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Abstract

This work proposes a novel part-based method for visual olsjetracking.

In our model, keypoints are considered as elementary preidics localizing

the target in a collaborative search strategy. While numers methods have
been proposed in the model-free tracking literature, ndig the most relevant
features to track remains a challenging problem. To distingsh reliable fea-
tures from outliers and bad predictors, we evaluate featurigaliency compris-
ing three factors: thepersistence the spatial consistency and the predictive

power of a local feature. Saliency information is learned duringdcking to

be exploited in several algorithm components: local predion, global local-

ization, model update, and scale change estimation. By ernting the object
structure via the spatial layout of the most salient featurs, the proposed
method is able to accomplish successful tracking in di cultreal life situa-

tions such as long-term occlusion, presence of distractoemd background
clutter. The proposed method shows its robustness on chaltgng public

video sequences, outperforming signi cantly recent statef-the-art trackers.

Our Salient Collaborating Features Tracker (SCFT) also deonstrated a high
accuracy even if a few local features are available.
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1. Introduction

Visual object tracking is a fundamental problem in computer igion with
a wide range of applications including automated video mdoring systems
[1, 2], tra c monitoring [3, 4], human action recognition [5, robot perception
[6], etc. While signi cant progress has been made in desiggi sophisticated
appearance models and e ective target search methodapdel-freetracking
remains a di cult problem receiving a great interest. With model-freetrack-
ers, the only information available on the target appeararcis the bounding
box region in the rst video frame. Tracking is thus a challeging task due
to (1) the insu cient amount of information on object appearance, (2) the
inaccuracy in distinguishing the target from the backgroud, and (3) the
target appearance change during tracking.

In this paper, we present a novel part-based tracker handlinthe afore-
mentioned di culties, including the lack of information on object appearance
and features. This work demonstrates that an e cient way to naximize
the knowledge on object appearance is to evaluate the trackéeatures. To
achieve robust tracking in unconstrained environments, osalient Collabo-
rating Features Tracker SCFT ) discovers the most salient local features in
an online manner. Every tracked local feature is considereg an elementary
predictor having an individual reliability in encoding an doject structural
constraint, and collaborating with other features to predit the target state.
To assess the reliability of a given feature, we de ne featersaliency as com-
prising three factors: persistence spatial consistency and predictive power
Thereby, the global target state prediction arises from thaggregation of all
the local predictions considering individual feature sancy properties. Fur-
thermore, the appearance change problem (which is a majosui® causing
drift [7]) is handled through a dynamic target model that cotinuously in-
corporates new structural properties while removing nongsistent features.

Generally, a tracking algorithm includes two main aspectghe target rep-
resentation including the object characteristics, and theearch strategy for
object localization. The contributions of our work relate ¢ both aspects. For
target representation, our part-based model includes kegmt patches encod-
ing object structural constraints with di erent levels of reliability. Part-based
representations are proven to be robust to local appearanceanges and par-
tial occlusions [8, 9, 10]. Moreover, keypoint regions areome salient and
stable than other types of patchesd.g. regular grid, random patches), in-
creasing the distinctiveness of the appearance model [12].1Regarding the
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search strategy, the target state estimation is carried owtia local features
collaboration. Every detected local feature casts a locatgriction expressing
a constraint on the target structure according to the spatiblayout, saliency
information, detection scale, and dominant orientation othe feature. In this
manner, feature collaboration preserves the object struate while handling
pose and scale change without requiring to analyze the rdalaship between
keypoints like in [9], neither calculating homographies sh as in most key-
point matching works [13, 14, 15].
More speci cally, the main contributions of this paper are:

1. A novel method for evaluating feature saliency to identif the most
reliable features based on theipersistence spatial consistency and
predictive power,

2. The explicit exploitation of feature saliency informatbn in several algo-
rithmic steps: (1) local predictions, (2) feature collabation for global
localization, (3) scale change estimation, and (4) for loc&ature re-
moval from the target model;

3. A dynamic appearance model where persistent local featgrare stored
in a pool, to encode both recent and old structural propertge of the
target.

4. Extensive experimentation to evaluate the tracker perfmance against
ve recent state-of-the-art methods. The experimental wde conducted
on challenging videos shows the validity of the proposed tiker, out-
performing the compared methods signi cantly.

The rest of this paper is organized as follows. In the next sem, we
review related part-based tracking works. Algorithm stepsra presented
in details in section 3. Experimental results are providedral analyzed in
section 4, and section 5 concludes the paper.

2. Related works

Among various visual tracking algorithms, part-based tragkrs have at-
tracted a great interest during the last decade. This is main due to the
robustness of part-based models in handling partial chargeand to the e -
ciency of prediction methods in nding the whole target regin given a subset
of object parts. The fragment-based tracker of Adamat al. [16] is one of the
pioneering methods in this trend. In their tracker, target @rts correspond
to arbitrary patches voting for object positions and scales a competitive

3
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manner. The object patches are extracted according to a rdgu grid, and
thus are inappropriate for articulated objects and signi @nt in-plane rota-
tions. Further, Erdem et al. demonstrated that the winning patch might
not always provide reliable predictions [17]. This issue mddressed in [17]
by di erentiating the object patches based on their reliadity. Therefore,
every patch contributes to the target state prediction acaaling to its relia-
bility, allowing to achieve a better accuracy. Many other minods have been
proposed for locating the object through parts tracking. Th authors in [18]
track object parts separately and predict the target state sa combination of
multiple measurements. This method identi es inconsistarmeasurements
in order to eliminate the false ones in the integration pross. The method
in [19] represents the shape of an articulated object with an&ll number of
rectangular regions, while the appearance is representgdtbhe corresponding
intensity histograms. Tracking is then performed by matchig local intensity
histograms and by adjusting the locations of the blocks. Notidat these last
two trackers present the disadvantage of requiring manuahitialization of
object parts.

