ontologies and Semantic Web for

e-Learning (p. 5-23). Amsterdam, The Netherlands : IOS Press.

Abstract. Because ontologies evolve over time, their evolution needs to be managed.
Therefore, in this paper, we propose a framework composed of two main systems:

ChangeHistoryBuilder, which tracks and manages the history of ontology changes, and

SemanticAnnotationModifier, which provides a support to maintain the integrity of the
ontology-based referencing of resources after the ontology evolution. Both systems are

based on a formal specification of types of possible changes in OWL-DL ontologies. In

concrete terms, this specification is an ontology of ontology changes.

Keywords. Ontology Evolution, Ontology of Ontology Changes, Tracking Changes,

Managing the Ontology-based Referencing of Resources

Introduction

Evolution is a fundamental requirement for useful ontologies. Since ontologies are

knowledge theories of a precise domain, they need to evolve because the domain has

changed or because problems in the original domain conceptualization have to be resolved

[1]. Moreover, in open and dynamic environments such as the Semantic Web, the

ontologies need to evolve because domain knowledge evolves continually [2] or because

ontology-oriented software-agents must respond to changes in users’ needs [3].

Consequently, ontology evolution is an essential part of research in ontology engineering

and in application of ontologies in Semantic Web environments.

This chapter explores some important issues of ontology evolution. Three research

questions structure this chapter: (1) what is ontology evolution and which are the types of

possible changes in OWL ontologies; (2) how can we manage the evolution history by

logging changes brought to ontologies; (3) what are the effects of changes on the ontology-

based referencing of resources and how can we resolve them?

1. Ontology Evolution and Ontology Changes

1.1. Definition of the Ontology Evolution Notion

Actual research is far from defining the ontology evolution notion in a consensual way.

Thus, for the authors of [4, 5], the ontology evolution signifies the process of applying

changes to a unique ontology, while the authors of [6, 7] consider it more as the building

and the management of multiple ontology versions. Both interpretations are pertinent in the

distributed and dynamic context of the Semantic Web.

Consequently, we consider the ontology evolution as the timely modification of an

ontology by application of changes to an ontology version (VN) in order to obtain a new

ontology version (VN+1), while preserving the ontology consistency and roles. The ontology

role refers to the service provided by the ontology and to its usage. For example, in the

Semantic Web context, the ontology is used to assure the semantic referencing so that

resources can be found by the knowledge they contain [8, 9]. The ontology consistency

designates the state where all structural and axiomatic constraints of the ontology model are

respected.

An ontology change is a modification brought to ontology during the evolution from a

version VN to a new version VN+1. Changes can be elementary or complex. An elementary

change is a simple and non-composite change (i.e. addition or deletion of ontology

elements). A complex change is a collection of elementary changes, which form together a

logical entity whose signification is unique and clearly defined (cf. Table 1).

Table 1. Examples of complex changes

Complex change Collection of elementary changes

MergeClasses (C1 … CN) into class C - DeleteClass (C1), …, DeleteClass (CN)

- AddClass (C)

SplitClass C into classes (C1 … CN) - DeleteClass (C)

- AddClass (C1), …, AddClass (CN)

ModifySuperClass of C, from class A

to B

- DeleteSuperClass (A) from (C)

- AddSuperClass (B) to (C)

MoveDisjointClass (C), from class

A to B

- DeleteDisjointClass (C) from class A

- AddDisjointClass (C) to class B

Application of changes can induce inconsistencies in other parts of the ontology [10].

For example, merging two classes will cause subclasses and properties to be inconsistent.

Resolving that problem can be treated as a request for new additional changes, e.g.

subclasses and properties can be either deleted, or attached to some other classes. Thus, a

primary change is not a consequence of any change, while an additional one is caused by

another change (named parent-change).

1.2. An Ontology of Ontology Changes

The notion of “change” is central to ontology evolution. Indeed, to describe evolution it is

necessary to specify formally all types of changes that can be applied to ontologies.

Regarding the change specification, actual research proposes only taxonomies of elementary

changes, although complex changes have a richer semantic [11].

In this section, we propose an ontology of changes that can be applied in OWL-DL

ontologies. This ontology expands the taxonomies described in [12, 13] by adding a

typology of complex changes, as well as a number of properties and axioms. We have built

this ontology with the MOWL
1
 graphical editor developed by a LICEF team. The following

table presents some of the basic graphical symbols used by MOWL to represent ontologies.

