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Abstract

This work proposes a novel part-based method for visual object tracking.
In our model, keypoints are considered as elementary predictors localizing
the target in a collaborative search strategy. While numerous methods have
been proposed in the model-free tracking literature, �nding the most relevant
features to track remains a challenging problem. To distinguish reliable fea-
tures from outliers and bad predictors, we evaluate featuresaliency compris-
ing three factors: thepersistence, the spatial consistency, and the predictive
power of a local feature. Saliency information is learned during tracking to
be exploited in several algorithm components: local prediction, global local-
ization, model update, and scale change estimation. By encoding the object
structure via the spatial layout of the most salient features, the proposed
method is able to accomplish successful tracking in di�cultreal life situa-
tions such as long-term occlusion, presence of distractors, and background
clutter. The proposed method shows its robustness on challenging public
video sequences, outperforming signi�cantly recent state-of-the-art trackers.
Our Salient Collaborating Features Tracker (SCFT) also demonstrated a high
accuracy even if a few local features are available.
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1. Introduction1

Visual object tracking is a fundamental problem in computer vision with2

a wide range of applications including automated video monitoring systems3

[1, 2], tra�c monitoring [3, 4], human action recognition [5], robot perception4

[6], etc. While signi�cant progress has been made in designing sophisticated5

appearance models and e�ective target search methods,model-freetracking6

remains a di�cult problem receiving a great interest. With model-freetrack-7

ers, the only information available on the target appearance is the bounding8

box region in the �rst video frame. Tracking is thus a challenging task due9

to (1) the insu�cient amount of information on object appearance, (2) the10

inaccuracy in distinguishing the target from the background, and (3) the11

target appearance change during tracking.12

In this paper, we present a novel part-based tracker handling the afore-13

mentioned di�culties, including the lack of information on object appearance14

and features. This work demonstrates that an e�cient way to maximize15

the knowledge on object appearance is to evaluate the tracked features. To16

achieve robust tracking in unconstrained environments, our Salient Collabo-17

rating Features Tracker (SCFT ) discovers the most salient local features in18

an online manner. Every tracked local feature is consideredas an elementary19

predictor having an individual reliability in encoding an object structural20

constraint, and collaborating with other features to predict the target state.21

To assess the reliability of a given feature, we de�ne feature saliency as com-22

prising three factors: persistence, spatial consistency, and predictive power.23

Thereby, the global target state prediction arises from theaggregation of all24

the local predictions considering individual feature saliency properties. Fur-25

thermore, the appearance change problem (which is a major issue causing26

drift [7]) is handled through a dynamic target model that continuously in-27

corporates new structural properties while removing non-persistent features.28

Generally, a tracking algorithm includes two main aspects:the target rep-29

resentation including the object characteristics, and thesearch strategy for30

object localization. The contributions of our work relate to both aspects. For31

target representation, our part-based model includes keypoint patches encod-32

ing object structural constraints with di�erent levels of reliability. Part-based33

representations are proven to be robust to local appearancechanges and par-34

tial occlusions [8, 9, 10]. Moreover, keypoint regions are more salient and35

stable than other types of patches (e.g. regular grid, random patches), in-36

creasing the distinctiveness of the appearance model [11, 12]. Regarding the37
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search strategy, the target state estimation is carried outvia local features38

collaboration. Every detected local feature casts a local prediction expressing39

a constraint on the target structure according to the spatial layout, saliency40

information, detection scale, and dominant orientation ofthe feature. In this41

manner, feature collaboration preserves the object structure while handling42

pose and scale change without requiring to analyze the relationship between43

keypoints like in [9], neither calculating homographies such as in most key-44

point matching works [13, 14, 15].45

More speci�cally, the main contributions of this paper are:46

1. A novel method for evaluating feature saliency to identify the most47

reliable features based on theirpersistence, spatial consistency, and48

predictive power;49

2. The explicit exploitation of feature saliency information in several algo-50

rithmic steps: (1) local predictions, (2) feature collaboration for global51

localization, (3) scale change estimation, and (4) for local feature re-52

moval from the target model;53

3. A dynamic appearance model where persistent local features are stored54

in a pool, to encode both recent and old structural properties of the55

target.56

4. Extensive experimentation to evaluate the tracker performance against57

�ve recent state-of-the-art methods. The experimental work conducted58

on challenging videos shows the validity of the proposed tracker, out-59

performing the compared methods signi�cantly.60

The rest of this paper is organized as follows. In the next section, we61

review related part-based tracking works. Algorithm steps are presented62

in details in section 3. Experimental results are provided and analyzed in63

section 4, and section 5 concludes the paper.64

2. Related works65

Among various visual tracking algorithms, part-based trackers have at-66

tracted a great interest during the last decade. This is mainly due to the67

robustness of part-based models in handling partial changes, and to the e�-68

ciency of prediction methods in �nding the whole target region given a subset69

of object parts. The fragment-based tracker of Adamet al. [16] is one of the70

pioneering methods in this trend. In their tracker, target parts correspond71

to arbitrary patches voting for object positions and scalesin a competitive72
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manner. The object patches are extracted according to a regular grid, and73

thus are inappropriate for articulated objects and signi�cant in-plane rota-74

tions. Further, Erdem et al. demonstrated that the winning patch might75

not always provide reliable predictions [17]. This issue isaddressed in [17]76

by di�erentiating the object patches based on their reliability. Therefore,77

every patch contributes to the target state prediction according to its relia-78

bility, allowing to achieve a better accuracy. Many other methods have been79

proposed for locating the object through parts tracking. The authors in [18]80

track object parts separately and predict the target state as a combination of81

multiple measurements. This method identi�es inconsistent measurements82

in order to eliminate the false ones in the integration process. The method83

in [19] represents the shape of an articulated object with a small number of84

rectangular regions, while the appearance is represented by the corresponding85

intensity histograms. Tracking is then performed by matching local intensity86

histograms and by adjusting the locations of the blocks. Notethat these last87

two trackers present the disadvantage of requiring manual initialization of88

object parts.89

In [10], the appearance model includes a combination between holistic and90

local representations to increase the model distinctiveness. In this model, the91