In [10], the appearance model includes a combination betwdeolistic and
local representations to increase the model distinctives® In this model, the
spatial information of the object patches is encoded by a higram repre-
senting the object structure. Similarly, Jiaet al. sample a set of overlapped
patches on the tracked object [8]. Their tracker includes aacclusion han-
dling module allowing to locate the object using only visilel patches. Kwon
et al. [20] also used a set of local patches, updated during tracgirfor tar-
get representation. The common shortcoming of the last theetrackers is
the model adaptation mechanism in which the dictionary is ugated simply
by adding new elements, without adapting existing items. Artber approach
for creating part-based representations is the superpixelver-segmentation
[21, 22]. In [21], Wanget al. use a discriminative method evaluating super-
pixels individually, in order to distinguish the target from the background
and detect shape deformation and occlusion. Their trackes ilimited to
small displacements between consecutive frames, sinceresggmentation is
performed only for a region surrounding the target locatiom the last frame.
Moreover, this method requires a training phase to learn seppixel features
from the object and the background.

One of the major concerns in part-based tracking is to selettte most sig-
ni cant and informative components for the appearance modieAn interest-
ing approach for de ning informative components consistsiiusing keypoint

4
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regions. Local keypoint regionsg.g. SIFT [23] and BRISK [24]) are more
e cient than other types of patches in encoding object struture, as they

correspond to salient and stable regions invariably detesdtle under various
perturbation factors [25, 12]. Based on this, Yangt al. model the target
with a combination of random patches and keypoints [26]. K@pints layout

is used to encode the structure while random patches modehet appear-
ance properties via their LBP features and RGB histograms. [e target is

thus tracked by exploiting multiple object characteristis, but the structural

model captures only recent properties, as the keypoint mddeontains only

those detected on the last frame. In a later work, Guet al. [14] used a set
of keypoint manifolds organized as a graph to represent tharget structure.

Every manifold contains a set of synthetic keypoint descriprs simulating

possible variations of the original feature under viewpadirand scale change.
The target is found by detecting keypoints on the current frane and match-
ing them with those of the manifold model. This tracker achised stable
tracking of dynamic objects, at the cost of calculating hongraphies with

RANSAC, which may be inappropriate for non-planar objects ashewn in

[9].

Generalized Hough Transform (GHT)-based approaches have heee-
cently presented as an alternative to homography calculatm methods. GHT
was initially used in context tracking [27], where the targeposition is pre-
dicted by analyzing the whole scene (context) and identifygg features (not
belonging to the target) that move in a way that is statisticdly related to
the target's motion. In later works, this technique has beeapplied to ob-
ject features in order to re ect structural constraints of he target and cope
with partial occlusion problems. Nebehagt al. [9] propose to combine votes
of keypoints to predict the target center. Although every kegoint votes in
an individual manner, the geometrical relationship is angzed between each
pair of keypoints in order to rotate and scale votes accordjty. Furthermore,
the keypoint model is not adapted to object appearance chagg} arising only
from the rst observation of the target. In [28], the authorsused an adaptive
feature reservoir updated online to learn keypoint propeigs during tracking.
The tracker achieved robust tracking in situations of occkion and against
illumination and appearance changes. However, this methoaes not han-
dle scale changes and su ers from sensitivity to large ingote rotations. In
this paper we propose a novel tracking algorithm that expltsé the geometric
constraints of salient local features in a way to handle perntbation factors
related to the target movement €.g. scale change, in-plane and out-of-plane

5
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rotations), as well as those originating from its environnré (i.e. occlusion,
background clutter, distractors).

3. Proposed method

3.1. Motivation and overview

In our part-based model, object parts correspond to keypdirpatches
detected during tracking and stored in a feature pool. The b is initialized
with the features detected on the bounding box region de neth the rst
video frame, and updated dynamically by including and/or renoving features
to re ect appearance changes. Instead of detecting locabferes in a region
with a xed size around the target location (like in [21, 14]) we eliminate
the restriction of small displacements by using particle tering to reduce
the search space as proposed in [28]. This allows us to avadnputing local
features on the entire image by limiting their extraction tomost likely regions
based on the target color distribution.

When performing target search on a given frame, features fnothe pool
are matched with those detected on the reduced search spadeollowing
the matching process, the geometrical constraints (of theatched features)
are adapted to local scale and pose changes as explained rtice 3.3.1.
Then all the matched features collaborate in a voting-basadethod (section
3.3.2), to achieve global localization (section 3.3.3) argstimate the global
scale change (section 3.3.4). Thus, the global predictioesult corresponds
to the aggregation of individual votes (elementary prediains). This method
preserves the object structure and handles pose and scalargpes, without
requiring homography calculations such as in [14], neithanalyzing the ge-
ometrical relationship between keypoints like in [9]. Thegure 1 presents a
visual summary of the main algorithm steps.

In order to keep the most relevant elements in the feature pband exploit
appropriately the most reliable predictors, each trackingeration is followed
by a saliency evaluation step. Saliency evaluation is perfoed to identify
reliable features and determine the weights of their predions accordingly,
while eliminating irrelevant features from the appearancenodel. Our idea
is inspired by the democratic integration framework of Trisch and von der
Malsburg, where several cues contribute to a joint result wi di erent levels
of reliability [29]. In their approach, the elements that ae consistent with
the global result are considered as reliable and are assidreehigher weight
in the future. This strategy has been adopted in other objedtacking works

6



Figure 1. Visual illustration of the main algorithm steps wha tracking a
partly occluded face in a moderately crowded scen@) : the search space is
reduced by using a color-based patrticle lter, and keypoistare detected in
the limited region (green dots). (b) : matching the detected keypoints with
the appearance model allows to identify those belonging the target. (c):
matched features vote for the target center.

15 t0 perform an adaptive integration of cues according to thereliability [17,
18 30, 31]. In our tracking method, the reliability is de ned bythe feature
17 saliency including three factors: featurgersistence spatial consistencyand
188 predictive power

189 " The persistencevalue! of a given feature is used to evaluate the degree
190 of co-occurrence between the target and the keypoint, and tetermine
191 if the feature should be removed from the pool.