Table 2. An example of some of the graphical symbols used by MOWL to represent ontologies

MOWL Symbol Description MOWL Symbol Description

Class

Subclass axiom

Disjoint classes

axiom

Property

Property with

domain and range

Functional

Property

Exact/ Minimal

Cardinality

1.2.1. Classification of Changes in Change Ontology

We present here an extract of our ontology; more details can be found in [14]. The Change

Ontology consists of two principal hierarchies. The ChangeObject hierarchy specifies the

ontology objects that can be changed, i.e. elements used to build OWL ontologies, such as

classes, properties or axioms. The ChangeOperation specifies the types of changes in

OWL-DL ontologies. It consists of two taxonomies, one of elementary changes and one of

complex changes, both of them being described further.

1.2.1.1. Operations of Elementary Changes

The taxonomy of elementary changes contains the generic changes Add_Change and

Delete_Change. The conceptual structure of these generic changes is similar. For that

reason, in Figure 1 we illustrate only the classification of additions.

The changes that add elements are classified according to their application object:

Add_To_Ontology, Add_To_Class, Add_To_Property. From the ‘ontology’ point of

view, there are two main changes: Add_Class and Add_Property. From the ‘class’ point

of view there are multiple changes: additions of logical axioms (i.e. intersectionOf,

complementOf, unionOf), additions of class axioms (i.e. superClass,

equivalentClass, disjointWith) or even additions of property restrictions that

characterize classes. From the ‘property’ point of view, the main changes operate on the

property domain and range as well as on the property axioms (i.e. superProperty,

equivalentProperty, inverseProperty).

1.2.1.2. Operations of Complex Changes

The taxonomy of complex changes contains the main types of complex changes, which are

those that merge, split, modify or move elements of ontologies (Merge_Change,

1 The MOWL is a tool for editing OWL ontologies and for exporting them to XML files compliant with the

OWL-DL language (http://www.cogigraph.com/Produits/OWLDLOntologyEditors/tabid/1100/language/en-

US/Default.aspx).

http://www.cogigraph.com/Produits/OWLDLOntologyEditors/tabid/1100/language/en-US/Default.aspx
http://www.cogigraph.com/Produits/OWLDLOntologyEditors/tabid/1100/language/en-US/Default.aspx

Split_Change, Modify_Change, Move_Change). Other types of complex changes are

those that add, delete or modify sub-hierarchies of OWL elements (Subtree_Change).

Given the number of concepts represented by this taxonomy (more than 50), we present in

Figure 2 only the classification of the Modify_Change type.

Figure 1. Classification of elementary changes that add elements to OWL-DL ontologies

Figure 2. Classification of complex changes that modify elements in OWL-DL ontologies

1.2.2. Change Characterization in Change Ontology

To allow a richer characterization of changes, we also defined some properties.

1.2.2.1. Properties of Changes

Figure 3 introduces the general properties

of change operations. The appliedOn

property connects the change operations

to ontology objects. The properties

haveSource and haveTarget describe

the source and the target of change

operations. Both properties have as

domain a class of type

ChangeOperation and as range a class

of type ChangeObject or a value

rdfs:Datatype.

Other properties are introduced, as

well: haveChangeNumber, which

specifies a reference number that indicates

the application order of a change and

haveParentChangeNumber, which

declares the reference number of the parent-change.

1.2.2.2. Characterization of Changes by means of Property Restrictions

Restrictions on these general properties may be associated to each change operation in order

to characterize it formally. Figure 4 shows a part of the characterization of Add_Change,

the same method being followed for all other changes.

Figure 3. Properties of change operations

Figure 4. Part of the characterization of addition changes

Thus, any operation of type Add_Change is characterized by two general restrictions:

an exact cardinality of 0 for the haveSource property, which declares that there is no

element as source of an addition change; a minimal cardinality of 1 for the haveTarget

property, which declares that the target of any addition change comprises at least one

element. The application object is defined by adding restrictions on appliedOn property.

These restrictions characterize changes that add elements to the ontology structure

(Add_To_Ontology), to a class definition (Add_To_Class) or to a property definition

(Add_To_Property).

We described in this section an ontology of ontology changes that extends previous

classifications. It also adds clear definitions of change operations by means of properties.

