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Abstract

A fundamental task in video surveillance is that of visual tracking, specifically in environments where surveillance is
a priority, such as airports. Many approaches to tracking have been proposed, with different drawbacks and advantages
that affect their suitability for face and human tracking for surveillance. In this report, we present the most relevant and
recent methods for tracking and evaluate their suitability for the aforementioned task.

1. Introduction

Person tracking is a fundamental problem in computer vision and visual surveillance. Automated person tracking
permits more complex tasks such as human activity/event recognition (for example, recognition of suspicious activities),
scene analysis (for example, computing the number of visitors to a specific area), and calculation of face logs (for example,
storing multiple views of the same person’s face, for future analysis tasks such as face recognition).

Tracking can be defined as, given a target to track, to localize that target in each consecutive frame based on a combi-
nation of its previous position and its stored appearance. This yields the computational benefit of not having to detect the
target by an entire image search (by leveraging its previously tracked location), and allows us to infer a target’s location
when detection fails or it becomes occluded. By tracking a target throughout a sequence, we can extract its trajectory
through time. Often times, it is a requirement that this be computed in real-time due to the continuous and ongoing nature
of surveillance footage, which means that a tracker may only use information from the present and past video frames, and
is not able to look into future frames for target appearance. Another common requirement is that when the target leaves the
camera’s field of view and returns, the same identity must be associated with the target before leaving and after returning
to the field of view. As an example, if a tracker is employed to count the number of visitors to a room within a day, the
same visitor should only be counted once, regardless of whether the camera is able to see that visitor at all times.

Due to its occurrence in several more complex computer vision tasks, tracking has been thoroughly studied both in
the general domain and for specific applications (surveillance, human-computer interaction, navigation). The goal of this
survey is to evaluate and compare recent approaches that are applicable to human and face tracking in a surveillance en-
vironment, for different pre-defined scenarios. These scenarios are thoroughly described in Section 4. Briefly, we are
interested in trackers applicable to tracking an isolated face in a constrained environment (person in lane), trackers appli-
cable to tracking a person entering and exiting a controlled doorway (controlled chokepoint) and an uncontrolled doorway
(uncontrolled chokepoint), trackers applicable to tracking multiple people in both general sparse and dense environments,



Paper Histograms Local Features Sparse-representation Learned Appearance
Sevilla-Lara et al. [45] yes no no no
Oron et al. [39] es no no no
Babenko et al. [7] no yes no yes
Adam et al. [2] yes no no no
Erdem et al. [17] yes no no no
Woo Park et al. [49] no yes no yes
Shu et al. [46] no yes no yes
Avidan [6] yes yes no yes
Mei et al. [36] no no yes no
Mei et al. [37] no no yes no
Zhang et al. [52] no no yes no
Zhong et al. [54] yes no yes no
Andriyenko et al. [5] yes no no no
Jia et al. [23] no no yes no
Li et al. [31] no yes no no
Kalal et al. [25, 26] no yes no yes
Yang et al. [50] no yes no yes
Hare et al. [21] no yes no yes
Comaniciu et al. [14] yes no no no
Kang et al. [27] yes no no no
Wagner et al. [48] no yes no no
Zhou et al. [55] yes yes no no
Liu et al. [32] yes no no no

Table 1. Comparison of appearance models used in recent approaches

and trackers applicable to tracking multiple people in an unrestricted outdoors environment. For a thorough survey of less
recently-proposed methods, readers are referred to a tracking survey by Yilmaz et al. [51].

We separately identify different appearance models in Section 2 and different motion models in Section 3. As these
approaches are described, we introduce and compare similar tracking methods that use these motion and appearance
models. Finally, we evaluate their readiness based on the TRL (technology readiness level) for different surveillance-
based scenarios in Section 4 and conclude in Section 5.

2 Appearance Models

Arguably the most important aspect to any tracker is its appearance model. The appearance model largely dictates
the successes and shortcomings of trackers, defining the feature-space used to represent the target. Sometimes we trade
off keeping information about one domain of the target in exchange for robustness to certain criteria, or computational
efficiency. For example, a commonly-used construct in appearance models are histograms, which lose spatial information
in exchange for point-to-point transformation invariance and resistance to motion blur. In this section, we describe some
of the most common appearance models in the recent literature, and a tabular comparison of some methods is presented in
Table 1.



2.1 Template Matching

In template matching, a pre-computed region of interest containing the target (called a template) is stored and used
as a model to compare potential candidate targets against. Each candidate is compared against the stored template by
some similarity measure, such as a pixel-by-pixel comparison with the sum-of-squared-difference similarity measure [20],
or cross-correlation [53]. These two methods use colour or intensity features and are popular approaches due to their
simplicity and computational efficiency.

While tracking with a single template performs well when tracking static objects with little-to-no appearance change,
this strategy is often insufficient for video surveillance tasks, where the target undergoes significant appearance changes
due to phenomena such as human articulation. To account for this, either multiple templates must be stored or the template
must be sequentially updated to reflect the current target appearance. When the target is unknown a priori, the former is not
possible and the target must be updated online. The problem of deciding when to update a template throughout a tracking
sequence remains an open problem. If a target’s appearance changes throughout a scene, the template model should reflect
those changes or it risks becoming out-of-date and the tracker will drift [34]. For example, if we are tracking a human’s
face and the human rotates at a 90 degree angle, the template will be out-of-date and match poorly against the actual target.
A gradual update as the human rotates their head would ensure good matches and accurate tracking. However, updating
the template at the wrong frame risks introducing artifacts into the template. For example, if the target is moving quickly
at the time of update, motion blur will be included in the template and the template will be less accurate. Updating at the
wrong frame also risks introducing occluders or background pixels to the template. Many different strategies have been
proposed to tackle this problem. Matthews et al. [34] present a template update scheme that corrects for tracking drift by
storing two templates: the template from the first frame and the most recent tracking result. Drift is corrected via gradient
descent minimization of a cost score for aligning the current tracking result template with the first frame template. Many
sparse representation trackers [36, 23, 52], described in Section 2.4 give a dynamic importance weight to each template,
and update the template set by discarding the least important template and adding the current tracking result when the
tracking reconstruction error is sufficiently high, up to some threshold.

When tracking with a single template, illumination changes in the scene often cause there to be large differences in the
pixel values between the true target and the stored template. A standard approach for solving this issue is to use normalized
cross-correlation [53], which normalizes the image by subtracting the mean value and dividing by the standard deviation.
The resultant value is a similarity measure between a template and candidate target, computed by

similarity(c, t) =
∑
x,y

(c(x, y)− c̄) ∗ (t(x, y)− t̄)
σcσt

(1)

The idea of template matching has been expanded in recent years. Rather than doing a pixel-by-pixel comparison, in
Section 2.2.1 we explore methods that break a template into rectangular subregions and use histogram comparison over
these subregions as a similarity measure. In Section 2.4, we explore methods that keep a large dictionary of templates and
represent the current tracked target as a sparse linear representation of the template dictionary.

2.1.1 Contour Tracking

While a great deal of research has gone into tracking by a template represented by a geometric shape, such as an elliptical
or rectangular region of interest, there also exist techniques that directly track the contour of a template. This has the
benefit of excluding all background pixels from the template, which increases the precision of the pixel distribution and
increases the discriminative power of the target representation.

Contour tracking aims to estimate the target’s location, scale, and shape in each frame using either the contour from
the previous frame or an external contour detector. The target’s appearance is generally modelled by either a descriptor
representing the shape’s silhouette [9] or a colour/intensity histogram of the interior region of the shape boundary [27].