spatial information of the object patches is encoded by a histogram repre-92

senting the object structure. Similarly, Jiaet al. sample a set of overlapped93

patches on the tracked object [8]. Their tracker includes anocclusion han-94

dling module allowing to locate the object using only visible patches. Kwon95

et al. [20] also used a set of local patches, updated during tracking, for tar-96

get representation. The common shortcoming of the last three trackers is97

the model adaptation mechanism in which the dictionary is updated simply98

by adding new elements, without adapting existing items. Another approach99

for creating part-based representations is the superpixelover-segmentation100

[21, 22]. In [21], Wanget al. use a discriminative method evaluating super-101

pixels individually, in order to distinguish the target from the background102

and detect shape deformation and occlusion. Their tracker is limited to103

small displacements between consecutive frames, since over-segmentation is104

performed only for a region surrounding the target locationin the last frame.105

Moreover, this method requires a training phase to learn superpixel features106

from the object and the background.107

One of the major concerns in part-based tracking is to selectthe most sig-108

ni�cant and informative components for the appearance model. An interest-109

ing approach for de�ning informative components consists in using keypoint110
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regions. Local keypoint regions (e.g. SIFT [23] and BRISK [24]) are more111

e�cient than other types of patches in encoding object structure, as they112

correspond to salient and stable regions invariably detectable under various113

perturbation factors [25, 12]. Based on this, Yanget al. model the target114

with a combination of random patches and keypoints [26]. Keypoints layout115

is used to encode the structure while random patches model other appear-116

ance properties via their LBP features and RGB histograms. The target is117

thus tracked by exploiting multiple object characteristics, but the structural118

model captures only recent properties, as the keypoint model contains only119

those detected on the last frame. In a later work, Guoet al. [14] used a set120

of keypoint manifolds organized as a graph to represent the target structure.121

Every manifold contains a set of synthetic keypoint descriptors simulating122

possible variations of the original feature under viewpoint and scale change.123

The target is found by detecting keypoints on the current frame and match-124

ing them with those of the manifold model. This tracker achieved stable125

tracking of dynamic objects, at the cost of calculating homographies with126

RANSAC, which may be inappropriate for non-planar objects as shown in127

[9].128

Generalized Hough Transform (GHT)-based approaches have been re-129

cently presented as an alternative to homography calculation methods. GHT130

was initially used in context tracking [27], where the target position is pre-131

dicted by analyzing the whole scene (context) and identifying features (not132

belonging to the target) that move in a way that is statistically related to133

the target's motion. In later works, this technique has beenapplied to ob-134

ject features in order to re
ect structural constraints of the target and cope135

with partial occlusion problems. Nebehayet al. [9] propose to combine votes136

of keypoints to predict the target center. Although every keypoint votes in137

an individual manner, the geometrical relationship is analyzed between each138

pair of keypoints in order to rotate and scale votes accordingly. Furthermore,139

the keypoint model is not adapted to object appearance changes, arising only140

from the �rst observation of the target. In [28], the authorsused an adaptive141

feature reservoir updated online to learn keypoint properties during tracking.142

The tracker achieved robust tracking in situations of occlusion and against143

illumination and appearance changes. However, this method does not han-144

dle scale changes and su�ers from sensitivity to large in-plane rotations. In145

this paper we propose a novel tracking algorithm that exploits the geometric146

constraints of salient local features in a way to handle perturbation factors147

related to the target movement (e.g. scale change, in-plane and out-of-plane148
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rotations), as well as those originating from its environment ( i.e. occlusion,149

background clutter, distractors).150

3. Proposed method151

3.1. Motivation and overview152

In our part-based model, object parts correspond to keypoint patches153

detected during tracking and stored in a feature pool. The pool is initialized154

with the features detected on the bounding box region de�nedin the �rst155

video frame, and updated dynamically by including and/or removing features156

to re
ect appearance changes. Instead of detecting local features in a region157

with a �xed size around the target location (like in [21, 14]), we eliminate158

the restriction of small displacements by using particle �ltering to reduce159

the search space as proposed in [28]. This allows us to avoid computing local160

features on the entire image by limiting their extraction tomost likely regions161

based on the target color distribution.162

When performing target search on a given frame, features from the pool163

are matched with those detected on the reduced search space.Following164

the matching process, the geometrical constraints (of the matched features)165

are adapted to local scale and pose changes as explained in section 3.3.1.166

Then all the matched features collaborate in a voting-basedmethod (section167

3.3.2), to achieve global localization (section 3.3.3) andestimate the global168

scale change (section 3.3.4). Thus, the global prediction result corresponds169

to the aggregation of individual votes (elementary predictions). This method170

preserves the object structure and handles pose and scale changes, without171

requiring homography calculations such as in [14], neitheranalyzing the ge-172

ometrical relationship between keypoints like in [9]. The �gure 1 presents a173

visual summary of the main algorithm steps.174

In order to keep the most relevant elements in the feature pool and exploit175

appropriately the most reliable predictors, each trackingiteration is followed176

by a saliency evaluation step. Saliency evaluation is performed to identify177

reliable features and determine the weights of their predictions accordingly,178

while eliminating irrelevant features from the appearancemodel. Our idea179

is inspired by the democratic integration framework of Triesch and von der180

Malsburg, where several cues contribute to a joint result with di�erent levels181

of reliability [29]. In their approach, the elements that are consistent with182

the global result are considered as reliable and are assigned a higher weight183

in the future. This strategy has been adopted in other objecttracking works184
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(a) (b) (c)

Figure 1: Visual illustration of the main algorithm steps when tracking a
partly occluded face in a moderately crowded scene.(a) : the search space is
reduced by using a color-based particle �lter, and keypoints are detected in
the limited region (green dots). (b) : matching the detected keypoints with
the appearance model allows to identify those belonging to the target. (c) :
matched features vote for the target center.

to perform an adaptive integration of cues according to their reliability [17,185

30, 31]. In our tracking method, the reliability is de�ned by the feature186

saliency including three factors: featurepersistence, spatial consistency, and187

predictive power.188

ˆ The persistencevalue ! of a given feature is used to evaluate the degree189

of co-occurrence between the target and the keypoint, and todetermine190

if the feature should be removed from the pool.191

ˆ The spatial consistencymatrix � re
ects the motion correlation be-192

tween the feature and the target center in the local prediction function.193

ˆ The predictive power indicates the accuracy of the past local predic-194

tions by comparison to the past global predictions. This value is used195

to weight the contribution of a local feature in the global localization196

function.197

Note that both the spatial consistencyand the predictive powerare de-198

signed to assess the feature quality. On the other hand, thepersistence value199

is related to the occurrence level, disregarding the usefulness of the feature.200