We can now use this formal theory to support the development of tools for managing

ontology changes. We address this objective in the following sections where we propose

two interlinked systems for managing (1) the history of ontology changes and (2) the

ontology-based referencing of resources after the ontology evolution.

2. Managing the History of Ontology Changes with ChangeHistoryBuilder (CHB)

Although the management of ontology changes is one of the key issues in successful

applications of evolving ontologies, methods and tools to support it are almost missing [15].

As we underlined in [14], very little research concerning tools for keeping track of ontology

changes has been carried out. However, these tools are important to consider for ontology-

based referencing of resources since changes affect the way that resources should be

handled and interpreted by means of new ontology versions.

There are two major approaches for tracking and managing ontology changes. The first

one logs changes during ontology evolution [4, 13]. Even if this approach facilitates later

retrieval of all performed changes, it presents an important problem: the log-files are stored

independently from ontology versions and a tool-oriented language formalizes them.

Consequently, these log-files are more difficult to identify, access and interpret by Semantic

Web agents. For that reason, the second approach relies only on a comparison between

ontology versions to identify changes [12, 16]. However, it presents a problem as well. It

can identify only some elementary changes and therefore, it cannot provide complete

information about evolution processes
2
.

The ChangeHistoryBuilder (CHB) system overcomes these two problems: it combines

the fact of having access to a log that captures the entire semantic of ontology evolution

with the fact of identifying changes starting only from ontology versions. It also can deal

with complex changes, in addition to elementary ones.

To track and manage the history of ontology changes, the CHB system supports a four-

step process, as illustrated in Figure 5.

Figure 5. The fourth-step functioning of the CHB system

Legend of the graphical formalism [17] : procedure (oval shape), input/output resource of a procedure

(rectangular shape) and actor that carries out the underling procedure (hexagonal shape); link composition (C),

specialization (S), precedence (P), input-output (I/P) and regulation (R).

2 Knowing that two classes were deleted from VN does not tell us that these classes were merged in VN+1.

2.1. Capturing Changes during Ontology Evolution (Step 1)

The first step aims at logging in a log-file all changes applied during the evolution from VN

to VN+1. To resolve the interpretation problems of log-files generated by different editors,

the CHB provides ontology editors with a uniform and common model for logging changes.

The CHB model is a set of metadata that aggregates in a common structure all changes [18].

Based on the change ontology, these metadata allow ontology editors to capture specific

information about elementary and complex changes, in addition to general information

regarding the ontology version. These ontology editors can use the CHB model as a plug-in

and thereby generate log-files presenting a normalized and rich description of applied

changes. A log-file example of this sort is presented in Figure 6.

Figure 6. Example of a log-file based on the CHB model

Despite the figure above, the CHB model is not a linear one. It is organized so that

every primary change is represented under a tree-shape that is formed by additional changes.

Moreover, this change tree is generated in a flexible way according to evolution strategies

applied by ontologists during evolution.

2.2. Formalizing Changes using OC+OWL Language (Step 2)

The second step of the logging process supported by the CHB system is the formalization of

changes that were captured during the previous step. For this purpose, we developed a

formalization language, named OntologyChange (OC), which is based on a minimal

number of constructs, labelled oc. When combined to those of OWL [19], these constructs

formally describe all types of changes in OWL-DL ontologies. Table 3 shows a concise

summary of OC language constructs and Figure 7 illustrates how CHB uses these constructs

to formalize changes. Consequently, all semantic web agents or software components,

which are able to manipulate the OC+OWL language, can also interpret and reason with the

trace of formalized changes that were logged using the CHB model.

Table 3. OC language constructs to formalize changes

2.3. Archiving Formalized Changes in the New Ontology Version (Step 3)

The third step consists in the archiving of previous formalized changes. The solution

proposed by the CHB system is to append to the new ontology version the trace of changes

formalized with OC+OWL language. The expression VN+1Change denotes thus this new

ontology version with an integrated trace of changes. In this way, VN+1Change contains in

addition to the underlying domain conceptualization, all information about the evolution

from VN to VN+1. Figure 7 presents an example of a VN+1Change version.

In order to preserve the interpretation of VN+1Change through all OWL compliant tools,

the formalized changes are declared inside the owl:versionInfo statement. According to

OWL language, this statement gives information about ontology versions without

contributing to the logical meaning of the ontology. The resulting VN+1Change version thus

conforms to the OWL language, while offering information about all applied changes.