Figure 1. A shape contour is represented by a set of concentric circles, each of which provides a
probability distribution over the contour edge pixels [27]

When matching directly by shape, there are two required steps. First, the shape of the target must be segmented from the
overall image, either by background subtraction or an image segmentation algorithm. Then, a shape matching algorithm is
employed to return the similarity between the template contour and the segmented shape. Shape Contexts [9] are among
the most popular shape descriptors for matching. Points are randomly selected along the contour and a shape context is
computed for each of those points. A shape context encodes the general spatial distribution of a given point relative to
the remaining points on a contour with a log-polar space histogram. Then, a mapping is found between the shape context
points from the template to the candidate target, which returns a similarity cost which we aim to minimize.

Kang et al. [27] propose a contour-based appearance model based on circular regions around the contour. The smallest
circle that fully contains the contour is taken as a reference circle, and small concentric circles of various radii are extracted
from within the reference circle to be used as bins. This is illustrated in Figure 1. Within each bin, the contour is modelled
by a Gaussian colour model over the RGB distribution of contour edge pixels within that bin. The final shape descriptor
is obtained by counting the number of contour-edge pixels within each bin, yielding a probability distribution. Then, any
probability distribution comparison technique (such as the Kullback-Leibler distance), can be used as a similarity function
between a candidate target and a template. This approach is invariant to changes in scale, rotation and translation.

2.2 Histograms

Histograms are a popular choice due to their simplicity and power. There exist methods to efficiently compute arbitrarily
large histograms over arbitrary regions in an image in constant time [40] and several approaches are available to compare
histograms. One of the major drawbacks to histograms is that all spatial information within the searched region is lost,
since histograms are essentially a discretized sum of values over the image region. Some trackers [2, 17] combat this by
computing histograms of neighbouring regions and enforcing that a pair of matching histograms must also have matching
neighbourhood histograms. Other drawbacks of histograms include sensitivity to illumination changes, large appearance
changes, and occlusions. Despite these drawbacks, histograms remain among the most popular appearance models in use.



Figure 2. A reliability value (proportional to the shading) is assigned to each fragment. The relia-
bilities are dynamically updated at each frame and contribute proportionally to the final tracking
result. Low-reliability (occluded) fragments have minimal impact on the tracking result [17]

2.2.1 Part-based histogram techniques

An alternative to tracking by a holistic template is to track by template fragments and then enforce spatial constraints
on those fragments. Adam et al. [2] introduce Fragtrack, a tracking algorithm that permits real-time target tracking by
breaking a target up into several small patches and comparing histograms on individual patches as a similarity measure.
Histograms are efficiently computed using a data structure called the integral histogram [40], which is designed to compute
histograms over arbitrary rectangular regions with a constant number of arithmetic operations. Fragtrack operates on a
frame-by-frame basis by searching the entire image within a search radius r of the previously tracked location. For each
candidate location c, a region of interest is extracted and broken up into several patches to compare against the template
image t. The similarity between c and t is computed by comparing the histogram similarities between each extracted patch
and sorting them. Then, the top 25% most similar patches are thrown away and the next most similar patch is used as the
similarity score between c and t. Such a similarity measure grants the algorithm robustness against occlusions of up to
75% of the target template, making for a powerful tracker. However, the tracker is sensitive to full occlusions, low frame
rates, and no appearance model update scheme is proposed.

Fragtrack was expanded upon by Erdem et al. in [17]. A particle filter framework is used for improved search efficiency,
rather than exhaustive region searching. The particle filter framework also allows for more natural inclusion of scale
information into the problem formulation. Tracking accuracy is improved via adaptive cue integration, which assigns
a reliability to each of the “cues” (fragments or patches) and uses these to weight their contribution to the joint tracking
result. Cues with low reliability contribute little to the final tracking result, while cues with high reliability greatly influence
the final tracking result. A cue’s quality is estimated with a sigmoid function of the Euclidean distance between the result
suggested by an individual cue, and the final tracking result agreed upon by all cues. The reliabilities are updated at the
“update” phase of the particle filter framework, via a technique called Democratic Integration [41]. Democratic Integration
suppresses fragments that are not in agreement with the joint tracking result, while giving higher future influence to
fragments that are in line with the joint result. A visualization of the cue reliabilities can be seen in Figure 2, where more
transparent fragments correspond to low reliabilities and opaque fragments correspond to high reliabilities.



Figure 3. Distribution Fields explode an image into multiple layers, one for each histogram bin.
These layers are shown on the left, and shown spatially smoothed on the right.

2.2.2 Holistic histogram techniques

Oron et al. [39] propose a tracking technique based on locally orderless matching (LOM), where an online learning
approach allows the tracker to shift between rigid template matching and nonrigid histogram matching with Earth Mover’s
Distance [43] as a histogram matching metric. LOM allows the calculation of the likelihood of an image patch P being
a noisy replica of a previous patch Q, Pr(P |Q,Θ), where Θ are noise model parameters. These noise model parameters
control (in an online fashion) the cost of spatially moving pixels and the cost of changing a pixel’s appearance. As these
costs are adjusted, the tracker can tend to increase the likelihood of a rigid template or the likelihood of a deformable
template. The paper shows that computing the MAP estimate of a mapping between the a patch P and its assumed replica
patch Q is proportional to computing the optimal “signature Earth Mover’s Distance”, for a signature where the source is
the pixels of the source patch, the destination is the pixels of the destination patch, and the distance function is defined as
d(p, q) = − log (Pr(p|q,Θ)), for pixels p ∈ P and q ∈ Q. Finally, tracking is formulated in a particle filter framework,
where the particle likelihoods are inferred using the LOM described above. The noise model parameters Θ are learned
in an online fashion, propagated through frames. The EMD flow between the final candidate particle’s signature and the
target signature is used to estimate the maximum likelihood of the noise model parameters, which are regulated using a
prior and a moving average process. Generally, we compute the ML parameters of Θn, regularize them, then mix them in
a moving average with the previous noise model parameters, Θn−1. This approach is very robust for handling a variety
of targets, but suffers from a low tolerance for occlusions, no online model updating, and no approach to track multiple
targets.

Distribution Fields [45] have been introduced as a template-based approach to object tracking. Tracking is performed
by comparing the `1 difference between a model and candidate region, and following the direction of steepest descent
until a local minimum is reached. In standard practice, this method of convex optimization of tracking works poorly due
to low landscape smoothness (smoothness of the optimization space) and poor specificity (when the global optimum of
a matching function does not represent the true position of the target). Distribution Fields alleviate these problems by
exploding a frame into multiple layers, one layer for each binned feature, as seen in Figure 3. Each layer is spatially
smoothed with a Gaussian, resulting in a probability distribution at each pixel corresponding to the probability that that
location contains the layer’s feature. This gives a smooth optimization space in the spatial dimension, but not the feature
dimension. The image is then smoothed in the feature dimension, permitting a compact representation of all “neighbour
images” (that is, all images corresponding to subtle, subpixel differences in motion, shadows, and changes in illumination).
This increases the width of the capture range around the position of the tracked target, and gives rise to a very accurate
tracker. However, there is no model for occlusion or variance in object pose, limiting the possible domains for this accurate
tracker to be used.



2.3 Local Feature Tracking

Another popular method of tracking is to use specific local features, such as salient keypoints, and to track their dis-
placements from frame to frame. We begin with a brief overview of some common feature choices for tracking, and then
present some proposed approaches.

2.3.1 Keypoints

SIFT [33] is arguably the most famous descriptor to date. A grid of HOG (histogram of oriented gradients) features
determines a 128 dimensional descriptor which is highly discriminant and robust to rotation, scale and location changes.
Although SIFT has become the benchmark for keypoint matching algorithms, computing and comparing SIFT points
is notoriously slow [12], leading researchers to investigate more compact descriptors that can be compared efficiently
[8, 12, 30, 4].