Figure 2 illustrates situations where non-salient features can be identi�ed201

through saliency evaluation. Non-salient features may correspond to out-202

liers included erroneously to the object model in the initialization step or203

when updating it. Such a feature may originate from the background as seen204
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(a) (b)

(c)

Figure 2: Typical situations showing that saliency evaluation allows identi-
fying bad predictors. Red and green dots represent, respectively, the target
center and the tracked feature. Continuous arrows represent the feature
prediction initialization, while dotted arrows show inconsistent votes after a
certain number of frames.

in �gure 2a or belong to an occluding object (�gure 2b) causing incorrect205

prediction. Once a keypoint is considered as non-salient, the corresponding206

local prediction (vote) will not be signi�cant in the voting space, and/or207

its contribution will be reduced in the global localizationprocedure. More-208

over the feature is likely to be removed from the pool as soon as it becomes209

non-persistent.210

It should be noted that inconsistent features belonging to the tracked211

object may remain in the object model if they co-occur frequently with the212

target. An example is illustrated in �gure 2c. However, their local predictions213

hardly a�ect the overall localization, since their quality indicators (� and  )214

will be reduced. While bad predictors are penalized and/or removed from the215

model, target global localization is carried out via a collaboration mechanism,216

exploiting the local predictions of the most salient features. The proposed217

tracking algorithm is presented in �gure 3 and detailed in the next sections.218

3.2. Part-based appearance model219

In our tracker, the target is represented by a set of keypointpatches220

stored in a feature poolP. The proposed method could use any type of221
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Figure 3: Diagram of the algorithm steps for a given frame at time t. Con-
tinuous arrows correspond to transitions between steps while dotted arrows
show algorithm steps utilizing components from the appearance model.
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Figure 4: Adapting the voting vector to scale and orientationchanges be-
tween the �rst detection frame of the feature (left) and the current frame
(right). The red and green dots represent, respectively, the target center and
the local feature.

scale/rotation invariant keypoint detector/descriptor. We used SIFT [23] as222

a keypoint detector/descriptor for its proven robustness [25]. We denote by223

f a feature from the poolP. All the detected features are then stored under224

the form225

f = [ d; �; �; V; Sal ]; (1)

where:226

ˆ d is the SIFT keypoint descriptor comprising 128 elements to describe227

the gradient information around the keypoint position;228

ˆ � is the detection angle corresponding to the main orientation of the229

keypoint;230

ˆ � is the detection scale of the keypoint;231

ˆ V = [ � x ; � y] is a voting vector describing the target center location with232

respect to the keypoint location (see �gure 4);233

ˆ Sal = [ !; � ;  ] is the saliency information includingpersistence, spatial234

consistency, and predictive powerindicators.235

Note that all the detection properties (i.e. d, � , � , and V ) are de�ned per-236

manently the �rst time the feature is detected, whereas saliency information237

(i.e. ! , �, and  ) is updated every time features are evaluated.238
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3.3. Global collaboration of local predictors239

In order to limit keypoint detection at time t to the most likely image area,240

we apply the search space reduction method that we previously proposed in241

[28]. Detected features from the reduced search space are then matched with242

those in the target modelP in a nearest neighbor fashion. For matching a243

pair of features, we require that the ratio of the Euclidian distance from the244

closest neighbor to the distance of the second closest is less than an upper245

limit � . The resulting subsetF t � P contains the matched target features246

at time t. After the matching process, the voting vectors (of the matched247

features) are adapted to local scale and pose changes as explained in the248

following.249

3.3.1. Voting vectors adaptation250

Each featuref 2 F t encodes a structural property expressed through its251

voting vector. Before applying the structural constraint of f , the correspond-252

ing voting vector V should be scaled and rotated according to the current253

detection scale� t and dominant orientation � t at time t as shown in �gure 4.254

This adaptation process produces the current voting vectorVt = [ � x;t ; � y;t ],255

with256

� x;t = kVk� t cos(� �;t + sign(� y) arccos
� x

kVk
); (2)

257

� y;t = kVk� t sin(� �;t + sign(� y) arccos
� x

kVk
); (3)

where � �;t and � t are respectively the orientation angle di�erence and the258

scale ratio between the �rst and the current detection off :259

� �;t = � t � �; (4) � t = � t=� : (5)260

3.3.2. Local predictions261

After adapting the voting vectors to the last local changes, we base local262

predictions on GHT to build a local likelihood (or prediction) map M l for263

every feature inF t . For f , the local likelihood map is built in the reduced264

search space for all the potential object positionsx using their relative posi-265

tions x f with respect to the keypoint location. The local likelihoodmap is266

de�ned using a 2D Gaussian probability density function as267

M l (x) =
1

p
2� j� j

exp(� 0:5 (x f � Vt )> � � 1(x f � Vt )) : (6)
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3.3.3. Global localization268

To achieve global prediction of the target position, features inF t collabo-269

rate according to their saliency properties (persistenceand predictive power).270

The global localization mapM g is thus created at timet to represent the271

target center likelihood considering all the detected features. Concretely, the272

global map is computed by aggregating local maps according to the equation273

M g;t(x) =
iX

f ( i ) 2F t

! (i )
t  (i )

t M (i )
l;t (x): (7)

The �nal target location x �
t is then found as274

x �
t = arg max

x
M g;t(x): (8)