Figure 7. An example of a VN+1Change ontology version

2.4. Identifying Changes Starting from the New Ontology Version (Step 4)

The fourth step concerns the interpretation of changes after the ontology evolution. The

CHB system is able to identify all applied elementary and complex changes, together with

their primary-additional relationship, by simply reading the OC+OWL trace contained in

the VN+1Change ontology version. Furthermore, all software agents able to interpret

OC+OWL language can also identify changes starting only from VN+1Change.

3. Managing Semantic Referencing with SemanticAnnotationModifier (SAM)

Ontology evolution can give rise to side effects on the resource referencing and can thus

hamper one of the most important features of the Semantic Web: the ontology-based

referencing of resources that formally describes the resources content.

Consider the example of the ontology evolution from VN to VN+1 and a resource R1,

which is referenced by the class PedagogicalDesigner belonging to VN. During

evolution, this class is merged with another class and consequently, it no longer exists in the

new ontology version. This makes resource R1 no more accessible for requests of type

“Give me a resource which is a PedagogicalDesigner”: the access to R1 is broken via

VN+1. Consider furthermore a resource R2 that is referenced by two classes Tutor and

Researcher. If a disjunction axiom is added between these two classes, then the

interpretation of R2 becomes inconsistent via the new ontology version.

However, despite the necessity of managing the effects of ontology changes on the

resource referencing, little research tackled this issue. For example, in [2] it was

demonstrated that the add changes do not affect the access to referenced data, while changes

that delete entities hamper it. Or, the authors of [20] analyzed the effects of elementary

changes on the class hierarchy. The authors of [21] analyzed and proved that modifications

made on an ontology whose concepts are used to generate metadata may disrupt the

metadata semantic. In [22] was proposed the CREAM annotation model together with some

recommendations regarding the modification of resource referencing, yet without proposing

any concrete solution to that purpose. The authors of [23] presented a rule-based approach

to detect and correct inconsistencies of ontology-based semantic annotations. Finally, let us

underline that, even if a wide range of referencing tools exists nowadays, none of them is

able to support an evolving ontology-based referencing of resources.

In this context, the second system that we propose in this chapter is as much innovatory

as fundamental. The SemanticAnnotationModifier (SAM) system provides a support for

managing the ontology-based referencing of resources after the ontology evolution. In order

to present SAM, we start by explaining the notion of semantic referencing on which the

system is based. Then, we discuss the operation model of SAM and we explain it through

examples.

3.1. Semantic Referencing of Resources by means of UKIs

Semantic referencing denotes the description of resources content by means of formal

semantic descriptors. These descriptors, named semantic references, are generally

knowledge, i.e. classes according to the OWL terminology, belonging to different

ontologies.

To specify the semantic references, we use the URI general syntax. A Uniform

Resource Identifier (URI) is a compact sequence of characters that identifies all kind of

objects, whether they are physical (e.g. images, documents, services, actors) or abstract (e.g.

concepts in an ontology). It consists of a hierarchical sequence of common components:

scheme, authority, path and fragment [24].

In addition, to assert that semantic references identify solely ontology concepts, we

introduce the terms Uniform Knowledge Identifier (UKI) and we define it as a URI with two

restrictions: the first three components must identify a unique version of an ontology and

the last component must identify a unique class inside this ontology version. Thus, as

illustrated in Figure 8, an UKI is composed of two principal elements: the URI of the

ontology version and the name of a class within this version.

Figure 8. An UKI that specifies the reference PedagogicalDesigner within the second version of
eLearningOntology

In conclusion, the semantic referencing consists of one or several semantic references

associated to resources to describe their content formally, each reference being specified by

means of a UKI (cf. Figure 9).

Figure 9. The semantic referencing of a resource

3.2. Operation Model of the SAM System

We present the operation model of the SAM system in Figure 10. This model underlines the

two main services that SAM offers to users. The first one analyses changes applied to VN to

obtain VN+1. The purpose here is to inform users about changes that hinder the access to

referenced resources or that modify their interpretation. The second service modifies the

semantic referencing (e.g. UKIs) that is affected by ontology changes. The purpose here is

to allow access to all resources via the new ontology version as well as a consistent

interpretation of them. Both services are based on data provided by the CHB system,

consisting of complete and semantically rich information about elementary and complex

changes together with the causality relation existing among them.