SURF [8] is a popular alternative to SIFT with faster matching speeds. It uses the integral image to compute a 64
or 128 dimensional descriptor based on Haar-wavelets and local gradient histograms. Despite its increase in speed over
SIFT, SURF descriptors are still represented by, at minimum, 64 floating point values. For real time applications, such as
tracking, more compact representations are needed to minimize space and comparison runtime. These requirements have
encouraged the advent of binary descriptors for keypoint representation.

Binary descriptors have become very popular due to their efficiency to compute, efficiency to compare, and compact-
ness. A simple binary string is used to describe the keypoint, which is much more compact than a 128-dimensional
vector of floating point values. Furthermore, two binary strings can be quickly compared by a simple Hamming distance
calculation (XOR, followed by counting the number of 1 bits).

Binary Robust Independent Elementary Features (BRIEF) [12] descriptors describe an image patch with a binary string
for the aforementioned reasons. The binary string is built by simple smoothed pixel comparisons. If we have two pixels to
compare whose intensity values are denoted p(x) and p(y), the descriptor bit for these two pixels is set to 1 if p(x) < p(y),
which is trivial to compute and compact as a representation. Two BRIEF points are efficiently compared by computing the
Hamming distance between their bit strings. Although this descriptor is powerful due to its efficiency and compactness, it
suffers from a low tolerance to in-plane rotation and scale changes.

Binary Robust Invariant Scalable Keypoints (BRISK) [30] build on this idea and provide invariance to rotation and scale
changes. Keypoints are detected by a variation of the FAST detector [42] that identifies keypoints based on their saliency
along multiple scales through a scale-space pyramid. This scale-space search provides the descriptor with scale invariance.
The descriptor is built by sampling a number of points around the detected keypoint in a specific circular sampling pattern,
with higher sampling density closer to the keypoint. The sampled points are then separated into two sets, long-distance
pairings and short-distance pairings. The long-distance pairings are used to estimate the direction of the keypoint, which
is then used to rotate the sampling pattern, yielding rotation invariance. Then, the short-distance pairings are used to build
the descriptor by simple intensity comparisons, similar to BRIEF [12].

Fast Retina Keypoints (FREAK) [4] are efficient binary keypoint descriptors based on a sampling pattern derived from
the human retina. Matching is efficiently performed with these keypoints in a similarly biologically inspired manner.
Keypoints are defined by comparing local pixels, where the sampling is dense around the center pixel and more sparse
(corresponding to a human’s peripheral vision) further away. Searching for a corresponding keypoint is first performed
with only the “peripheral” bits from the keypoint, eliminating approximately 90% of the search space, which is then
examined with the more densely sampled bits to find a match.

2.3.2 Tracking by Local Features

Due to redundancy in images and large variations due to illumination changes and articulation, some pixels can be deemed
more informative than others. With this in mind, many tracking applications choose to track specific extracted keypoints



from an image, rather than tracking a target by its entire pixel distribution. This has the advantage of offloading many
required invariances to the keypoint descriptor, which for many keypoints has been a well studied problem. For example,
SIFT keypoints [33] are invariant to both scale and rotation, potentially allowing the author to exclude this complexity
from their tracker. Furthermore, tracking by keypoints is relatively robust to partial occlusions when the keypoints are well
distributed along the target, as the unoccluded keypoints can still be well matched.

Tracking by keypoints can be separated into two general approaches: methods that find keypoint correspondences and
methods that build classifiers with keypoints. Shu et al. [46] build several person-specific SVM classifiers with a feature
descriptor containing local binary patterns, colour histograms and HOG features. Kalal et al. [25] train a classifier based
on 2-bit binary patterns. In contrast to classifier-based approaches, Zhou et al. [55] present a tracker that fuses information
from keypoints and histograms. From a target region of interest in the first frame, a colour histogram and SIFT features
are extracted for comparison purposes. Then, starting from the previously tracked location, a local region is searched
with mean shift to get a potential tracking result with respect to the colour histogram, and SIFT points are compared
to get a potential tracking result from the feature points. Finally, the EM algorithm is used to balance the two results,
minimizing the distance between the mean shift tracking result and SIFT correspondences. Wagner et al. [48] use FAST
corner detection [42] as features to track and use a forest of spill trees, a variant of k-d trees that are robust against noisy
data, to match their descriptors. A motion model is employed to coarsely estimate a search region for previously tracked
features for finding correspondences.

One problem with tracking by keypoints is deciding how to update the appearance model to reflect the current appear-
ance of the target. Keypoint trackers generally select keypoints from a template at the beginning of the tracking sequence
and progressively track these keypoints, never updating the set from which they match. Hare et al. [21] tackle this problem
with structured ouput learning using binary descriptors for efficiency. Each keypoint descriptor is given a dynamically up-
dated weight, which are approximated at the learning stage as binary coefficients of basis vectors used for SVM training.
This online learning stage allows the tracker to continuously update the importance of each keypoint through its weight,
essentially removing outdated keypoints from the appearance model.

2.4 Sparse Representations

Using a sparse subspace for representing a target’s appearance was popularized by Mei et al. [36] and has been fre-
quently adopted in the recent literature [37, 23, 54, 52]. In this approach, a dictionary of reference templates T =
[t1, ..., tn] ∈ Rdxn is kept, and new candidate templates are treated as a sparse linear combination of the templates in
the dictionary y ≈ Ta, a = [a1, ..., an]T ∈ Rn, with sparsity ensured by `1 regularization. A candidate’s likelihood is
evaluated as its reconstruction error, ε, the cumulative pixel-wise error between the actual candidate and the transformed
linear representation. Errors can be accumulated for a multitude of reasons, such as tracker error, motion blur, and occlu-
sion. To deal specifically with occlusion, trivial templates I = [i1, ..., id] ∈ Rdxd are introduced. A trivial template is a
vector with only one non-zero entry, corresponding to an occlusion at that location. Finally, that gives us the following
representation of the target as a linear combination of target templates and trivial templates:

y =
[
T I

] [a
e

]
(2)

From that representation, the reconstruction problem is solved by `1-regularized least squares. Appended to the end of
the least-squares equation is a regularization constraint, which encourages the coefficient vectors to have as few non-zero
elements as possible while minimizing the prior term for sparse reconstruction. This permits an efficient tracking solution
based on a small set of target templates, and can be written as:

min||
[
T I

] [a
e

]
||22 + λ||

[
a
e

]
||1 (3)



Zhang et al. [52] expand on this method of sparse representation by assumption that there are valuable interdependencies
between particles in the particle set of a particle filter, and they can be more sparsely represented by a joint representation
over the template dictionary. The problem is posed as a multi-task learning problem, where learning the representation
of a particle is considered a single task. This learning task reduces into a similar regularization problem over mixed
norms, which can be solved by the Accelerated Proximal Gradient method (APG) [38]. APG solves convex optimization
problems with non-smooth terms ( the `p,q mixed norm is a non-smooth term). It achieves a global solution with quadratic
convergence, resulting in an accurate and efficient solution.

A collaboration of generative and discriminative models is proposed by Zhong et al. [54], where the discriminative
classifier is trained by stacking positive templates and representing them sparsely. Then, a projection matrix S is computed
that projects an original feature space of intensity values into a sparse feature space, where the features are coefficients to
reconstruct based on the stacked templates. A particle filter is used to select candidates to project into this feature space.
A given candidate x is projected into the sparse feature space by x′ = Sx and becomes a representation of the training
set and sparse coefficients α. The candidate is computed by minimizing α over ||x′ − A′α||22 + λ||α||, where A′ is the
template set projected into the sparse feature space. The discriminative model operates on a pixel-by-pixel classification
basis, making it good for non-rectangular objects so that background pixels are not included in the positive instances of
the classifier. The generative classifier is modeled by a sparse histogram representation over image patches to effectively
account for the spatial appearance model of the target. An overlapping sliding window is used to generate candidates,
in contrast to the particle filter used in the discriminative model. A sparse coefficient vector β is computed over each
patch by its reconstruction error against the template dictionary, generated from the centers of a k-means clustering of the
dictionary. Finally, each sparse coefficient vector is concatenated into a histogram which is used to compare the similarity
between an image patch and the template set. These two models both return classification results and reconstruction errors,
which are linearly combined to return the final tracking result.