3.3.4. Estimating the scale275

We also exploit saliency information to determine the target size St at276

time t. Scale change estimation is carried out by using the scale ratios of the277

most persistent keypoints. We denote byF �
t � F t the subset including 50%278

of the elements inF t , having the highest value of! t . Then we compute279

St =
1

jF �
t j

jX

f ( j ) 2F �
t

� (j )
t S(j ) (9)

to estimate the current target size, taking into account theobject sizeS(j )
280

when the j th feature was detected the �rst time.281

3.4. Model update282

The saliency information is updated with the object model when a good283

tracking is achieved. Our de�nition of a good tracking at time t is that the284

matching rate � t in the target region exceeds the minimum rate� min . In this285

case saliency indicators are adapted andP is updated by adding/removing286

features.287

3.4.1. Persistence update288

If the matching rate � t shows a good tracking quality, thepersistence289

value ! (i )
t is updated for the next iteration with290

! (i )
t+1 = (1 � � )! (i )

t + � 1f f ( i ) 2F t g; (10)
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where� is an adaptation factor and1f f ( i ) 2F t g is an indicator function de�ned291

on P to indicate if f (i ) belongs toF t . Following this update, we remove from292

P the elements having apersistencevalue lower than ! min . On the other293

hand, the newly detected features (in the predicted target region) are added294

to P with an initial value ! init .295

3.4.2. Spatial consistency296

The spatial consistency� is a 2x2 covariance matrix considered as a297

quality indicator and used in the local prediction function(Eq. 6). � is298

initialized to � init for a new feature. It is then updated to determine the299

spatial consistency betweenf (i ) and the target center by applying300

� (i )
t+1 = (1 � � )� (i )

t + � � (i )
cur ; (11)

where the current estimate of � is301

� (i )
cur = ( V (i )

cur � V (i )
t )(V (i )

cur � V (i )
t )> ; (12)

and V (i )
cur is the o�set vector measured at timet given the global localization302

result. As a result, � decreases for consistent features, causing the votes to303

be more concentrated in the local prediction map. By contrast, the more304

this value increases during tracking (for inconsistent features), the more the305

votes become scattered.306

3.4.3. Predictive power307

In this step, we evaluate the predictive power of every keypoint contribut-308

ing to the current localization, considering the maxima of local prediction309

maps, and the global maximum corresponding to the �nal target position.310

This process, that we callprediction back-evaluation, aims to assess how good311

local predictions are. The local prediction for thei th feature is de�ned as the312

position313

x̂ (i )
t = arg max

x
M (i )

l;t (x): (13)

The predictive power  (i )
t+1 of f (i ) at time t + 1 depends on the distances314

between its past predictions and the corresponding global predictions. We315

calculate  (i )
t+1 with the summation of a fuzzy membership function as316

 (i )
t+1 =

tX

k=1

exp(
� (x̂ (i )

k � x �
k)2

�S 2
k

) 1f f ( i ) 2F k g (14)
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Algorithm 1 Tracking algorithm

1: - initialize P
2: for all f rames do
3: - Apply feature detector
4: - Match features to getF t � P
5: for all matched features (f (i ) 2 Ft ) do
6: - Scale/rotate V (i ) : (Eq. 2 & 3)
7: - Compute local likelihood mapM (i )

l;t (x): (Eq. 6)

8: - Find local prediction result x̂ (i )
t : (Eq. 13)

9: end for
10: - Compute global likelihood mapM g;t(x): (Eq. 7)
11: - Find global location x �

t : (Eq. 8) f output for frame tg
12: - Estimate target sizeSt : (Eq. 9) f output for frame tg
13: if (� t � � min ) then
14: - Update ! t+1 : (Eq. 10)
15: - Remove non-persistent features (i.e. ! t+1 � ! min )
16: for all matched features (f (i ) 2 Ft ) do
17: - update � (i )

t+1 (Eq. 11) and  (i )
t+1 (Eq. 14)

18: end for
19: - Add new features toP
20: - Initialize V, ! , �, and  for new features
21: end if
22: end for

where � is a constant set to 0:005. Thepredictive power increases as long317

as the feature achieves good local predictions. Consequently, the feature is318

considered as a reliable predictor, and its contribution inthe global localiza-319

tion function (Eq. 7) becomes more prominent. We note that both � and  320

are designed to evaluate the feature quality. However, the former a�ects local321

predictions while the latter weights its contribution in the global localization.322

The overall tracking algorithm steps are presented in Alg. 1.323
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4. Experiments324

4.1. Experimental setup325

4.1.1. The compared trackers326

We evaluated our Salient Collaborating Features Tracker (SCFT ) by327

a comparison to recent state-of-the-art algorithms. Among the compared328

trackers, four are part-based methods already discussed insection 2. These329

trackers are the SuperPixel Tracker (SPT) [21], the Sparsity-based Collabo-330

rative Model Tracker (SCMT) [10], the Adaptive Structural Tracker (AST)331

[8], and the Structure-Aware Tracker (SAT) [28]. The �fth oneis the online332

Multiple Support Instance Tracker (MSIT) [32] using a holistic appearance333

model. The corresponding source codes are provided by the authors with334

several parameter combinations. In order to ensure a fair comparison, we335

tuned the parameters of their methods so that for every videosequence in336

our dataset, we always use the best parameter combination among the pro-337

posed ones.338

4.1.2. Dataset339

We evaluate the trackers on 20 challenging video sequences.Sixteen of340

them are from an object tracking benchmark commonly used by the commu-341

nity [33]. The four other sequencesjp1, jp2, wdesk, and wbookwere captured342

in our laboratory room using a Sony SNC-RZ50N camera. The areawas clut-343

tered with desks, chairs, and technical video equipment in the background.344

The video frames are 320x240 pixels recorded at 15 fps. We manually created345

the corresponding ground truths forjp1, jp2, wdesk, and wbookwith 608, 229,346

709, and 581 frames respectively1. Figure 5 presents the �rst frame of each347

of the sequences. In order to better �gure out the quantitative results of our348

tracker, we categorized the video sequences according to the main di�cul-349

ties that may occur in each sequence. The categorization of the sequences350

according to seven main properties is presented in table 1. This allows us to351

construct subsets of videos in order to quantitatively evaluate the trackers in352

several situations. Note that one video sequence may presentmore than one353

di�culty.354

1Our sequences are available at http://www.polymtl.ca/lit iv/en/vid/.
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Figure 5: The annotated �rst frames of the video sequences used for exper-
iments. From left to right, top to bottom: tiger1, tiger2, cli�bar , David ,
girl, faceocc, jp1, jp2, wdesk, wbook, David2, car, matrix, soccer, deer, skiing,
jumping, Dudek, Mhyang, boy.
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video LTOcc Distr BClut OPR Illum CamMo ArtObj

David X X
girl X X

faceocc X X
tiger1 X X
tiger2 X X
cli�bar X

jp1 X
jp2 X

wdesk X
wbook X

David2 X
car X

matrix X X X
soccer X X X X X
deer X X

skiing X X
jumping X
Dudek X X

Mhyang X
boy X X

Table 1: Main di�culties characterizing the test sequences. LTocc: Long-
Term Occlusion, Distr: presence of Distractors, BClut: Background Clutter,
OPR: Out-of-Plane Rotation, Illum: Illumination change, CamMo: Camera
Motion, ArtObj: Articulated Object.