Figure 10. The operation model of the SAM system (see legend of Figure 5)

3.3. Exemplifying the Operation Model of SAM

In this section, we exemplify the operation model of SAM. We start by illustrating how

SAM analyses the change effects on resource referencing. Next, we present how SAM

assists users in modifying this resource referencing.

3.3.1. SAM Analysis the Change Effects on Resource Referencing

3.3.1.1. Users send UKIs to SAM in order to analyse them

Let us consider a user who wants to verify if the semantic referencing of a resource

collection is affected by the evolution from an ontology version VN to a new version VN+1.

In that purpose, he sends to SAM a file containing the UKIs (i.e. references) associated to

these resources. For this first prototype of SAM, we imposed some constraints on the file

format: the UKIs file must stem from the same owner; it must be organized as a list; all

UKIs must refer to the same ontology version.

3.3.1.2. SAM interprets UKIs

To interpret the UKIs file, SAM decomposes every UKI in order to identify the URI of the

VN ontology version together with the name of the class used as reference (cf. Figure 11).

Then, it asks CHB for the VN+1Change and extracts all ontology changes that were

applied to VN to obtain VN+1. Because SAM can interpret the OC+OWL language, it can

also ‘understand’ the trace of changes appended to VN+1Change. Finally, SAM links UKIs

to changes by matching each class name specified by UKIs to its corresponding pair in the

change trace.

3.3.1.3. SAM analyses change effects on UKIs and the user request UKIs modification

Based on UKIs interpretation, SAM presents to user an analysis of changes (cf. Figure 12).

Figure 12. Change visualization and change analysis with SAM

 Figure 11 (a). User UKIs file Figure 11 (b). Decomposed UKIs

Firstly, SAM highlights: (1) changes that break the access to resources, in red; (2)

changes that give rise to an inconsistent interpretation of resources, in yellow; (3) changes

that modify the interpretation of resources (e.g. by modifying the class-parent of the class

used as semantic reference), in blue.

Secondly, SAM provides the user with an analysis of effects for each underlined

change. This analysis
3
 consists of three panels. The two first ones deal with the effect of

changes on the access to referenced resources or on the consistency of their interpretation.

The third one indicates the relation exiting between a class belonging to VN and the same or

other class belonging to VN+1, according to criteria as identity, equivalence, inclusion,

generalization, specialization or conceptually different. This last panel is particularly useful

for understanding how the meaning of a class used as reference was modified during the

ontology evolution.

Starting from the change analysis, the user has the possibility to request the

modification of resource referencing (i.e. UKIs) that is affected by ontology changes.

3.3.2. SAM Modifies the Resource Referencing

3.3.2.1. SAM modifies the resource referencing affected by non problematic changes

This modification concerns the UKIs affected by changes that do not cause either a loss of

access to resources, or an inconsistent interpretation of them. Changes of this type are

AddEquivalentClass or ModifySuperClass, for example.

Thus, to allow access to resources via the new ontology version, SAM modifies only

the URI of the ontology version inside UKIs (cf. example bellow). The user has to validate

it, even though this modification can be automatically processed.

Figure 13. Modification of the UKI referring to Designer_IMS_LD (cf. evolution example from Figure 15)

3.3.2.2. SAM identifies several solutions for the modification of the resource referencing

affected by problematic changes

This situation concerns especially the UKIs affected by changes that hamper the access to

resources via the new ontology version (e.g. MergeClasses, DeleteClass,

SplitClass). In this case, most of classes used as references in UKIs are no more

available in VN+1. To give access to resources, SAM should then modify, besides the URI of

the ontology version, the class name in each affected UKI (cf. example bellow).

Figure 14. Modification of the UKI referring to PedagogicalDesigner (cf. evolution example from Figure 15)

However, this modification cannot be automatically processed because several

solutions are possible. To detect them, SAM exploits two identification algorithms that we

developed in [14]. Since these algorithms are based on the information provided by the

VN+1Change, they are able to deal with all problematic changes. Consider, for example, the

3 As we are focusing on the general functioning of SAM, we are not going to discuss the change analysis in this

chapter. Details can however be found in [14].

change MergeClasses illustrated in Figure 15. SAM is able to detect several classes that

can be pertinent for the UKIs modification:

 Classes semantically “closed”, such as the ContentPresenter because it includes

the meaning of PedagogicalDesigner.