192 " The spatial consistencymatrix re ects the motion correlation be-

193 tween the feature and the target center in the local prediain function.

194 " The predictive power indicates the accuracy of the past local predic-
195 tions by comparison to the past global predictions. This vak is used
196 to weight the contribution of a local feature in the global lgalization

197 function.

198 Note that both the spatial consistencyand the predictive powerare de-

199 Signed to assess the feature quality. On the other hand, tipersistence value
200 IS related to the occurrence level, disregarding the usefieks of the feature.
21 Figure 2 illustrates situations where non-salient featusecan be identi ed
22 through saliency evaluation. Non-salient features may caspond to out-
203 liers included erroneously to the object model in the initigzation step or
200 When updating it. Such a feature may originate from the backgund as seen
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Figure 2. Typical situations showing that saliency evaluabn allows identi-
fying bad predictors. Red and green dots represent, respiwely, the target
center and the tracked feature. Continuous arrows repredethe feature
prediction initialization, while dotted arrows show incomistent votes after a
certain number of frames.

in gure 2a or belong to an occluding object ( gure 2b) causig incorrect
prediction. Once a keypoint is considered as non-salienfe corresponding
local prediction (vote) will not be signi cant in the voting space, and/or
its contribution will be reduced in the global localizationprocedure. More-
over the feature is likely to be removed from the pool as soos & becomes
non-persistent

It should be noted that inconsistent features belonging tohe tracked
object may remain in the object model if they co-occur frequédy with the
target. An example is illustrated in gure 2c. However, their bcal predictions
hardly a ect the overall localization, since their qualityindicators ( and )
will be reduced. While bad predictors are penalized and/oemoved from the
model, target global localization is carried out via a coll@oration mechanism,
exploiting the local predictions of the most salient featwes. The proposed
tracking algorithm is presented in gure 3 and detailed in tle next sections.

3.2. Part-based appearance model

In our tracker, the target is represented by a set of keypoinpatches
stored in a feature poolP. The proposed method could use any type of
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Figure 3: Diagram of the algorithm steps for a given frame airme t. Con-
tinuous arrows correspond to transitions between steps vididotted arrows
show algorithm steps utilizing components from the appeanae model.
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Figure 4: Adapting the voting vector to scale and orientatiorchanges be-
tween the rst detection frame of the feature (left) and the arrent frame

(right). The red and green dots represent, respectively, ehtarget center and
the local feature.

scale/rotation invariant keypoint detector/descriptor. We used SIFT [23] as
a keypoint detector/descriptor for its proven robustness2b]. We denote by
f a feature from the poolP. All the detected features are then stored under
the form

f =[d;;;V;Sal] 1)
where:

" dis the SIFT keypoint descriptor comprising 128 elements toescribe
the gradient information around the keypoint position;

is the detection angle corresponding to the main orientatioof the
keypoint;

is the detection scale of the keypoint;

V =[ x; ylis avoting vector describing the target center location \th
respect to the keypoint location (see gure 4);

" Sal=[!; ; ]isthe saliency information includingpersistence spatial
consistency and predictive powerindicators.

Note that all the detection properties {.e. d, , , andV ) are de ned per-
manently the rst time the feature is detected, whereas sacy information
(i.,e. ', ,and ) is updated every time features are evaluated.

10
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3.3. Global collaboration of local predictors

In order to limit keypoint detection at time t to the most likely image area,
we apply the search space reduction method that we previoygiroposed in
[28]. Detected features from the reduced search space arertimatched with
those in the target modelP in a nearest neighbor fashion. For matching a
pair of features, we require that the ratio of the Euclidian tstance from the
closest neighbor to the distance of the second closest isslésan an upper
limit . The resulting subsetF;, P contains the matched target features
at time t. After the matching process, the voting vectors (of the mataetd
features) are adapted to local scale and pose changes as @rpd in the
following.

3.3.1. Voting vectors adaptation

Each featuref 2 F; encodes a structural property expressed through its
voting vector. Before applying the structural constraint éf , the correspond-
ing voting vector V should be scaled and rotated according to the current
detection scale ; and dominant orientation , at time t as shown in gure 4.
This adaptation process produces the current voting vector; = [ x; y:tl,
with

xt = KVK ¢cos( . +sign( y) arccosm); (2)
vyt = KVK ¢sin( 4 +sign( y) arccosﬁxk); (3)

where . and . are respectively the orientation angle di erence and the
scale ratio between the rst and the current detection of :

Tt = ot (4) t= = (5)

3.3.2. Local predictions

After adapting the voting vectors to the last local changes, @/base local
predictions on GHT to build a local likelihood (or predictior) map M | for
every feature inF;. For f, the local likelihood map is built in the reduced
search space for all the potential object positiorns using their relative posi-
tions X; with respect to the keypoint location. The local likelihoodmap is
de ned using a 2D Gaussian probability density function as

M.(x):p%exp( 050 V)T i W): 6)
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3.3.3. Global localization
To achieve global prediction of the target position, featws inF; collabo-
rate according to their saliency propertiesgersistenceand predictive powes).
The global localization mapM 4 is thus created at timet to represent the
target center likelihood considering all the detected feates. Concretely, the
global map is computed by aggregating local maps according the equation
X L .
Mg)= 1 OMEP: (7
f()2F

The nal target location x, is then found as

X, =argmaxM g.(x): (8)

3.3.4. Estimating the scale

We also exploit saliency information to determine the targesize S; at
time t. Scale change estimation is carried out by using the scaldios of the
most persistent keypoints. We denote by, F  the subset including 50%
of the elements inF, having the highest value of ;. Then we compute

1 X o
Si= — Psi) (9)
JF¢] -
t
to estimate the current target size, taking into account theobject sizeS()
when thej " feature was detected the rst time.

3.4. Model update

The saliency information is updated with the object model wén a good
tracking is achieved. Our de nition of a good tracking at tine t is that the
matching rate . in the target region exceeds the minimum raten,, . In this
case saliency indicators are adapted arfél is updated by adding/removing
features.