Methods using sparse representation often differ in their template update model. That is, when and how do you update
the dictionary of templates such that the appearance model continues to capture the current appearance of a tracked target
through rotations, occlusions, illumination changes, and other large changes in the target’s appearance? Tracking with
fixed templates is doomed to fail in unpredictable environments such as visual surveillance, due to its inadaptability to
new, previously unseen appearances. On the other hand, updating the template too often leads to an accumulation of
errors, resulting in tracker drift. Mei et al. [36] have initially proposed adding a weight to each template in the dictionary.
A template’s weight is increased when recently tracked frames are visually similar to that template, and decreased in the
opposite fashion. When the tracking result is not sufficiently similar to any one template, the least important template
is removed and the current tracked result is added to the dictionary. Jia et al. [23] propose a probabilistic approach that
updates old templates slowly, and new templates rapidly. An incremental learning method [41] based on a PCA updates
the basis vectors to adapt to appearance change and learns the visual information that the set of targets have in common,
which is used to reduce the dimensionality of target reconstruction via the template dictionary. Zhang et al. [52] associate
a weight with each template di in the dictionary and iteratively update them at each successive frame, based on whether di
was used in the reconstruction of the tracked target. Templates that are used more frequently are deemed more important
and given higher weights. When the particles from a particle filter cannot be represented with low reconstruction error
(up to some predefined threshold), the template set is deemed unsatisfactory and the template with the lowest weight is
replaced with the current tracking result. This approach updates often enough to ensure the dictionary is representative,
while being robust against occlusions and other noise, as these situations will be quickly filtered out due to their low
weight.

Although these approaches of using least-squares over a sparse representation have become popular, some approaches
are borrowing these ideas and applying them in a non-sparse manner. Li et al. [31] represent a tracked object with an
“appearance subspace”, spanned by a set of basis samples encoding the appearance distribution. A linear combination
of these basis samples are then used to reconstruct candidate samples, and an optimal solution is computed in closed-
form with a metric-weighted least-squares solution. This approach borrows many of the ideas from recent successes in



sparse target representation, but differentiate by not searching for a sparse representation and instead using the closed-
form solution. Real-time performance is achieved with weighted reservoir sampling, which maintains and updates the
appearance subspace while balancing between sample diversity and adaptability in the learning metric.

2.5 Learned Appearance Model

Rather than hand-picking features or pixels that are powerful for tracking, it is becoming increasingly common for
approaches to employ automatic feature selection strategies to learn discriminative tracking features over a video sequence
or a dataset of training examples. The most successful of such approaches is the use of Adaboost [44], most famously
used in object detection [47]. Adaboost is a boosting algorithm that combines several weak (slightly better than random
guessing) classifiers into one strong (highly accurate) classifier. In the context of image processing, this allows for several
very simple features to be combined into a complex, powerful appearance model.

Avidan [6] treats the tracking problem as a binary classification problem, classifying on a pixel-basis whether a pixel is
the target or background. This is achieved with an updating set of weak classifiers, combined into a strong classifier with
Adaboost. An ensemble of weak classifiers is maintained to create a confidence map of the pixels in the current frame.
Mean-shift is run on the confidence map to locate the peak (that is, the position of the tracked object). Finally, the ensemble
is updated by training a new weak classifier on the current frame and adding it to the ensemble. The weak classifiers are
trained with an 11-dimensional feature vector extracted from the image, containing local orientation histograms and pixel
colours. The appearance model is kept up to date by holding T weak classifiers, and at each frame, throwing out the oldest
one and training a new weak classifier on the data from the current frame. This approach is beneficial because it offloads
the large training process into a sequence of small, simple learning tasks that can be performed online. If the target to track
is known a priori, a large dataset can be used to train an initial classifier offline before tracking even begins.

Among the most prevalent problems with modern trackers is that of tracker drift. If a tracked sequence is a bit off and
the appearance model is updated, the appearance model for the target begins to contain a portion of the background, and
slowly tends further away from the actual target due to overfitting, by assuming the entire bounding region contains the
target. In MILTrack [7], this problem is tackled by bags of bounding regions, rather than a single box containing the target.
Traditionally, discriminative classifiers for tracking use the bounding region of a previously tracked location as a single
positive training instance, and select several regions away from that to train the background as negative training instances.
With even a very small error at the current tracking step, a template update would include part of the background as a
positive instance, decreasing discriminative power and contributing to tracking drift. Instead, Babenko et al. [7] propose
to use several bounding regions that are very close to the current tracked target location and bag them into one large
positive bag. Moving further away from the current tracked location, negative bounding regions are selected to increase
discriminativity against the background. Multiple Instance Learning (MIL) is used to deal with the ambiguity in the
training data. Instead of instance/label pairs, we have a bag of instances/label pairs. A bag is considered positive if one or
more of its members is positive (that is, at least one bounding box in the bag is the true target). This solves the problem of
inherently ambiguous rectangle labeling, caused by small tracking or detection errors, where part of the target is missing
or a large portion of the rectangle is background. Each rectangle is then broken down into a feature vector of Haar-like
features, and the most discriminative features are selected based on a MIL variant of Adaboost [16, 19]. This algorithm
performs well due to its ability to handle ambiguously labeled training examples, by performing classification over bags
rather than single suboptimal instances. This algorithm also permits resistance to short-term occlusions when updating
the appearance model, due to the extracted bag of examples around the correct region being added to a large set of weak
classifiers, which are trained on the features from previous frames which were unoccluded. However, if the target is often
occluded by the same object, and for long periods of time, it is possible that the appearance of the occluder is overlearned
and the tracker will drift.

Shu et al. [46] propose a part-based tracking-by-detection approach. They describe a system that employs several part-
based person-specific SVM classifiers, which are capable of capturing the specific articulations of bodies in a dynamically



Figure 4. Three different detection configurations are considered. Red rectangles correspond to
full body detections, green rectangles correspond to upper-body detections, yellow rectangles
correspond to head detections.

changing appearance and background. These person-specific SVMs are trained based on the detections in the tracking
sequence, and are used to classify the identity of new detections. They are trained with a feature vector of colour histograms
and local binary patterns, with positive examples from the tracked trajectory and negative examples from other trajectories
to ensure high discriminative power between individuals. This is beneficial in associating trajectories of the same person
who enters and exits the camera’s field of view multiple times. Initial detections are done with an offline-trained part-based
SVM detector, and a greedy bipartite algorithm is used to associate detections into tracked trajectories. Another advantage
of this approach is robustness against partial occlusions. When searching for a new detection at location (xo, yo), three
possible configurations of a human are considered. These configurations correspond to different sets of human body-parts
being unoccluded: the entire body, the upper body parts only, or the head only, as can be seen in Figure 4. This avoids an
exhaustive combinatorial search over all possible combinations of unoccluded and occluded parts for each individual. The
configuration that maximizes a detection score based on HOG features is selected as the candidate tracking location for
position (xo, yo). Also, the algorithm handles crowded scenes well by using a correlation-based Kalman filter to track the
head of an individual when no detection is achieved, due to occlusion or misdetection.