 First-level subclasses of classes the name of which must be modified in UKIs.

Regarding our example, these subclasses are Designer_MISA and

Designer_IMS_LD. They were transferred to another class in VN+1, after the removal

of their parent-class.

 Classes to which first-level subclasses were transferred, i.e. CourseManager.

Figure 15. Identification of pertinent classes for the modification of UKIs affected by problematic changes: the

MergeClasses example.

3.3.2.3. SAM assists users in modifying UKIs affected by problematic changes

Choosing among the solutions identified by SAM is the user privilege; only the user may

decide which solution is more appropriated to his context. However, SAM can guide him

during the modification process. The Figure 16 presents the interaction between the SAM

system and a user who wants to modify UKIs affected by problematic changes (the example

of MergeClasses is considered).

As shown in this figure, the SAM interface consists of four principal sections. Section 1

indicates the UKIs affected by the change whose analysis was previously explored by the

user. Section 2 presents the classes identified as being pertinent for the modification of

indicated UKIs. The classes are enumerated in a decreasing order, according to their

pertinence degree. Section 3 consists of comments and specific characteristics of classes

listed in Section 2. For each class, the “Comments” panel describes the reason why a class

was considered by SAM as pertinent. The other panels indicate the subclasses, axioms and

properties that were deleted from, transferred or added to the selected class. Finally, Section

4 presents the modified UKIs.

Figure 16. Interaction between SAM and users during the modification of UKIs

3.3.2.4. SAM generates the file of modified UKIs

Once the user validated the modification of all UKIs, SAM generates a file containing these

modified UKIs and sends it to the user.

4. Evaluation and Deployment of CHB and SAM in eLearning Contexts

4.1. Evaluation of CHB and SAM Systems

Regarding the systems evaluation, we carried out a technical validation of CHB and SAM

with ontologies of small and average size, a diversified set of changes and the UKIs files

that respect the specified constraints.

We also conducted a qualitative evaluation of CHB and SAM systems according to the

utility criterion, i.e. a criterion allowing to identify, for a given context, the interest and the

relevance degree of systems features [25]. In our case, the general target context was the

Semantic Web. The specific context was that of eLearning systems based on ontologies and

on the semantic referencing of resources. We used several techniques while undergoing the

evaluation of systems, i.e. thinking aloud method, qualitative questionnaires, interviews and

a focus-group. Six participants were then selected. They all have knowledge of OWL

ontologies as well as experience in the eLearning fields. The evaluation took place in the

LORIT
4
 laboratory for observation, test and experimentation of instructional technologies.

In order to draw some valid meaning from qualitative data that we collected during

systems evaluation, we based our analysis on the method proposed in [26]. Some outcomes

of this data analysis are illustrated in Table 4. Other results may be found in [14].

4 LORIT (http://www.licef.teluq.uquebec.ca/lorit/eng/Index.htm) stands for Research Laboratory-Observatory in

Tele-learning Engineering.

http://www.licef.teluq.uquebec.ca/lorit/eng/Index.htm

Table 4. Qualitative evaluation of CHB and SAM systems: some outcomes

CHB SAM

The utility was validated for both systems, especially for users that are responsible of the ontology management

and of the ontology-based referencing of resources

The evaluation participants demonstrated… The evaluation participants appreciated…

A better understanding of the ontology evolution after

the visualization of changes, especially in the case of

complex changes

The fact that SAM allows users to control the

referencing modification (for problematic changes)

The relevance of multiples solutions proposed by SAM

The evaluation participants underlined orientations for future works, such as …

Use the integrated trace of changes as a support to the
collaborative modification of an ontology

Customize the assistance (or automatism) level of the
modification of resource referencing with SAM

Connect a change viewer with an ontology viewer Make available new means to define new references

4.2. Deployment of CHB and SAM Systems in eLearning Contexts

Once the evaluation of CHB and SAM completed, the next step is to deploy these systems

in eLearning contexts. To that effect, we have selected the TELOS project that was

designed and developed by a LICEF team within the LORNET research network [27].