3.4.1. Persistence update
If the matching rate ; shows a good tracking quality, thepersistence
value! (" is updated for the next iteration with

10 =@ NP+ Lpom (10)

12
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where is an adaptation factor andl ), 4 is an indicator function de ned

on P to indicate if f () belongs toF,. Following this update, we remove from
P the elements having apersistencevalue lower than! ,,. On the other

hand, the newly detected features (in the predicted targetegion) are added
to P with an initial value ! i .

3.4.2. Spatial consistency

The spatial consistency is a 2x2 covariance matrix considered as a
quality indicator and used in the local prediction function(Eq. 6). is
initialized to iy for a new feature. It is then updated to determine the
spatial consistency betweef () and the target center by applying

=@ ) P+ 0 (11)
where the current estimate of is

G = V& V@ vy (12)
and Vi is the o set vector measured at timet given the global localization
result. As a result, decreases for consistent features, caung the votes to
be more concentrated in the local prediction map. By contrasthe more
this value increases during tracking (for inconsistent féares), the more the
votes become scattered.

3.4.3. Predictive power
In this step, we evaluate the predictive power of every keypa contribut-
ing to the current localization, considering the maxima ofdcal prediction
maps, and the global maximum corresponding to the nal targeposition.
This process, that we calprediction back-evaluationaims to assess how good
local predictions are. The local prediction for thé!" feature is de ned as the
position . _
2" = arg max M f;'t) (X): (13)
X
The predictive power (!, of f ) at time t + 1 depends on the distances
between its past predictions and the corresponding globatgqaictions. We
calculate t(L)l with the summation of a fuzzy membership function as
_ Xt (i) 2
=" o) 1, (14
k=1

13
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Algorithm 1 Tracking algorithm

1: - initialize P
2: for all frames do

3: - Apply feature detector
4. - Match features to getF; P
5: for all matchedfeatures (f ) 2 F,) do
6: - Scale/rotate V(): (Eq. 2 & 3)
7: - Compute local likelihood mapM I(;'t)(x): (Eq. 6)
8: - Find local prediction resultk{'): (Eq. 13)
9: end for
10: - Compute global likelihood mapM g(x): (Eq. 7)
11: - Find global location x,: (Eq. 8) foutput for frame tg
12: - Estimate target sizeS;: (Eq. 9) f output for frame tg
13 if (¢ min ) then
14: - Update ! +1: (Eq. 10)
15: - Remove non-persistent features.€. 11 ! min)
16: for all matchedfeatures (f ) 2 F,) do
17: - update f'ﬁl (Eqg. 11) and t(i+)1 (Eq. 14)
18: end for
19: - Add new features toP
20: - Initialize V, !, ,and for new features
21:  end if
22: end for
where is a constant set to @005. Thepredictive power increases as long

as the feature achieves good local predictions. Consequenthe feature is
considered as a reliable predictor, and its contribution ithe global localiza-

tion fu

nction (Eg. 7) becomes more prominent. We note that tb and

are designed to evaluate the feature quality. However, therfoer a ects local

predic

tions while the latter weights its contribution in the global localization.

The overall tracking algorithm steps are presented in Alg. 1.
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4. Experiments

4.1. Experimental setup

4.1.1. The compared trackers

We evaluated our Salient Collaborating Features TrackerSCFT ) by
a comparison to recent state-of-the-art algorithms. Amonghe compared
trackers, four are part-based methods already discussedseaction 2. These
trackers are the SuperPixel Tracker (SPT) [21], the Sparsitbased Collabo-
rative Model Tracker (SCMT) [10], the Adaptive Structural Tracker (AST)
[8], and the Structure-Aware Tracker (SAT) [28]. The fth oneis the online
Multiple Support Instance Tracker (MSIT) [32] using a holiic appearance
model. The corresponding source codes are provided by thethars with
several parameter combinations. In order to ensure a fair roparison, we
tuned the parameters of their methods so that for every videsequence in
our dataset, we always use the best parameter combination ang the pro-
posed ones.

4.1.2. Dataset

We evaluate the trackers on 20 challenging video sequencé&ixteen of
them are from an object tracking benchmark commonly used by¢ commu-
nity [33]. The four other sequencepl, jp2, wdesk and wbookwere captured
in our laboratory room using a Sony SNC-RZ50N camera. The areas clut-
tered with desks, chairs, and technical video equipment irhé background.
The video frames are 320x240 pixels recorded at 15 fps. We malty created
the corresponding ground truths folpl, jp2, wdesk and wbookwith 608, 229,
709, and 581 frames respectively Figure 5 presents the rst frame of each
of the sequences. In order to better gure out the quantitatie results of our
tracker, we categorized the video sequences according t@ tmain di cul-
ties that may occur in each sequence. The categorization dfet sequences
according to seven main properties is presented in table 1hi§ allows us to
construct subsets of videos in order to quantitatively evahte the trackers in
several situations. Note that one video sequence may presembre than one
di culty.

LOur sequences are available at http://www.polymtl.ca/lit iv/en/vid/.

15



Figure 5: The annotated rst frames of the video sequencesadfor exper-
iments. From left to right, top to bottom: tigerl, tiger2, cli bar , David ,
girl, faceocg jpl, jp2, wdesk wbook David2, car, matrix, soccer deer, skiing,
jumping, Dudek Mhyang boy.
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video LTOcc Distr BClut OPR lllum CamMo ArtODbj
David X X
girl X X
faceocc X X
tigerl
tiger2
cli bar
jpl X
ip2 X
wdesk X
whbook X
David2 X
car X
matrix X
soccer X
deer
skiing
jumping
Dudek
Mhyang
boy

x| X| X
x

x| x
x

x| X

X x| x| x
x

X[ X[ X

X

Table 1. Main di culties characterizing the test sequences LTocc: Long-
Term Occlusion, Distr: presence of Distractors, BClut: Bdground Clutter,
OPR: Out-of-Plane Rotation, lllum: Illlumination change, CamMo: Camera
Motion, ArtObj: Articulated Object.