3. Motion Models

Once the target is represented and an appearance model is extracted from a scene, we must locate a similar appearance
in subsequent frames and associate them into one continuous tracked trajectory. An exhaustive search over all possible
locations and scales at each frame is both infeasible and unneccesary. There exist a small number of motion frameworks
of which one appears in almost every recent tracker in the literature. In this section, we give a brief overview of the most
common motion models.



Paper Bayesian Filter Local Optimization Detection
Sevilla-Lara et al. [45] no yes no
Oron et al. [39] yes no no
Babenko et al. [7] no yes no
Adam et al. [2] no yes no
Erdem et al. [17] yes no no
Woo Park et al. [49] yes no no
Shu et al. [46] yes no yes
Avidan [6] yes yes no
Mei et al. [36] yes no no
Mei et al. [37] yes no no
Zhang et al. [52] yes no no
Zhong et al. [54] yes no no
Andriyenko et al. [5] yes yes yes
Jia et al. [23] yes no no
Li et al. [31] yes no no
Kalal et al. [25, 26] no yes yes
Yang et al. [50] no no yes
Hare et al. [21] no no yes
Comaniciu et al. [14] no yes no
Kang et al. [27] no no yes
Wagner et al. [48] no yes no
Zhou et al. [55] no yes yes
Liu et al. [32] yes no no

Table 2. Comparison of motion models used in papers



3.1 Local Optimization

A common approach to locating the target in a new image frame is to treat tracking as a global search problem over
a spatially smooth function. That is, represent each possible search location as a point on a continuous function space,
where the global minimum represents the true target location. Such a search space is commonly solved with mathematical
optimization algorithms, such as gradient descent. These approaches rely on the assumption that the gradient descent of
the alignment function (function that returns the similarity between the target to track and the candidate location) will
eventually reach a global optimum.

Comaniciu et al. [14] define the the alignment function as the distance between two distributions:

d(y) =
√

1− ρ[p̂(y), q̂] (4)

where p̂(y) =
m∑

u=1

√
p̂u(y)q̂u is the sample estimate of the Bhattacharyya coefficient [3] between p and q. As dis-

tributions, the colour histograms of the target and candidate are used. The goal is to find the location y that minimizes
the proposed distance from the stored target distribution. This is solved using mean shift [13], which is an optimization
technique for finding minima of a density function. A confidence map is created based on the distance function and peaks
are detected as local minima. These local minima correspond to likely target correspondences. Such a function is made
feasible by gradient descent on the distance function, which from some initial point ỹ, returns the next point ỹ’ that has the
largest drop in distance.

The approach proposed by Comaniciu et al. [14] suffers from a small basin of attraction, which results in the method
being more likely to get stuck in a local optimum and not reach the true target. Sevella-Lara et al. [45] propose the use
of Distribution Fields to counter this. Distribution Fields perform smoothing both spatially and across intensity histogram
bins to achieve a large basin of attraction, which results in gradient descent being much more likely to reach to global
optimum of the distance function.

3.2 Bayesian Filters

The Kalman filter and the particle filter are Bayesian filtering frameworks that recursively estimate the current state
of the target (for example, location and scale) at each frame. The main advantage of the Kalman filter is that, when the
underlying distribution is known to be Gaussian, the Kalman filter provides the optimal tracking solution. However, when
the underlying distribution is not known to be a Gaussian, the Kalman filter does not provide the optimal solution and an
alternative approach is needed, which gives rise to non-linear models, such as the extended Kalman filter and the particle
filter. The extended Kalman filter considers the current mean and covariance estimates of a target’s position and tries to
linearize the model with these estimates [35]. For highly non-linear observation and prediction models, this yields very
poor performance [24], making this unsuitable for most tracking applications. The particle filter was introduced to object
tracking as the CONDENSATION algorithm [22]. The particle filter is used to approximate the posterior p(sk|z1:k) by a
weighted set of particles {sik, πi

k}Ni=1 as:

p(sk|z1:k) ≈
N∑
i=1

π
(i)
k δsik(sk) (5)

In this formulation, z1:k represents the observations at frames 1 to k, sk is a particle representing a possible state, and
πk is a weight (probability) corresponding to that state.

The method for recursively estimating the current state is achieved in two steps: prediction and update. Prediction
consists of generating new particles from the old particle set by importance sampling, where each particle is selected (with



replacement) with probability proportional to its weight. The update phase consists of computing the current observation
zk and updating the weights of the new particles based on this observation.

πi
k ∝ πi

k−1
p(zk|sik)p(sik|sik−1)

p(sk|sk−1)
= πi

k−1p(zk|sik) (6)

After the prediction and update steps, a tracking decision is computed from the particles by a weighted average.

ŝk =

N∑
i=1

πi
ks

i
k (7)

The particle filter has become the most prevalent framework for modeling motion in tracking, due to its adaptability
and computational efficiency. Its popularity can be seen in Table 2. One important note when using particle filters is the
tradeoff between the number of particles and computational efficiency. Increasing the number of particles permits more
accurate tracking, but requires linearly more computations in the number of particles. In contrast, computational efficiency
can be increased by reducing the number of particles, which leads to a smaller region of searched spaces for the target.

Liu et al. [32] demonstrate how real-time tracking can be sustained when using a large number of particles a large
number of particles by parallelizing the algorithm in the context of a multi-cue face tracker. The proposed tracker uses
three feature sets as cues: colour histograms, edge orientation histograms, and Haar filter histograms. A single reference
template is used for comparisons, with the Bhattacharyya metric [3] used to compare the colour histogram and edge
histogram cues, and the Euclidean distance used to compare the Haar filter cue. A linear combination of these three cues
yields the observational likelihood for a particle, which is used to weight each particle. Two parallelization schemes are
proposed in [32]: one that leverages multi-core CPUs and one that makes use of GPUs. These approaches take advantage
of the fact that the computation of each particle is independent of the computation of the remaining particles.

The multi-core CPU approach in [32] follows the MapReduce paradigm [15], where the programmer specifies a map
function that processes a key-value pair to generate a set of intermediate key-value pairs, and a reduce function that merges
the intermediate values sharing the same key. In the context of a particle filter, the map function allocates particles across
processor cores for parallel likelihood computation. Each core retrieves a particle, representing a possible candidate target
location and scale, and that core computes the set of cues and their similarity to the reference template. Finally, the
likelihood for that core is computed. The reduce function takes as input all of the likelihoods that each core has computed
and computes the final target estimate location, representing a single iteration of the particle filter. The authors claim very
efficient tracking with this multi-core parallelized approach. Real-time tracking (less than 50 milliseconds) is achieved
with 4000 particles on an 8-core consumer-grade processor, while 10, 000 particles are processed per frame at less than
200 milliseconds.

Liu et al. [32] also propose a parallel particle filter algorithm to be run on the GPU. The GPU’s kernel is split up into M
blocks, each of which contains N threads, where each individual thread computes the observational likelihood for a single
particle. This allows forM ∗N particles to be computed in parallel. Rather than integrating over all particles to gain a final
tracking estimate, the authors have chosen to take a maximum likelihood approach and simply select the particle with the
highest observational likelihood. Once each block has completed the computations in its N threads, it selects the particle
corresponding to this maximized objective function as its return value. Finally, when all of the blocks have selected their
best particle, the particle across all blocks with the largest likelihood is selected as the final tracking solution. The authors
have shown that this approach is even more efficient than the multi-core approach. Where the multi-core algorithm was
able to process 4000 particles in under 50 milliseconds, the GPU algorithm is able to process 6000 particles in the same
time. In another comparison, where the multi-core algorithm processes 10, 000 particles in under 200 milliseconds, the
GPU algorithm processes 10, 000 partilces in under 90 milliseconds. These experiments run on a consumer-grade NVIDIA
GPU with 12 multiprocessors. Images used for experiments for both algorithms have a resolution of 320 by 240.