The Technology Enhanced Learning Operating System (TELOS) aims to enable

pedagogical technologists to develop, modify or use eLearning resources within a service-

oriented framework. In TELOS, all types of ‘content provider’, e.g. multi-media document,

learning object, learning design, knowledgeable person, are eLearning resources. All these

resources are referenced using specific knowledge defined in domain ontologies. The goal

here is to allow the search of relevant eLearning resources, the aggregation of resources

according to their semantic description and the creation of consistent learning scenarios

based on a semantic equilibrium among resources [28].

The ontology-based referencing layer is thus a foundational element of the TELOS

framework. Considering that, CHB and SAM systems are necessary to manage the

referencing of resources, given that domain ontologies are not fixed entities: at any moment,

these ontologies may be modified by TELOS users according to their needs. Therefore, we

illustrate in Table 5 the services that will be provided by CHB and SAM, once these

modules are integrated into TELOS.

Table 5. Services provided by CHB and SAM in TELOS system

Services provided by CHB and SAM in TELOS system CHB SAM

Track changes during the modification of TELOS domain ontologies using the MOWL editor 

Help distant ontologists to see all changes made on a shared ontology 

Draw attention to the potential effect of a change in order to allow users to approve or to cancel it
during ontology evolution /modification

 

Allow the exploration of change history after ontology evolution 

Automatically highlight the change effects on resource referencing, given that all resources are

stored in TELOS repositories
 

Automatically update the resource referencing affected by non-problematic changes 

Support users in modifying the resource referencing affected by problematic changes 

5. Conclusion

We proposed in this article a framework for managing ontology changes and for resolving

some of their problematic effects. This framework is composed of three major components:

an ontology of changes, a system that tracks changes during ontology evolution (CHB) and

a system that supports users in maintaining the semantic referencing of resources (SAM).

Building an ontology of ontology changes is an emergent preoccupation in our research

domain. We therefore developed a representation of elementary and complex changes that

can be applied to OWL-DL ontologies (more than 60 operations were identified and

characterized by means of properties). Based on this representation, we conceived and built

a first version of the CHB and SAM systems.

Concerning the CHB system, we underlined our three principal contributions. Firstly,

based on the change ontology, we developed a model that allows ontology editors to capture

elementary and complex changes in a uniform manner. Secondly, we proposed the OC

language for change formalization. Using a minimal number of constructs, together with

those of OWL, this language can represent formally all types of changes in OWL-DL

ontologies. Thirdly, we offered a solution to problems of tools oriented log-files access and

interpretation. This solution is to append the trace of formalized changes to the new

ontology version in a manner that keep this version OWL compliant.

Regarding the SAM system, our principal contribution consisted in the exploration of

new and essential ideas in the ontology-based referencing domain, i.e. an appropriate

modification of resource referencing in order to allow access to all resources by means of

the new ontology version. For this purpose, the SAM system offers solutions and guides the

users during the process of referencing modification. It maps between the referencing of

resources (i.e. UKIs set) and ontology changes in order to identify the affected UKIs. It

analyses the change effects on the access and on the interpretation of resources. For UKIs

affected by problematic changes, it identifies a set of concepts belonging to the new

ontology versions, which can be pertinent for UKIs modification. Finally, it allows users to

choose among these different solutions by giving them information about the

appropriateness of each identified concept.

As we have completed the evaluation of prototypes for both CHB and SAM system, we

currently aim to improve these two systems for making them able to treat all types of

elementary and complex changes as well as different representation formats of semantic

referencing. We also work on a project to integrate them in the TELOS system for

eLearning and knowledge management.

References

[1] N. Noy and M. Klein, Ontology evolution: Not the same as schema evolution, Knowledge and Information

Systems 5 (2003).
[2] J. Heflin and J. Hendler, Dynamic Ontology on the Web, 17th National Conference on artificial Intelligence

(AAAI), 2000.

[3] L. Stojanovic, A. Maedche, N. Stojanovic, and R. Studer, Ontology Evolution as Reconfiguration- Design
Problem Solving, Second International Conference on Knowledge Capture, 2003.

[4] A. Maedche, B. Motik, and L. Stojanovic, Managing Multiple and Distributed Ontologies in the Semantic

Web, VLDB Journal - Special Issue on Semantic Web, 12 (2003), 286-302.
[5] L. Stojanovic and B. Motik, Ontology Evolution within Ontology Editors, Knowledge Acquisition, Modeling

and Management (EKAW), Siguenza, Spain, 2002.