4.1.3. Evaluation methodology

Success rate and average location error. In order to summarize a
tracker's performance on a video sequence, we use the succate and the
average location error. The success rate is measured by gkdting for each
frame the Overlap RatioOR = §£2(2020, whereP; is the predicted target
region andG;, is the ground truth target region. For a given frame, trackig
is considered as a success@R  0:5. The Center Location Error (CLE)
for a given frame consists in the position error between theswter of the
tracking result and that of the ground truth. The tables 2 and3 present
respectively the success rates and the average center lowaterrors for the
compared methods.

Precision plot. While the average location error is known to be useful
to summarize performance by calculating the mean error ovéhe whole
video sequence, this metric may fail to correctly re ect théracker behavior.
For example, the average location error for a tracker that &icks an object
accurately for almost all the sequence before losing it ondltast frames could
be substantially a ected by large CLEs on the last few framesTo address
this issue, we adopt the precision plot used in [34] and [35This graphic

17



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

‘ video SPT SCMT AST MSIT SAT SCFT ‘

David 62.37 60.22 37.63 63.44 100 100
girl 84.16 1.98 17.82 0.99 84.95 85.94
faceocc 5.62 100 25.84 80.90 99.55 99.89
tigerl 60.56 25.35 30.99 2.82 50.99 80.28
tiger2 46.27 16.42 31.34 5.97 70.15 75.74
cli bar 51.52 24.24 69.70 7.58 60.30 77.27
jpl 18.09 78.13 84.38 3.78 89.14 99.41
ip2 39.30 55.02 55.02 16.59 93.80 97.03
wdesk 13.68 57.26 32.30 10.01 90.47 93.96
whook 98.80 100 99.83 8.95 99.86 99.90
David2 36.44 90.69 38.55 94.23 98.70 100
car 99.33 87.33 92 57.33 99.33 100
matrix 3 6 1 2 52 52
soccer 16 31.33 36 37.33 69.33 69.33
deer 12.68 4.23 18.31 4.23 95.77 100
skiing 58.33 10 15 1.67 58.33 96.67
jumping 36.42 84.35 10.22 3.19 95.53 99.04
Dudek 100 100 100 79 100 100
Mhyang 85.67 77.67 94.67 100 100 100
boy 99.33 99.33 97.33 30 92 99.67
average 51.38 55.48 49.40 30.50 85.01 91.31

Table 2: Percentage of correctly tracked frames (successjafor SCFT and
the ve other trackers. Bold red font indicates best resultsplue italics font
indicates second best.

shows the percentage of frames (precision) where the preddtarget center
is within the given threshold distance from the ground truthcenter.

Success plot. By analogy to the precision plot that shows percentages
of frames corresponding to several threshold distances betground truth,
the authors in [33] argue that using one success rate valueaat overlap ratio
of 0:5 may not be representative. As suggested in [33], we use thewss
plot showing the percentages of successful frames at the ORsied from O
to 1.

CLE and OR plots. Two other types of plots are used in our exper-
iments to analyze in depth the compared methods : 1) the cemtication
error versus the frame number presented in gure 6, and 2) theverlap ratio
versus the frame number presented in gure 7. These plots auseful for
monitoring and comparing the behaviors of several trackewsser time for a
given video sequence. We nally note that we averaged the tdts over ve
runs in all our experiments.
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Figure 6: Center location error plots for 12 video sequences
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388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

‘ video SPT SCMT AST MSIT SAT SCFT ‘

David 36.09 33.81 68.57 26.71 10.48 9.96
girl 8.97 201.27 53.42 66.15 10.01 9.29
faceocc 116.84 5.07 85.43 23.36 14.26 5.58
tigerl 17.14 107.74 38.06 74.86 1491 15.65
tiger2 22.81 189.50 29.15 4458 16.13 10.25
cli bar 22.11 77.31 35.35 73.72 25.33 13.67
jpl 35.21 17.74 16.66 97.08 7.03 4.75
jp2 30.58 69.44 45.15 39.47 7.25 4.21
wdesk 79.92 34.17 80.97 122.62 11.12 14.31
whbook 11.27 5.09 8.68 131.57 11.87 5.91
David2 39.74 412 9.18 3.67 5.68 3.04
car 6.65 6.98 4.92 34.67 6.16 4.51
matrix 43 79.87 57.74 74.82  26.23 26.23
soccer 35.46 87.91 58.29 32.18 22.18 23.96
deer 39.66 56.79 54.58 96.52 7.42 5.39
skiing 9.83 122.16 192.04 226.70 44.19 7.75
jumping 22.01 7.41 90.03 55.75 11.21 8.15
dudek 6.11 4.28 4.74 15.08 9.92 8.14
Mhyang 17.14 20.40 452 2.49 7.98 2.31
boy 3.42 3.09 3.97 43.65 7.09 7.42
average 30.20 56.71 47.07 64.28 13.82 9.52

Table 3: Average location errors in pixels foSCFT and the ve other
trackers. Bold red font indicates best results,blue italics font indicates
second best.

4.2. Experimental result
4.2.1. Overall performance

The overall performance for several trackers is summarizbg the average
values in the tables 2 and 3 (last rows), as well as the averageecision and
success plots for the whole dataset ( gure 8). All the metricgsed for overall
performance evaluation demonstrate that our proposed meail outperforms
all the other trackers, achieving an average success rateQif31% and an
average localization error lower than 10 pixels. A major adwntage of using
success and precision plots is to allow choosing the appriape tracker for a
speci ¢ situation given the application requirements €.g. high, medium, or
low accuracy). In our experiments, the success and precrisicurves show the
robustness ofSCFT for all application requirements.SCFT is also the only
tracker to reach 80% in precision for an error threshold of Jfixels, and to
produce a success rate exceeding 60% when the required ORO& 8Except
for SAT that realized the second best overall performancend MSIT that
had the last rank, the rankings of the other trackers are di eent depending
on the considered metric. In the following subsections, thexperimental
results are discussed in details.
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Figure 8: Average success and average precision plots fortla#l sequences.