4.1.3. Evaluation methodology355

Success rate and average location error. In order to summarize a356

tracker's performance on a video sequence, we use the success rate and the357

average location error. The success rate is measured by calculating for each358

frame the Overlap RatioOR = area(Pr \ Gr )
area(Pr [ Gr ) , wherePr is the predicted target359

region andGr is the ground truth target region. For a given frame, tracking360

is considered as a success ifOR � 0:5. The Center Location Error (CLE)361

for a given frame consists in the position error between the center of the362

tracking result and that of the ground truth. The tables 2 and3 present363

respectively the success rates and the average center location errors for the364

compared methods.365

Precision plot. While the average location error is known to be useful366

to summarize performance by calculating the mean error overthe whole367

video sequence, this metric may fail to correctly re
ect thetracker behavior.368

For example, the average location error for a tracker that tracks an object369

accurately for almost all the sequence before losing it on the last frames could370

be substantially a�ected by large CLEs on the last few frames. To address371

this issue, we adopt the precision plot used in [34] and [35].This graphic372
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video SPT SCMT AST MSIT SAT SCFT

David 62.37 60.22 37.63 63.44 100 100
girl 84.16 1.98 17.82 0.99 84.95 85.94

faceocc 5.62 100 25.84 80.90 99.55 99.89
tiger1 60.56 25.35 30.99 2.82 50.99 80.28
tiger2 46.27 16.42 31.34 5.97 70.15 75.74
cli�bar 51.52 24.24 69.70 7.58 60.30 77.27

jp1 18.09 78.13 84.38 3.78 89.14 99.41
jp2 39.30 55.02 55.02 16.59 93.80 97.03

wdesk 13.68 57.26 32.30 10.01 90.47 93.96
wbook 98.80 100 99.83 8.95 99.86 99.90

David2 36.44 90.69 38.55 94.23 98.70 100
car 99.33 87.33 92 57.33 99.33 100

matrix 3 6 1 2 52 52
soccer 16 31.33 36 37.33 69.33 69.33
deer 12.68 4.23 18.31 4.23 95.77 100

skiing 58.33 10 15 1.67 58.33 96.67
jumping 36.42 84.35 10.22 3.19 95.53 99.04
Dudek 100 100 100 79 100 100

Mhyang 85.67 77.67 94.67 100 100 100
boy 99.33 99.33 97.33 30 92 99.67

average 51.38 55.48 49.40 30.50 85.01 91.31

Table 2: Percentage of correctly tracked frames (success rate) for SCFT and
the �ve other trackers. Bold red font indicates best results,blue italics font
indicates second best.

shows the percentage of frames (precision) where the predicted target center373

is within the given threshold distance from the ground truthcenter.374

Success plot. By analogy to the precision plot that shows percentages375

of frames corresponding to several threshold distances of the ground truth,376

the authors in [33] argue that using one success rate value atan overlap ratio377

of 0:5 may not be representative. As suggested in [33], we use the success378

plot showing the percentages of successful frames at the ORsvaried from 0379

to 1.380

CLE and OR plots. Two other types of plots are used in our exper-381

iments to analyze in depth the compared methods : 1) the center location382

error versus the frame number presented in �gure 6, and 2) theoverlap ratio383

versus the frame number presented in �gure 7. These plots areuseful for384

monitoring and comparing the behaviors of several trackersover time for a385

given video sequence. We �nally note that we averaged the results over �ve386

runs in all our experiments.387
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Figure 6: Center location error plots for 12 video sequences.
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Figure 7: Overlap ratio plots for 12 video sequences.
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video SPT SCMT AST MSIT SAT SCFT

David 36.09 33.81 68.57 26.71 10.48 9.96
girl 8.97 201.27 53.42 66.15 10.01 9.29

faceocc 116.84 5.07 85.43 23.36 14.26 5.58
tiger1 17.14 107.74 38.06 74.86 14.91 15.65
tiger2 22.81 189.50 29.15 44.58 16.13 10.25
cli�bar 22.11 77.31 35.35 73.72 25.33 13.67

jp1 35.21 17.74 16.66 97.08 7.03 4.75
jp2 30.58 69.44 45.15 39.47 7.25 4.21

wdesk 79.92 34.17 80.97 122.62 11.12 14.31
wbook 11.27 5.09 8.68 131.57 11.87 5.91

David2 39.74 4.12 9.18 3.67 5.68 3.04
car 6.65 6.98 4.92 34.67 6.16 4.51

matrix 43 79.87 57.74 74.82 26.23 26.23
soccer 35.46 87.91 58.29 32.18 22.18 23.96
deer 39.66 56.79 54.58 96.52 7.42 5.39

skiing 9.83 122.16 192.04 226.70 44.19 7.75
jumping 22.01 7.41 90.03 55.75 11.21 8.15
dudek 6.11 4.28 4.74 15.08 9.92 8.14

Mhyang 17.14 20.40 4.52 2.49 7.98 2.31
boy 3.42 3.09 3.97 43.65 7.09 7.42

average 30.20 56.71 47.07 64.28 13.82 9.52

Table 3: Average location errors in pixels forSCFT and the �ve other
trackers. Bold red font indicates best results,blue italics font indicates
second best.