[6] M. Klein, Y. Ding, D. Fensel, and B. Omelayenko, Ontology management - Storing, aligning and

maintaining ontologies, in Towards the Semantic Web: Ontology-Driven Knowledge Management, J. Davids,
D. Fensel, and F. vanHarmele, Eds., Wiley, 2002, 47-69.

[7] N. Noy and M. Musen, Ontology Versioning as an Element of an Ontology-Management Framework, IEEE

Intelligent Systems (2003).
[8] T. Berners-Lee, J. Hendler, and O. Lasilla, The Semantic Web, Scientific American 5 (2001), 34–43.

[9] J. Hendler, Agents and the Semantic Web, IEEE Intelligent systems 3/4 (2001), 30-37.

[10] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, User-driven Ontology Evolution Management, 13th

International Conference on Knowledge Engineering and Knowledge Management (EKAW02), Sigüenza,

Spain, 2002.

[11] M. Klein and N. Noy, A component-based framework for the ontology evolution, Workshop on Ontologies
and Distributed Systems, IJCAI-2003, Acapulco, Mexico, 2003.

[12] M. Klein, Change Management for Distributed Ontologies, Vrije Universiteit Amsterdam, 2004.

[13] L. Stojanovic, Method and tools for ontology evolution, University of Karlsruhe, Germany, 2004.
[14] D. Rogozan, Management of the ontology evolution: methods and tools for an evolving semantic referencing

based on analysis of changes applied to ontology versions (in french), in LICEF Center, vol. PhD. Montréal:

Université de Québec à Montréal (UQAM)/Télé-université (TELUQ), 2008.
[15] P. Haase and Y. Sure, State-of-the-Art on Ontology Evolution, Technical report, SEKT informal deliverable

3.1.1.b, Institute AIFB, University of Karlsruhe 2004.

[16] N. Noy, S. Kunnatur, M. Klein, and M. Musen, Tracking Changes During Ontology Evolution, 3rd
International Semantic Web Conference (ISWC2004), Hiroshima, Japan, 2004.

[17] G. Paquette, Modélisation des connaissances et des compétences, pour concevoir et apprendre: Presses de

l'Université du Québec, 2002.
[18] D. Rogozan and G. Paquette, Managing Ontology Changes on the Semantic Web, IEEE/WIC/ACM

International Conference on Web Intelligence (WI'05), Compiegne, France, 2005.

[19] W3C_WebOnt, OWL Web Ontology Language Guide and Reference, 2004.
[20] H. Stuckenschmidt and M. Klein, Integrity and change in modular ontologies., 18th International Joint

Conference on Artificial Intelligence, Acapulco, Mexico, 2003.

[21] P. Ceravolo, A. Corallo, G. Elia, and A. Zilli, Managing Ontology Evolution Via Relational Constraints,
Knowledge-Based Intelligent Information and Engineering Systems, 8th International Conference, KES,

Wellington, New Zealand, 2004.

[22] S. Handschuh, Semantic Annotation of Resources in the Semantic Web, in Semantic Web Services, R. Studer,
S. Grimm, and A. Abecker, Eds.: Springer Berlin Heidelberg, 2007, 135-155.

[23] H. Luong and R. Dieng-Kuntz, A rule-based approach for semantic annotation evolution, Computational

Intelligence 23 (2007), 320-338.
[24] T. Berners-Lee, R. Fielding, and L. Masinter, Uniform Resource Identifier (URI): Generic Syntax, Network

Working Group, 2005.

[25] J. Nielsen, Usability engineering: Boston, Academic Press, 1993.
[26] M. Miles and A. Huberman, Qualitative Data Analysis (2nd edition). Thousand Oaks, CA: Sage Publications,

1994.
[27] G. Paquette, I. Rosca, S. Mihaila, and A. Masmoudi, Telos, a service-oriented framework to support learning

and knowledge management, in E-Learning Networked Environments and Architectures: a Knowledge

Processing Perspective, S. Pierre, Ed.: Springer-Verlag, 2007.
[28] G. Paquette and F. Magnan, Learning Resource Referencing, Search and Aggregation At the eLearning

System Level, presented at IODE Workshop, ECTEL-07 Conference, Crete, September 18-21, 2007.