4.2.2. Long-term occlusion

We evaluated the six methods in face tracking under long-ter partial oc-
clusion (up to 250 consecutive frames). In thiaceoccand wbook the tracked
face remains partially occluded by an object several timesrfa long period.
Some trackers drift away from the target to track the occludig object, which
is mainly due to appearance model contamination by featurdselonging to
the occluding object. Our method was able to track the facesiscessfully
in almost all the frames under severe occlusion. The localeglictions of a
few detected features were su cient folSCFT to achieve an accurate global
prediction. Our target model may erroneously include feates from the
occluding object, but since we evaluate their motion consency and predic-
tive power, the corresponding local predictions will be sttared in the voting
space and have small weights in the global localization fuman. The error
plots for faceoccshows that SCMT and SAT also achieved good performances
when the target was occludedd.g. between frames 200 and 400). In fact,
SCMT and SAT are also designed to handle occlusions, respeely through
a scheme considering unoccluded patches, and a voting-lshegethod that
predicts the target center.

In the wdesksequence, the tracked face undergoes severe partial occlu-
sions while moving behind a deskSCFT , SAT and SCMT track the target
correctly until frame #400 where the person performs largeisplacements
causing SCMT to drift away from the face. BothSCFT and SAT continue
the tracking successfully while the tracked person hides tiad a desk, and
our method achieved the best success rate of:93%.
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The success plots of long-term occlusion videos 8€FT and SAT show
that both trackers can achieve more than 80% success rate asgd as the
required overlap ratio is lower than @. Both trackers also had the two
best precision curves, buSCFT performed signi cantly better under high
requirement in accuracy (e. location error threshold lower than 15 pixels).
As expected, the precision curve of MSIT is located below théhers, since
the holistic appearance model is not e ective for a target wtergoing severe
occlusions.

4.2.3. Presence of distractors

The third and fourth rows of gure 10 present results of faceracking in
moderately crowded scenes (four persons). In this experim& our goal is
to test the distinctiveness of the trackers. The success amecision plots
for this category clearly show thatSCFT and SAT are ranked respectively
rst and second regardless of the application requirementsThis is mainly
explained by the use of SIFT features that are proven to be ective in
distinguishing a target face among a large number of otherdas [36, 37, 38].

In the jpl video, we aim to track a face in presence of three other distta
ing faces, moving around the target and partially occluding several times.
The corresponding OR and CLE plots show that the proposeé®iCFT method
produces the most stable tracking at the lowest error duringlmost all the
608 video frames. Although the success rates of 89.14%, 8%38nd 78.13%
respectively for SAT, AST, and SCMT indicate good performares, the last
two trackers drift twice ( rst at frame#530 and a second timeat frame #570)
to track distracting faces occluding or neighboring the tayet. We can also
see in the OR and CLE plots that SAT drifts considerably thredimes, espe-
cially between frames #341 and #397 when the tracked face rieg (person
with a black t-shirt in the middle of the scene) is mostly occlded. However,
neither the presence of similar objects near the target nomapial occlusion
situations a ected our SCFT tracker. The high performance of the proposed
method in these situations is due to the distinctiveness ofllST keypoints,
in addition to the reliance on local predictions of the mostaient features,
even if outliers (from the background, neighboring or ocatling faces) can be
present in the feature pool.

In the jp2 video, we track a walking person in the presence of four other
randomly moving persons. The target crosses in front or beld distractors
that may occlude it completely for a short period. All the ve dher methods
confused the target with an occluding face, at least for a fefnames after full
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Figure 9: Success and precision plots for long-term occlusj distractors,
and background clutter videos.
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Figure 10: Tracking results for several trackers on the videsequenceBavid,
faceocg jpl, jp2, and tigerl (from top to bottom).

occlusion. NeverthelessSCFT is able to recover tracking correctly as soon
as a small part of the target becomes visible. For both distctors sequences
jpl and jp2, SCFT produced simultaneously the highest success rate and
the lowest average error.

4.2.4. lllumination change, camera motion

The video sequenc®avid is recorded using a moving camera, following
a walking person. The scene illumination conditions changgadually as the
person moves from a dark room to an illuminated area. The fae¢so under-
goes signi cant pose change during movement. All the trackerexcept AST,
were able to track the face successfully in more than 60% ottframes. Once
again, SCFT achieved the best success rate and the lowest average error.
This experiment shows the e ciency of our appearance modedlowing the
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tracker deal robustly with illumination variation. Our method is also not
a ected by large and continuous camera motion since featiseare detected
wherever the space reduction method shows a signi cant likeood of nding
the target. On the other hand, in-plane rotations are handkk e ciently in
the global prediction function since we exploit the informion on keypoint
local orientation changes.

4.2.5. Out-of-plane rotation

The target person's face in theyirl video, exhibits pose change and out-of-
plane rotations abruptly. SPT, SAT, and SCFT were able to track the face
correctly in more than 80% of the framesSCFT achieved the best success
rate, handling e ciently pose change and partial occlusion Our tracking
was accurate as long as the girl's face was at least partly k. We lost the
target when the face was turned away from the camera, but we keeable to
recover tracking quickly as soon as it partially reappeared

4.2.6. Background clutter, articulated object

The main di culty with the cli bar , tigerl, andtiger2 videos is the clut-
tered background whose the appearance may disrupt the trak For this
category, the success and precision curves 8CFT are located above the
others, showing the advantage of our method for all the testehresholds of
OR and CLE. Always based on the success and precision plots, @& see
that SAT and SPT were ranked respectively second and third.t is note-
worthy that both methods include discriminative aspects failitating track-
ing under such conditions. In fact, SPT uses a discriminatvappearance
model based on superpixel segmentation while SAT utilizesformation on
the background color distribution to evaluate the trackingquality.