4.2. Experimental result388

4.2.1. Overall performance389

The overall performance for several trackers is summarizedby the average390

values in the tables 2 and 3 (last rows), as well as the averageprecision and391

success plots for the whole dataset (�gure 8). All the metricsused for overall392

performance evaluation demonstrate that our proposed method outperforms393

all the other trackers, achieving an average success rate of91:31% and an394

average localization error lower than 10 pixels. A major advantage of using395

success and precision plots is to allow choosing the appropriate tracker for a396

speci�c situation given the application requirements (e.g. high, medium, or397

low accuracy). In our experiments, the success and precision curves show the398

robustness ofSCFT for all application requirements.SCFT is also the only399

tracker to reach 80% in precision for an error threshold of 15pixels, and to400

produce a success rate exceeding 60% when the required OR is 80%. Except401

for SAT that realized the second best overall performance, and MSIT that402

had the last rank, the rankings of the other trackers are di�erent depending403

on the considered metric. In the following subsections, theexperimental404

results are discussed in details.405
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Figure 8: Average success and average precision plots for allthe sequences.

4.2.2. Long-term occlusion406

We evaluated the six methods in face tracking under long-term partial oc-407

clusion (up to 250 consecutive frames). In thefaceoccand wbook, the tracked408

face remains partially occluded by an object several times for a long period.409

Some trackers drift away from the target to track the occluding object, which410

is mainly due to appearance model contamination by featuresbelonging to411

the occluding object. Our method was able to track the faces successfully412

in almost all the frames under severe occlusion. The local predictions of a413

few detected features were su�cient forSCFT to achieve an accurate global414

prediction. Our target model may erroneously include features from the415

occluding object, but since we evaluate their motion consistency and predic-416

tive power, the corresponding local predictions will be scattered in the voting417

space and have small weights in the global localization function. The error418

plots for faceoccshows that SCMT and SAT also achieved good performances419

when the target was occluded (e.g. between frames 200 and 400). In fact,420

SCMT and SAT are also designed to handle occlusions, respectively through421

a scheme considering unoccluded patches, and a voting-based method that422

predicts the target center.423

In the wdesksequence, the tracked face undergoes severe partial occlu-424

sions while moving behind a desk.SCFT , SAT and SCMT track the target425

correctly until frame #400 where the person performs large displacements426

causing SCMT to drift away from the face. BothSCFT and SAT continue427

the tracking successfully while the tracked person hides behind a desk, and428

our method achieved the best success rate of 93:96%.429
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The success plots of long-term occlusion videos forSCFT and SAT show430

that both trackers can achieve more than 80% success rate as long as the431

required overlap ratio is lower than 0:5. Both trackers also had the two432

best precision curves, butSCFT performed signi�cantly better under high433

requirement in accuracy (i.e. location error threshold lower than 15 pixels).434

As expected, the precision curve of MSIT is located below the others, since435

the holistic appearance model is not e�ective for a target undergoing severe436

occlusions.437

4.2.3. Presence of distractors438

The third and fourth rows of �gure 10 present results of face tracking in439

moderately crowded scenes (four persons). In this experiments, our goal is440

to test the distinctiveness of the trackers. The success andprecision plots441

for this category clearly show thatSCFT and SAT are ranked respectively442

�rst and second regardless of the application requirements. This is mainly443

explained by the use of SIFT features that are proven to be e�ective in444

distinguishing a target face among a large number of other faces [36, 37, 38].445

In the jp1 video, we aim to track a face in presence of three other distract-446

ing faces, moving around the target and partially occludingit several times.447

The corresponding OR and CLE plots show that the proposedSCFT method448

produces the most stable tracking at the lowest error duringalmost all the449

608 video frames. Although the success rates of 89.14%, 84.38%, and 78.13%450

respectively for SAT, AST, and SCMT indicate good performances, the last451

two trackers drift twice (�rst at frame#530 and a second timeat frame #570)452

to track distracting faces occluding or neighboring the target. We can also453

see in the OR and CLE plots that SAT drifts considerably threetimes, espe-454

cially between frames #341 and #397 when the tracked face region (person455

with a black t-shirt in the middle of the scene) is mostly occluded. However,456

neither the presence of similar objects near the target nor partial occlusion457

situations a�ected our SCFT tracker. The high performance of the proposed458

method in these situations is due to the distinctiveness of SIFT keypoints,459

in addition to the reliance on local predictions of the most salient features,460

even if outliers (from the background, neighboring or occluding faces) can be461

present in the feature pool.462

In the jp2 video, we track a walking person in the presence of four other463

randomly moving persons. The target crosses in front or behind distractors464

that may occlude it completely for a short period. All the �ve other methods465

confused the target with an occluding face, at least for a fewframes after full466
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Figure 9: Success and precision plots for long-term occlusion, distractors,
and background clutter videos.
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Figure 10: Tracking results for several trackers on the video sequencesDavid,
faceocc, jp1, jp2, and tiger1 (from top to bottom).

occlusion. Nevertheless,SCFT is able to recover tracking correctly as soon467

as a small part of the target becomes visible. For both distractors sequences468

jp1 and jp2, SCFT produced simultaneously the highest success rate and469

the lowest average error.470

4.2.4. Illumination change, camera motion471

The video sequenceDavid is recorded using a moving camera, following472

a walking person. The scene illumination conditions changegradually as the473

person moves from a dark room to an illuminated area. The facealso under-474

goes signi�cant pose change during movement. All the trackers, except AST,475

were able to track the face successfully in more than 60% of the frames. Once476

again, SCFT achieved the best success rate and the lowest average error.477

This experiment shows the e�ciency of our appearance model,allowing the478
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tracker deal robustly with illumination variation. Our method is also not479

a�ected by large and continuous camera motion since features are detected480

wherever the space reduction method shows a signi�cant likelihood of �nding481

the target. On the other hand, in-plane rotations are handled e�ciently in482

the global prediction function since we exploit the information on keypoint483

local orientation changes.484

4.2.5. Out-of-plane rotation485

The target person's face in thegirl video, exhibits pose change and out-of-486

plane rotations abruptly. SPT, SAT, andSCFT were able to track the face487

correctly in more than 80% of the frames.SCFT achieved the best success488

rate, handling e�ciently pose change and partial occlusion. Our tracking489

was accurate as long as the girl's face was at least partly visible. We lost the490