Figure 5. Formerly seen samples are clustered and a cluster-specific classifier is built over each
classifier, each contributing to the final tracking decision

Other Bayesian filtering techniques exist besides the Kalman and particle filter. For instance, another sampling tech-
nique called Markov Chain Monte Carlo is sometimes used, which samples potential target candidates from a sample
distribution, which is iteratively revised in hopes of retrieving the true underlying distribution. This technique is used by
Woo Park et al. [49], where rather than simply using time-invariant features like keypoints or histograms, the probabilistic
dependency between sequential target appearances is modeled with Autoregressive Hidden Markov Models (AR-HMM).
This Bayesian network explicitly defines a probabilistic dependency between the past n sequential target observations, in
contrast to standard HMMs which define independence between all observations, and only a dependency between the most
recent actual state variable and the current actual state variable. Formerly seen target samples are separated into multiple
clusters and a classifier is trained around each cluster, as illustrated in Figure 5. These classifiers independently discrimi-
nate the target from the background, and as such represent the appearance model for the target. The Metropolis-Hastings
algorithm for Markov Chain Monte Carlo is used as the method to search for a target in the current frame. Potential target
locations are drawn from a proposal distribution defined by a Gaussian around the previously tracked location. Although
this technique achieves very accurate results, the mean processing time for this algorithm is reported as 8 seconds per
frame. The authors note that after several optimizations, real-time tracking is achievable.

3.3 Detection

In the past, running detection algorithms was discouraged due to their high computational cost, so they have been used
almost exclusively for seeding trackers with the first frame of the target. As object detectors have become more efficient
[47] and computers have become more powerful, the cost of detection is less of an obstacle and many trackers now rely
heavily on object detectors to verify tracking results, and are sometimes even used as the entire motion model. When a
detector is used as the motion model, the problem of tracking is reduced to finding the optimal labeling of each detection
to produce the correct tracked trajectory. We now look at some tracking methods with such a reliance on detectors.

In [50], a multi-target tracking-by-detection approach is modelled with an online-learned conditional random field.
Given the detections over a video sequence, a low-level association process [29] connects detection responses in neigh-
bouring frames into reliable tracklets. A progressive approach is taken to iteratively connect these tracklets through
multiple levels. At each level, the input to the model is the tracklets formed from the previous level, S = {T1, T2, ..., Tn},
and the goal is to find the optimal labelling L where a label `i ∈ L denotes whether two tracklets should be connected
into one continuous sequence. More concretely, the goal is to find the best set of associations (labelling) L∗ given a set of



tracklets S.
L∗ = arg max

L
P (L|S) = arg max

L

1

Z
exp (−Ψ(L|S)) (8)

where Z is a normalizing constant and Ψ is the cost function. The cost function is a combination of unary and pairwise
energies, which correspond to the linking probabilities between two arbitrary tracklets, and the correlation between pairs
of tracklets based on discriminative features learned between them. These energies are minimized to compute the optimal
labelling over the CRF. The main advantage of this approach is its ability to accurately distinguish between spatially close
targets with similar appearance, due to the learned discriminative features between pairs of detections.

Kalal et al. [25] use a simple base tracker to improve tracking efficiency by learning an object detector based on the
simple tracker’s trajectory. An object appearance model Lt at time t consists of previously tracked frames from the simple
tracker, and an object detector based on efficient 2-bit binary patterns is built on Lt. At each frame, both the object detector
and the tracker are run. Detections that are far away from the tracked trajectory are deemed poor and their corresponding
region of interest in Lt is pruned away, while the tracked trajectory is added to Lt if it is close to a true detection from the
learned object detector. The learned object detector allows for tracker re-initialization when the tracker drifts or leaves and
re-enters the scene. The greatest limitation of this approach is the assumption that the target is unique in the scene, and
tracker initialization must be done manually by clicking on the target in the first frame.

An extension to this is presented in [26], where the method is optimized for face tracking. An offline-trained face
detector is used, rather than the general learned detector, and a “validator” module is introduced to validate the identity of
each detected face. Using an offline-learned detector increases efficiency at runtime, as a new detector need not be learned
online. With the gained efficiency, the learning then focuses on building the validator. The validator takes as input a face
patch, and outputs a confidence that the patch corresponds to a given face. Training the validator is initialized with the first
detected frame and bootstrapped with consecutive tracked frames. This approach is robust to partial occlusions and targets
leaving and re-entering the camera’s field of view.

A discrete-continuous optimization approach [5] considers tracking as two distinct problems. The first problem is
assigning the correct identity labels to each detected target with a discrete optimization algorithm. The second problem is
to fit a continuous function through the detected locations to approximate the correct target trajectory. Detection labeling
is solved by the minimization of an energy term within a pairwise Markov random field, where the vertices correspond to
each detection and detections in consecutive time steps that are within some pre-defined threshold distance are connected
by an edge. This encourages nearby detections in adjacent frames to belong to the same trajectory. For fitting a trajectory to
these labelled detections, cubic B-splines are fit to the detections, whose parameters are estimated by minimizing an energy
function that combines two energy terms that make a tradeoff between trajectory smoothness and how well the trajectory
fits the labelled detections. Finally, since we have defined a separate energy function for the discrete optimization and the
continuous optimization, the two functions are unified into a single energy function for discrete-continuous optimization.

4 TRL Evaluation

To evaluate the technology readiness level of face and person tracking technologies, we use provided experimental
results from the current literature. The relevant technology readiness levels in this report are TRL-3 (characteristic proof of
concept), TRL-4 (component validation in laboratory) and TRL-5 (component validation in relevant environment), because
this technology is reasonably mature but not currently running in a local prototype environment. A description of the
different technology readiness levels is available in Table 3. TRL assignments are required for five different environments.
Notably, PIL (person in lane), controlled chokepoint, uncontrolled chokepoint, little and dense traffic, and outdoors.



TRL [1] Description
TRL-9 Actual system ‘flight proven’ through successful mission operations (over 30)
TRL-8 Actual system completed and ‘flight qualified’ through test and demonstration
TRL-7 System prototype demonstration in operational environment (pilot)
TRL-6 Component validation in relevant environment (mock-up)
TRL-5 Component validation in relevant environment
TRL-4 Component validation in laboratory environment
TRL-3 Analytical and experimental critical function - characteristic proof of concept
TRL-2 Technology concept / application formulated
TRL-1 Basic principles observed and reported

Table 3. Overview of the different Technology Readiness Levels [1]

4.1 Evaluation methodologies

Not all authors evaluate tracker performance by the same metrics. In this section, we briefly review the necessary details
for each metric used in the reported experimental results used for TRL assignment.

4.1.1 PASCAL VOC criterion

One commonly used metric is the PASCAL VOC criterion [18], which evaluates a combination of centering accuracy and
scale. It can be written as

a0 =
area(predicted ∩ ground truth)

area(predicted ∪ ground truth)
(9)

For each frame, a PASCAL criterion of a0 > 0.5 is deemed to be a successful tracking result. Authors often report the
percentage of frames that report a PASCAL criterion of greater than 0.5 as the percentage of frames that were accurately
tracked.

4.1.2 Mean `1 distance

Another common evaluation technique is the mean `1 distance. This metric, also known as the Manhattan distance,
computes the `1 distance from the center of the tracked bounding box to the center of the ground-truth bounding box. This
can be written as

`1(p, q) = ||p− q||1 =

n∑
i=1

|pi − qi| (10)

where n corresponds to the number of dimensions, normally 2.