In the Clibar sequence, a book is used as a background having a sim-
ilar texture to that of the target. SCFT outperformed signi cantly all the
competing methods in both success rate and average locatiemor. AST,
SAT, and SPT also performed relatively well, taking into acgunt the di -
culty of the sequence. Indeed, the target undergoes abruptplane rotations
and drastic appearance change because of high motion blurhel'proposed
tracker is hardly aected by these diculties since it continues adapting
the appearance model by including/removing keypoints, andandling pose
change through keypoint orientations.

In the tigerl and tiger2 sequences, the target exhibits fast movements
in a cluttered background with frequent occlusions. Owingat partial pre-
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dictions that localize the target center using a few visibl&eypoints, SCFT
had the highest percentages of correct tracks for both video SAT also
overcomes the frequent occlusion problem via its voting ntemnism that pre-
dicts the target position from available features. The othremethods fail to
locate the stu ed animal, but SPT had relatively better resuts due to its dis-
criminative model facilitating the distinction between taget superpixels and
background superpixels. Note that the tracked object itigerl andtiger2 is
a deformable stu ed animal. The predictions of features lated on articu-
lated parts are consequently inconsistent with the overationsensus, but this
issue is e eciently handled by the use ao$patial consistencyand predictive
power that re ect the predictors' reliability. These features mag remain in
P and continue predicting the target position without a ecting the global
result (because of lowpredictive powerand spatial consistency. Our feature
pool may also erroneously include outliers from the backgmod, identi ed
as non-persistent to be removed from the model.

4.2.7. Sensitivity to the number of features

One of the most challenging situations encountered in our et is the
partial occlusion. The target faces in thdaceoc¢ wdesk and wbook videos
undergo severe long-term occlusions causing the number efetted features
to decrease drastically. Since local features detectionpresents a critical
component for part-based trackers, we propose to study thenpact of the
number of features on SCFT's performance. We considered th&eo se-
guencesfaceoc¢ wdesk and wbook and analyzed the number of detected
features on every video frame. We computed the average CLHuw& for each
subset of frames having their numbers of collaborating faates within the
same interval (spanning 10 values). This allows us to creagescatter plot
representing the average CLE versus the number of collabtrg features
(gure 11). To investigate the relationship between the nurber of features
and the CLE, we model the plot by tting a fourth degree preditor function
and a linear function. The plot shows that the smallest numhs of features
produce an average CLE not exceeding nine pixels. After thathe tted
fourth degree function decreases before stabilizing arauthe mean value of
four pixels when more than 30 features are detected. Regargithe linear
function (y = ax + b), it is obvious to expect that the coe cient a would be
negative since the CLE becomes lower when the number of fe@siincreases.
However, a high absolute value foa would suggest that the algorithm re-
qguires a large number of features to achieve accurate tracli In our case,

27



552

553

554

555

556

557

558

559

560

561

562

563

564

565

5

o

6

567

5

o)}
[s+]

14 T T T T T T
12+ x Scatter plot i
= Linear fitting
10 = = = 4th degree fitting B
-
o gl .
o b x
g N
g di * N X x X ]
© X
s X\~~.X¥__—_x ———x-x-——__x_ .
X x x —— X
x x x x ===
2 - X -
X
0 | | | | | |
0 50 100 150 200 250 300 350

Number of collaborating features

Figure 11: Sensitivity of SCFT's localization error (in piels) to the number
of collaborating features (sequencdaceoc¢ wdesk and wbookK. Data points
from the scatter plot correspond to interval centers.

the linear coe cients estimation (a = 0:0064;b = 5:1107) demonstrate
that the error barely increases when the number of collabdmg features
diminishes from the maximum {.e. 345 features) to one feature. This as-
certainment con rms that the collaboration of a few number dunoccluded
features is su cient for our tracker to ensure accurate traking.

4.2.8. Sensitivity to the saliency factors
In this section, we analyze the e ect of the saliency factorseparately on
the tracking performance. We created three versions &CFT :

A

v-! . the persistence indicator! is not used in the global prediction
function;

v- . the predictive power is completely removed from the algorithm;

v- . the spatial consistency matrix is not updated, and is the same for
all the features ( = it )-

The tables 4 and 5 respectively present the percentages afrectly tracked
frames and the average location errors f&@CFT and the three other versions
of the tracker on a subset of ve video sequences. The selecwequences
cover almost all the situations in table 1, and each video ihaes several
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| video v v- V- SCFT |

girl 43.56 56.44 63.55 85.94
tigerl 71.03 78.87 74.63 80.28
David2 89.20 95.51 97.53 100

deer 88.18 92.52 92.25 100

boy 80.22 91.15 88.06 99.67
average 74.44 82.90 83.20 93.18

Table 4: Percentage of correctly tracked frames for four \&@ons of the pro-
posed tracker. vt : the tracker do not use persistence indicators to weight
local predictions, v- : the tracker does not evaluate the predictive power of
features, v- : the spatial consistency matrix is the same foall the features.
Bold red font indicates best resultsblue italics font indicates second best.

di culties. The obtained results show that the tracking performance is more
a ected when the persistence indicator is not considered €xsion v4 ). In
fact,, v- and v- outperformed v-! for all the ve sequences. This result
can be explained by the fact that with the removal of one factoamong

and , the remaining one continues to take into account the pecision
of the feature's past predictions, since both the spatial osistency and the
predictive power are designed to assess the feature qualitjowever, if the
indicator ! is not considered, the prediction step no longer takes intocca
count the occurence level of the keypoint. Furthermore, tlse experiments
demonstrated the complementarity of the three saliency famrs, as the best
performance is obtained when the three indicators are evalied and up-
dated during tracking. We nally note that the saliency evalbation method
proposed in this work can be adapted or applied directly to aide range of
tracking algorithms that are based on the voting of local faares.