target when the face was turned away from the camera, but we were able to491

recover tracking quickly as soon as it partially reappeared.492

4.2.6. Background clutter, articulated object493

The main di�culty with the cli�bar , tiger1, and tiger2 videos is the clut-494

tered background whose the appearance may disrupt the tracker. For this495

category, the success and precision curves ofSCFT are located above the496

others, showing the advantage of our method for all the tested thresholds of497

OR and CLE. Always based on the success and precision plots, wecan see498

that SAT and SPT were ranked respectively second and third. It is note-499

worthy that both methods include discriminative aspects facilitating track-500

ing under such conditions. In fact, SPT uses a discriminative appearance501

model based on superpixel segmentation while SAT utilizes information on502

the background color distribution to evaluate the trackingquality.503

In the Cli�bar sequence, a book is used as a background having a sim-504

ilar texture to that of the target. SCFT outperformed signi�cantly all the505

competing methods in both success rate and average locationerror. AST,506

SAT, and SPT also performed relatively well, taking into account the di�-507

culty of the sequence. Indeed, the target undergoes abrupt in-plane rotations508

and drastic appearance change because of high motion blur. The proposed509

tracker is hardly a�ected by these di�culties since it continues adapting510

the appearance model by including/removing keypoints, andhandling pose511

change through keypoint orientations.512

In the tiger1 and tiger2 sequences, the target exhibits fast movements513

in a cluttered background with frequent occlusions. Owing to partial pre-514
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dictions that localize the target center using a few visiblekeypoints, SCFT515

had the highest percentages of correct tracks for both videos. SAT also516

overcomes the frequent occlusion problem via its voting mechanism that pre-517

dicts the target position from available features. The other methods fail to518

locate the stu�ed animal, but SPT had relatively better results due to its dis-519

criminative model facilitating the distinction between target superpixels and520

background superpixels. Note that the tracked object intiger1 and tiger2 is521

a deformable stu�ed animal. The predictions of features located on articu-522

lated parts are consequently inconsistent with the overallconsensus, but this523

issue is e�eciently handled by the use ofspatial consistencyand predictive524

power that re
ect the predictors' reliability. These features may remain in525

P and continue predicting the target position without a�ecting the global526

result (because of lowpredictive powerand spatial consistency). Our feature527

pool may also erroneously include outliers from the background, identi�ed528

as non-persistent to be removed from the model.529

4.2.7. Sensitivity to the number of features530

One of the most challenging situations encountered in our dataset is the531

partial occlusion. The target faces in thefaceocc, wdesk, and wbook videos532

undergo severe long-term occlusions causing the number of detected features533

to decrease drastically. Since local features detection represents a critical534

component for part-based trackers, we propose to study the impact of the535

number of features on SCFT's performance. We considered thevideo se-536

quencesfaceocc, wdesk, and wbook, and analyzed the number of detected537

features on every video frame. We computed the average CLE value for each538

subset of frames having their numbers of collaborating features within the539

same interval (spanning 10 values). This allows us to createa scatter plot540

representing the average CLE versus the number of collaborating features541

(�gure 11). To investigate the relationship between the number of features542

and the CLE, we model the plot by �tting a fourth degree predictor function543

and a linear function. The plot shows that the smallest numbers of features544

produce an average CLE not exceeding nine pixels. After that,the �tted545

fourth degree function decreases before stabilizing around the mean value of546

four pixels when more than 30 features are detected. Regarding the linear547

function (y = ax + b), it is obvious to expect that the coe�cient a would be548

negative since the CLE becomes lower when the number of features increases.549

However, a high absolute value fora would suggest that the algorithm re-550

quires a large number of features to achieve accurate tracking. In our case,551
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Figure 11: Sensitivity of SCFT's localization error (in pixels) to the number
of collaborating features (sequencesfaceocc, wdesk, and wbook). Data points
from the scatter plot correspond to interval centers.

the linear coe�cients estimation (a = � 0:0064; b = 5:1107) demonstrate552

that the error barely increases when the number of collaborating features553

diminishes from the maximum (i.e. 345 features) to one feature. This as-554

certainment con�rms that the collaboration of a few number of unoccluded555

features is su�cient for our tracker to ensure accurate tracking.556

4.2.8. Sensitivity to the saliency factors557

In this section, we analyze the e�ect of the saliency factorsseparately on558

the tracking performance. We created three versions ofSCFT :559

ˆ v-! : the persistence indicator! is not used in the global prediction560

function;561

ˆ v- : the predictive power is completely removed from the algorithm;562

ˆ v-�: the spatial consistency matrix is not updated, and is the same for563

all the features (� = � init ).564

The tables 4 and 5 respectively present the percentages of correctly tracked565

frames and the average location errors forSCFT and the three other versions566

of the tracker on a subset of �ve video sequences. The selected sequences567

cover almost all the situations in table 1, and each video includes several568
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video v-! v- v-� SCFT

girl 43.56 56.44 63.55 85.94
tiger1 71.03 78.87 74.63 80.28
David2 89.20 95.51 97.53 100

deer 88.18 92.52 92.25 100
boy 80.22 91.15 88.06 99.67

average 74.44 82.90 83.20 93.18

Table 4: Percentage of correctly tracked frames for four versions of the pro-
posed tracker. v-! : the tracker do not use persistence indicators to weight
local predictions, v- : the tracker does not evaluate the predictive power of
features, v-�: the spatial consistency matrix is the same for all the features.
Bold red font indicates best results,blue italics font indicates second best.

di�culties. The obtained results show that the tracking performance is more569

a�ected when the persistence indicator is not considered (version v-! ). In570

fact,, v- and v-� outperformed v- ! for all the �ve sequences. This result571

can be explained by the fact that with the removal of one factor among572

 and �, the remaining one continues to take into account the precision573

of the feature's past predictions, since both the spatial consistency and the574

predictive power are designed to assess the feature quality. However, if the575

indicator ! is not considered, the prediction step no longer takes into ac-576

count the occurence level of the keypoint. Furthermore, these experiments577

demonstrated the complementarity of the three saliency factors, as the best578

performance is obtained when the three indicators are evaluated and up-579

dated during tracking. We �nally note that the saliency evaluation method580

proposed in this work can be adapted or applied directly to a wide range of581

tracking algorithms that are based on the voting of local features.582

4.2.9. Sensitivity to parameters583

Most of the parameters of our algorithm were set to default values for all584

the video sequences. In our experimental work, only three parameters were585

tuned to optimize the performance of the tracker:586

ˆ N � : the number of particles de�ning the reduced search space, where587

keypoints are detected;588

ˆ � min : the minimum matching rate that is required to update the ap-589

pearance model;590
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video v-! v- v-� SCFT

girl 17.98 14.49 13.24 9.29
tiger1 17.02 16.89 16.98 15.65
David2 8.06 6.36 5.11 3.04

deer 10.19 8.13 7.63 5.39
boy 11.16 7.98 7.51 7.42

average 12.88 10.77 10.09 8.16

Table 5: Average location errors in pixels for four versions of the proposed
tracker. v-! : the tracker does not use persistence indicators to weight local
predictions, v- : the tracker does not evaluate the predictive power of fea-
tures, v-�: the spatial consistency matrix is the same for all the features.
Bold red font indicates best results,blue italics font indicates second best.