4.1.3 CLEAR MOT

The CLEAR MOT metrics [28] are a standard of evaluation metrics that are sometimes used to compare different trackers.
Shu et al. [46] evaluate on TP (tracking precision), TA (tracking accuracy), DP (detection precision) and DA (detection
accuracy). Also from this standard, Andriyenko et al. [5] evaluate on MOTA (Multi-Object Tracking Accuracy), which
combines missed targets, false alarms, and identity switches into one normalized number between 0 and 100 percent.
MOTP (Multi-Object Tracking Precision) evaluates how precise the tracking is, by computing the average overlap between



Paper Code location
Sevilla-Lara et al. [45] http://people.cs.umass.edu/˜lsevilla/trackingDF.html
Oron et al. [39] http://www.eng.tau.ac.il/˜oron/LOT/LOT.html
Babenko et al. [7] http://vision.ucsd.edu/˜bbabenko/project_miltrack.shtml
Adam et al. [2] http://www.cs.technion.ac.il/˜amita/fragtrack/fragtrack.htm
Erdem et al. [17] http://web.cs.hacettepe.edu.tr/˜erkut/codes/AMFTracker.zip
Shu et al. [46] Not available
Avidan [6] Not available
Mei et al. [36] http://www.dabi.temple.edu/˜hbling/code_data.htm
Mei et al. [37] http://www.dabi.temple.edu/˜hbling/code_data.htm
Zhang et al. [52] Not available
Zhong et al. [54] http://faculty.ucmerced.edu/mhyang/project/cvpr12_scm.htm
Andriyenko et al. [5] http://www.gris.tu-darmstadt.de/˜aandriye/dctracking.html
Jia et al. [23] http://faculty.ucmerced.edu/mhyang/project/cvpr12_jia_project.htm
Li et al. [31] Not available
Kalal et al. [25, 26] https://github.com/zk00006/OpenTLD
Yang et al. [50] Not available
Hare et al. [21] http://www.samhare.net/research/keypoints/code

Table 4. Code availability for the studied approaches

the tracked bounding box and ground truth. Similarly to MOTP, the result is normalized. We now list the remainder of the
used CLEAR MOT metrics in this survey.

• MT indicates the ratio or number of trajectories for which the target is “mostly tracked”, successfully tracked for
more than 80% of the sequence.

• ML indicates the ratio or number of trajectories that are “mostly lost”, successfully tracked for less than 20% of the
sequence.

• FM indicates the number of times that a ground truth trajectory is interrupted.

• IDS indicates the number of times a tracked trajectory switches its target id.

4.2 PIL

The requirements for person tracking in the PIL setup are the most surmountable of the evaluated environments. The
camera is at approximately face level and pointing in the direction of the trackable person, making face detection possible
for tracker seeding. Furthermore, the scene will not face a great deal of clutter, but must be able to handle rotation of the
face and potential self-occlusion by events such as a person raising their hand to their face. Such scenarios are commonly
used for experimental results in the literature, and as such many results and comparisons are available. However, it is
important to note that all of the following datasets used to evaluate the PIL environment are laboratory setups, meaning
the highest assignable TRL is 4.

The first video sequence used for evaluation is the “occluded face” video sequence, provided by Adam et al. [2]. In this
sequence, a single face is present and is directly facing the camera. The face is repeatedly occluded with a magazine, at
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http://www.eng.tau.ac.il/~oron/LOT/LOT.html
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Approach Mean `1 distance (pixels) % of well tracked frames (PASCAL criterion)
Fragtrack [2] 6.34 NA
MILTrack [7] 27.23 77.28
Distribution Fields [45] 5 100

Table 5. Comparison of performance on the “Occluded face” sequence

Approach Mean `1 distance (pixels) % of well tracked frames (PASCAL criterion)
Fragtrack [2] 45.19 NA
MILTrack [7] 20.19 78.13
Distribution Fields [45] 11.25 98.76

Table 6. Comparison of performance on the “Occluded face 2” sequence

some points occluding over 90% of the face. This video sequence is demonstrative of robustness against partial occlusions,
but does not exhibit large appearance changes, such as a turned face, and only one face is present. Fragtrack [2] performs
very well on this sequence, showing virtually no tracker drift in light of very heavy occlusions. Babenko et al. [7] performed
a comparison showing that Fragtrack had a mean `1 distances on this sequence of 6.34 pixels, while MILTrack has a mean
`1 distance of 27.23 pixels. Distribution Fields [45] are reported to have a mean `1 distance of 5 pixels, with 100% of the
frames being tracked correctly, in contrast to MILTrack only tracking 77.28% of the frames correctly. These results are
organized in Table 5.

Babenko et al. [7] provide a similar video sequence, called “occluded face 2”, which is similar to the previous video
but with added appearance changes. In this sequence, the target rotates his head, hides his face, puts on and takes off a hat,
and occludes his face repeatedly with a textbook. Fragtrack tends to fail when the target rotates its head, while MILTrack
learns the new appearance and continues to track accurately. Reported results show that Fragtrack has a mean `1 distance
of 45.19 pixels, while MILTrack has a mean `1 distance of 20.19 pixels. Despite 20.19 pixels seeming like a large error,
examination of the tracking result shows that the tracker does not stray from the actual target. Distribution Fields are
reported to have a mean distance of 11.25 and correctly track 98.76%, in contrast to MILTrack correctly tracking 78.13%
of the frames. This result is suspect, since observation of MILTrack on this sequence as a human appears to show much
more accurate tracking results than 4 of every 5 frames. The results are organized for comparison in Table 6.

Birchfield et al. [11] provide the “girl” video sequence, which has a similar camera setup to the PIL scenario, but the
camera pans and zooms with respect to the target. This sequence showcases scale changes, the target rotating and moving
around the scene rather quickly, and a secondary human as an occluder. Distribution Fields are reported to correctly track
73% of the frames, while MILTrack reportedly correctly tracks 55.2% of frames. The mean `1 distance for Distribution
Fields is 21.57 pixels, compared to 32.76 pixels for MILTrack and 16 pixels for Fragtrack with adaptive cues. Mei et
al. [37] and Zhang et al. [52] have not released exact numbers, but graphically show that their `1 tracker and multi-task
sparse tracker (respectively) achieve a more accurate mean `1 distance than MILTrack as well, with a mean error of
approximately 10 pixels. The sparsity-based collaborative tracker [54] appears to have achieved the state of the art on this
sequence, yielding a mean `1 distance of just 9.8 pixels. This approach is worthy of further investigation, as it reports very
significant improvements over the state of the art on almost all standard evaluation sequences. The reported comparable
results are organized in Table 7.



Approach Mean `1 distance (pixels) % of well tracked frames (PASCAL criterion)
Fragtrack with Adaptive Cues [17] 16 NA
MILTrack [7] 32.76 55.2
Distribution Fields [45] 21.57 73
Multi-task Sparse Learner [52] 10 NA
`1 tracker [37] 10 NA
Collaborative Tracker [54] 9.8 NA

Table 7. Comparison of performance on the “Girl” sequence

4.2.1 Evaluation

Several demonstrated trackers perform well on datasets that are relatable to the PIL environment. Specifically, the Dis-
tribution Fields tracker [45] achieves very accurate results on all three evaluated video sequences, both in terms of the
mean distance to the target center and the number of frames that the target is well-tracked in. We remind the reader that,
although these techniques have very favourable performance results, the tested video sequences are devised in a laboratory
environment. As such, we propose a TRL of 4 for person tracking in the PIL environment.

4.3 Controlled chokepoint

A controlled chokepoint can be defined as a scene where a doorway entrance is monitored and a small number of
individuals are passing through it in controlled intervals. Such a scenario could possibly be the exit of an airport security
checkpoint. Due to the controlled point-of-entry, a face or body detection is achievable to seed the tracker. The tracker
must be robust to events such as rotations and transformations, such as a person crouching to tie their shoe or secure their
luggage. Unfortunately, there are no relevant video sequences that are commonly evaluated against in the current literature.
However, if a relevant dataset is available, the source code for many of these trackers is available for evaluation, and the
location of each tracker’s available source code is noted in Table 4.