4.2.9. Sensitivity to parameters

Most of the parameters of our algorithm were set to default Waes for all
the video sequences. In our experimental work, only three n@aneters were
tuned to optimize the performance of the tracker:

" N : the number of particles de ning the reduced search spacehere
keypoints are detected;

N

min . the minimum matching rate that is required to update the ap-
pearance model;

29



591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

| video v v- V- SCFT |

girl 17.98 14.49 13.24 9.29
tigerl 17.02 16.89 16.98 15.65
David2 8.06 6.36 5.11 3.04

deer 10.19 8.13 7.63 5.39

boy 11.16 7.98 7.51 7.42
average 12.88 10.77 10.09 8.16

Table 5: Average location errors in pixels for four versiond the proposed
tracker. v-! . the tracker does not use persistence indicators to weigladal
predictions, v- : the tracker does not evaluate the predictive power of fea-
tures, v-: the spatial consistency matrix is the same for dlthe features.
Bold red font indicates best resultsblue italics font indicates second best.

parameters girl tigerl David2 deer boy
N 30 100 100 20 50

min 0.55 0.8 0.3 0.2 0.2

I min 0.3 0.4 0.1 0.4 0.4

Table 6: Parameter values used i®KCFT with each video from the subset
including girl, tigerl, David2, deer, and boy.

N

I min © the persistence threshold used to determine if the featusiould
be removed from the model,

In order to evaluate the sensitivity of SCFT to parameters, we considered
the same subset of ve sequences and ran our tracker multigienes on each
video, using the optimized parameters of the other videos. h€ optimized
parameter values for each video are shown in table 6.

The results of these runs are reported in the tables 7 and 8, aie the
A.D. column shows the Average Di erence between the result cdihed with
the optimized set of parameters and those obtained with theapameter sets
of the four other sequences. As we can see, 13.33% is the magti glant
average decrease in sucess rate (for thel video), while the highest average
increase in localization error is that of theDavid2 sequence (4.3 pixels).
On the other hand, parameter change had a very low impact on ¢hvideo
sequencesdeer (1.41% as average decrease in sucess rate) boyl(1.30 pixels
as average increase in localization error). In generd®CFT was able to
achieve a stable tracking for all the runs and the performarcof our tracker
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| girl tigerl David2 deer boy | AD. |
girl 85.94 81.19 75.26 72.58 61.41 13.33
tigerl 76.06 80.28 70.42 80 80.28 3.59
David2 94.60 88.45 100 94.04 95.53 6.84
deer 97.18 100 97.18 100 100 1.41
boy 95 93 90.67 98 99.67 5.50

Table 7: Percentage of correctly tracked frames obtained lyrossing the
parameter values between the video sequences. Each row pnesthe results
obtained for a video sequence, by using its optimized set adrameters, as
well as the parameter sets of four other sequences. The A.Dlwon shows
the Average Dierence (in percentages) between the result @ined with

the optimized set of parametersfold font) and those obtained with the
parameter sets of the four other sequences.

was not dramatically a ected by the change of parameters.

4.2.10. Computational cost

The proposed tracker was implemented using Matlab on a PC wita Core
i7-3770 CPU running at a 3.4 GHz. Our algorithm is designed to amtain
a reasonable computational complexity. In fact, keypointare extracted in
a limited image region determined by particle Itering to reluce the com-
putational cost of feature detection and local descriptorreation. Moreover,
the particle lter generates N = 400 particles, among which only a limited
subset ofN particles is used as a reduced search space on the currentniea
and for generating theN particles on the subsequent frame. In practice, the
computation time of SCFT is determined mostly by the number of detected
object keypoints voting for the target position, which maity depends on
the object size and texture. As an example, the video sequesatigerl and
tiger2, with a small target size, are processed at approximately3lLsecond
per frame. On the other hand, when the object size is largerd@uas in the
faceoccsequence, our algorithm requires from 2 to 3 seconds to ndehar-
get on a given frame. The table 9 provides a computation timeomparison
for the six trackers on theDavid2 sequence that represents a typical scenario
of face tracking. According to the performed measures, ourgarithm re-
quires in average 1.2 second to process one frame from Brevid2 sequence,
which is the second best execution time. AST achieved the shest time,
processing one frame in 0.42 second. Note that all the compiraethods are
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| girl tigerl David2 deer boy | AD. |

girl 9.29 11.58 12.66 12.55 13.29 3.23
tigerl 16.18 15.65 21.17 18.31 16.27 2.32
David2 8.43 9.27 3.04 6.07 5.58 4.30

deer 7.63 7.03 7.63 5.39 9.77 2.63

boy 8.98 8.33 8.88 8.67 7.42 1.30

Table 8: Average location errors obtained by crossing the aneter values
between the video sequences. Each row presents the resulitaimed for
a video sequence, by using its optimized set of parameters, &ell as the
parameter sets of four other sequences. The A.D. column shaWws Average
Di erence (in pixels) between the result obtained with the ptimized set of
parameters pold font) and those obtained with the parameter sets of the
four other sequences.

SPT SCMT AST MSIT SAT SCFT
time/video 1685.74  1738.34 225.95 1179.85 649.68 646./76
time/frame  3.14 3.24 0.42 2.20 1.21 1.20
ranking 5 6 1 4 3 2

Table 9: Processing time comparison f@CFT and the ve other trackers on
the video sequenc®avid2 time/video: the total processing time (seconds),
time/frame: the average processing time for one frame (sects).

implemented in Matlab by the authors and run on our describedomputer.

5. Conclusion

This paper proposes a novel and e ective part-based traclgrnalgorithm,
based on the collaboration of salient local features. Featicollaboration is
carried out through a voting method where keypoint patchesnpose local ge-
ometrical constraints, preserving the target structure wite handling pose and
scale changes. The proposed algorithm uses saliency eviidueas a key tech-
nigque for identifying the most reliable and useful featuresOur conception
of feature saliency includes three elementgersistence spatial consistency
and predictive power The persistenceindicator allows to eliminate outliers
(e.g. from the background, or an occluding object) and expired faaes
from the target model, while thespatial consistencyand the predictive power
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indicators penalize predictors that do not agree with pastansensus. The
experiments on publicly available videos from standard behmarks show
that SCFT outperforms state-of-the-art trackers signi caitly. Moreover, our

tracker is insensitive to the number of tracked features, hteving accurate
and robust tracking even if most of the local predictors arendetectable.
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