parameters girl tiger1 David2 deer boy
N � 30 100 100 20 50
� min 0.55 0.8 0.3 0.2 0.2
! min 0.3 0.4 0.1 0.4 0.4

Table 6: Parameter values used inSCFT with each video from the subset
including girl, tiger1, David2, deer, and boy.

ˆ ! min : the persistence threshold used to determine if the featureshould591

be removed from the model;592

In order to evaluate the sensitivity ofSCFT to parameters, we considered593

the same subset of �ve sequences and ran our tracker multipletimes on each594

video, using the optimized parameters of the other videos. The optimized595

parameter values for each video are shown in table 6.596

The results of these runs are reported in the tables 7 and 8, where the597

A.D. column shows the Average Di�erence between the result obtained with598

the optimized set of parameters and those obtained with the parameter sets599

of the four other sequences. As we can see, 13.33% is the most signi�cant600

average decrease in sucess rate (for thegirl video), while the highest average601

increase in localization error is that of theDavid2 sequence (4.3 pixels).602

On the other hand, parameter change had a very low impact on the video603

sequencesdeer (1.41% as average decrease in sucess rate) andboy (1.30 pixels604

as average increase in localization error). In general,SCFT was able to605

achieve a stable tracking for all the runs and the performance of our tracker606
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girl tiger1 David2 deer boy A.D.

girl 85.94 81.19 75.26 72.58 61.41 13.33
tiger1 76.06 80.28 70.42 80 80.28 3.59
David2 94.60 88.45 100 94.04 95.53 6.84

deer 97.18 100 97.18 100 100 1.41
boy 95 93 90.67 98 99.67 5.50

Table 7: Percentage of correctly tracked frames obtained bycrossing the
parameter values between the video sequences. Each row presents the results
obtained for a video sequence, by using its optimized set of parameters, as
well as the parameter sets of four other sequences. The A.D. column shows
the Average Di�erence (in percentages) between the result obtained with
the optimized set of parameters (bold font) and those obtained with the
parameter sets of the four other sequences.

was not dramatically a�ected by the change of parameters.607

4.2.10. Computational cost608

The proposed tracker was implemented using Matlab on a PC with a Core609

i7-3770 CPU running at a 3.4 GHz. Our algorithm is designed to maintain610

a reasonable computational complexity. In fact, keypointsare extracted in611

a limited image region determined by particle �ltering to reduce the com-612

putational cost of feature detection and local descriptor creation. Moreover,613

the particle �lter generates N = 400 particles, among which only a limited614

subset ofN � particles is used as a reduced search space on the current frame,615

and for generating theN particles on the subsequent frame. In practice, the616

computation time of SCFT is determined mostly by the number of detected617

object keypoints voting for the target position, which mainly depends on618

the object size and texture. As an example, the video sequences tiger1 and619

tiger2, with a small target size, are processed at approximately 1.3 second620

per frame. On the other hand, when the object size is larger such as in the621

faceoccsequence, our algorithm requires from 2 to 3 seconds to �nd the tar-622

get on a given frame. The table 9 provides a computation time comparison623

for the six trackers on theDavid2 sequence that represents a typical scenario624

of face tracking. According to the performed measures, our algorithm re-625

quires in average 1.2 second to process one frame from theDavid2 sequence,626

which is the second best execution time. AST achieved the shortest time,627

processing one frame in 0.42 second. Note that all the compared methods are628
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girl tiger1 David2 deer boy A.D.

girl 9.29 11.58 12.66 12.55 13.29 3.23
tiger1 16.18 15.65 21.17 18.31 16.27 2.32
David2 8.43 9.27 3.04 6.07 5.58 4.30

deer 7.63 7.03 7.63 5.39 9.77 2.63
boy 8.98 8.33 8.88 8.67 7.42 1.30

Table 8: Average location errors obtained by crossing the parameter values
between the video sequences. Each row presents the results obtained for
a video sequence, by using its optimized set of parameters, as well as the
parameter sets of four other sequences. The A.D. column showsthe Average
Di�erence (in pixels) between the result obtained with the optimized set of
parameters (bold font) and those obtained with the parameter sets of the
four other sequences.

SPT SCMT AST MSIT SAT SCFT

time/video 1685.74 1738.34 225.95 1179.85 649.68 646.76
time/frame 3.14 3.24 0.42 2.20 1.21 1.20
ranking 5 6 1 4 3 2

Table 9: Processing time comparison forSCFT and the �ve other trackers on
the video sequenceDavid2. time/video: the total processing time (seconds),
time/frame: the average processing time for one frame (seconds).

implemented in Matlab by the authors and run on our describedcomputer.629

5. Conclusion630

This paper proposes a novel and e�ective part-based tracking algorithm,631

based on the collaboration of salient local features. Feature collaboration is632

carried out through a voting method where keypoint patches impose local ge-633

ometrical constraints, preserving the target structure while handling pose and634

scale changes. The proposed algorithm uses saliency evaluation as a key tech-635

nique for identifying the most reliable and useful features. Our conception636

of feature saliency includes three elements:persistence, spatial consistency,637

and predictive power. The persistenceindicator allows to eliminate outliers638

(e.g. from the background, or an occluding object) and expired features639

from the target model, while thespatial consistencyand the predictive power640
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indicators penalize predictors that do not agree with past consensus. The641

experiments on publicly available videos from standard benchmarks show642

that SCFT outperforms state-of-the-art trackers signi�cantly. Moreover, our643

tracker is insensitive to the number of tracked features, achieving accurate644

and robust tracking even if most of the local predictors are undetectable.645
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