4.4 Uncontrolled chokepoint

An uncontrolled chokepoint is very similar to the previously mentioned controlled chokepoint, but there are no re-
quirements on the number of people entering at a time, or the manner by which they enter. Face or body detection might
not be immediately achievable due to possible occlusions. Unfortunately, there are no relevant video sequences that are
commonly evaluated against in the current literature. However, if a relevant dataset is available, the source code for many
of these trackers is available for evaluation, and the location of each tracker’s available source code is noted in Table 4.

4.5 Little/Dense Traffic

The requirements for person tracking in the Little/Dense Traffic environment are much more rigid than the previously
described setups. Videos must contain several humans entering and exiting the camera’s field of view, often occluding one
another. A tracker must be able to handle multiple targets, exits and entrances of targets, partial and full occlusion, and
significant appearance changes, as humans are able to move freely with all parts of their bodies. We have noted a small
number of videos that are evaluated in the recent literature that fit this criteria in a relevant environment. The maximum
assignable TRL for these videos is 5.



Approach % of well tracked frames (PASCAL criterion)
Locally Orderless Tracker [39] 69.6
MILTrack [7] 2.9

Table 8. Comparison of performance on the “PETS-2006” sequence

Approach Mean `1 distance (pixels) % of well tracked frames (PASCAL criterion)
Fragtrack [2] 116.1 19
MILTrack [7] 100.2 19
`1 tracker [37] 65.7 20
Collaborative Tracker [54] 2.7 NA
Adaptive Structural Local Sparse Tracker [23] 2.3 84

Table 9. Comparison of performance on the “Caviar” sequence

A relevant video sequence for evaluating this style of tracking is a 900 frame video of a train stop from the PETS-2006
dataset. The video shows travellers walking through a stop at a train station. This video exhibits many changes in pose
and many occlusions. Oron et al. [39] report that Locally Orderless Tracking is the current state of the art on this dataset,
providing good tracking results on 69.6% of the frames by the PASCAL VOC criterion. In contrast, MILTrack only
returned successful tracking on 2.9% of the frames. It is suggested that the occlusions present early on in this sequence
cause other evaluated trackers to drift and not recover, while Locally Orderless Tracking continues tracking the target.

The caviar sequence is video footage from a surveillance camera tracking several humans walking through a hallway
with doors to exit into along the side of the camera’s field of view. Several humans overlap and occlude one another,
stop and interact, and enter and exit the scene from different locations. Zhong et al. [54] report a quantitative analysis
of several trackers on this sequence with a tracking metric of mean `1 distance. Two recent approaches report significant
gains on this dataset. The collaborative model sparse tracker presented by Zhong et al. reports significant improvements,
with a reported error of 2.7 pixels. The adaptive structural local sparse tracker by Jia et al. [23] also reports very accurate
results, with an error of 2.3 pixels. In contrast, the `1 tracker presented by Mei et al. [36] has an average distance of 65.7
pixels, MILTrack has an average distance of 100.2 pixels, and Fragtrack has an average distance of 116.1 pixels. The
disparity between the best trackers and the others is attributed to the generative model by [54], that reduces the impact
of occlusions, resulting in a simple foreground histogram comparison. [23] reports similar reasoning, that using both the
holistic and local information allows the tracker to not drift when the target disappears and reappears due to short-term
full occlusion. Early in the video sequence, a full occlusion of the target causes all other trackers to drift, while the two
improved trackers permit immediate tracker recovery.

Shu et al. [46] present a new dataset from airport surveillance footage and evaluate their part-based tracker on this dataset
with the CLEAR MOT metric. This sequence has a dense neighbourhood of humans undergoing significant appearance and
pose change throughout the video, with a low frame rate and high image resolution (5 fps and 4000 x 2672, respectively).
This approach yields a tracking precision of 67.2 and a tracking accuracy of 52.2.

4.5.1 Evaluation

The most characteristic sequence for the Little/Dense Traffic scenario is the caviar dataset. Recent results in [23] and
[54] report significant and promising results on this dataset, suggesting that these approaches would be well suited to this
environment. Based on these results, we propose a TRL of 5 for person tracking in the Little/Dense environment.



Approach MT ML FM IDS
Discrete-Continuous MTT [5] 6 0 1 4
CRF MTT [50] 70% 0 1 0

Table 10. Comparison of performance on the “TUD” dataset

4.6 Outdoors

The Outdoors environment presents the most difficult tracking setup of the researched environments. Video sequences
may contain any number (including 0) of targets at any given time, with no restrictions on occlusions or illumination
changes, target entry and exit at arbitrary times from arbitrary locations, and several available appearance changes due to
adding or removal of attire, human articulation, or rotation. We present experimental results on small number of videos
that are relevant to this environment. The maximum assignable TRL for these videos is 5.

Andriyenko et al. [5] present experimental results on the PETS-2009 S2.L1 dataset and the TUD dataset. These video
sequences show pedestrians walking in an outdoor rural environment. These sequences exhibit several occlusions from
overlapping pedestrians due to the low camera angle. The authors compare their results on the PETS-2009 dataset against
the previous state of the art [10] as evaluated by the PETS organizers, and show that they have achieved favourable results.
By the CLEAR MOT metric, this approach achieves a MOTA score of 89.3 %, comparing favourably to the previous best
of 82 % on this dataset. From this result, we read that the approach yields a low number of false alarms, missed targets,
or identity switches. However, it says little about how precise the tracking is. Another CLEAR MOT metric has been
compared for this purpose. On this same dataset, the authors report a MOTP result of 56.4%, indicating that the tracking
could be much more precise, and on average deviates from the true center of the target by almost half of its area. The
reported state of the art on this metric, as reported by the PETS organizers, is 60 %.

Yang et al. [50] also report experimental results on the TUD dataset. Due to a small difference in evaluation methodolo-
gies used, there is one disparity in comparing [50] against [5]. The “mostly tracked” value for [5] is reported as nominal
value, while it is reported as a percentage of the trajectories that are mostly tracked in [50].

4.6.1 Evaluation

It is difficult to evaluate the readiness of these tracking methods to the Outdoors environment, due to the fact that most
recent trackers do not evaluate on relevant video sequences for this setup. Of the two trackers that have, [50] appears to have
achieved the current state of the art, which accurately tracks 70% of the target trajectories. A more thorough evaluation on
more data is recommended before declaring these approaches to have been evaluated in a relevant environment, as there
are surely situations that are not captured within these few data sequences that will affect the long-term performance of
these trackers. As such, it can be noted that these approaches have been validated on a small dataset, comparable to that of
a laboratory environment, and we propose a TRL of 4.

5 Conclusion

Throughout this survey, several recent advances in tracking have been introduced and evaluation of these approaches
to person/face tracking in a visual surveillance environment has been performed in Section 4. From the experimental
results provided by the literature introducing these tracking methods, it has been shown that the technology may be mature
enough for certain surveillance environments, such as person-in-lane tracking and little/dense traffic. Specifically, our
investigations show that sparse methods are significantly outperforming other appearance models for surveillance tracking.



Scenario Suggested Tracker TRL
PIL Distribution Fields [45] TRL-4
Little/Dense Traffic Adaptive Strucutral Local Sparse Tracker [23], Collaborative Model Sparse Tracker [54] TRL-5
Outdoors CRF Mult-Target Tracker [50] TRL-4

Table 11. TRL evaluations and suggested trackers for each environment

We have also found that there are an insufficient number of authors currently publishing results against chokepoint and
outdoors surveillance environments. We summarize the final TRL evaluations, along with the suggested trackers for each
environment, in Table 11, and summarize the available code for the described approaches in Table 4 for any desired further
investigations.
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