
Bloofi: Multidimensional Bloom Filters

Adina Crainiceanua,∗, Daniel Lemireb

aUS Naval Academy, USA
bLICEF Research Center, TELUQ University of Quebec, Canada

Abstract

Bloom filters are probabilistic data structures commonly used for approximate membership problems in many areas of
Computer Science (networking, distributed systems, databases, etc.). With the increase in data size and distribution of
data, problems arise where a large number of Bloom filters are available, and all them need to be searched for potential
matches. As an example, in a federated cloud environment, each cloud provider could encode the information using
Bloom filters and share the Bloom filters with a central coordinator. The problem of interest is not only whether a
given element is in any of the sets represented by the Bloom filters, but which of the existing sets contain the given
element. This problem cannot be solved by just constructing a Bloom filter on the union of all the sets. Instead, we
effectively have a multidimensional Bloom filter problem: given an element, we wish to receive a list of candidate
sets where the element might be.

To solve this problem, we consider 3 alternatives. Firstly, we can naively check many Bloom filters. Secondly, we
propose to organize the Bloom filters in a hierarchical index structure akin to a B+ tree, that we call Bloofi. Finally,
we propose another data structure that packs the Bloom filters in such a way as to exploit bit-level parallelism, which
we call Flat-Bloofi.

Our theoretical and experimental results show that Bloofi and Flat-Bloofi provide scalable and efficient solutions
alternatives to search through a large number of Bloom filters.

Keywords: Bloom filter index, multidimensional Bloom filter, federated cloud, data provenance

1. Introduction

Bloom filters [3] are used to efficiently check whether
an object is likely to be in the set (match) or whether
the object is definitely not in the set (no match).
False positives are possible, but false negatives are
not. Due to their efficiency, compact representation,
and flexibility in allowing a trade-off between space
and false positive probability, Bloom filters are pop-
ular in representing diverse sets of data. They are
used in databases [23], distributed systems [5], web
caching [14], and other network applications [4]. For
example, Google BigTable [6] and Apache Cassan-
dra [29] use Bloom filters to reduce the disk lookups for
non-existent data. As digital data increases in both size
and distribution, applications generate a large number

∗Corresponding author. Tel.: 00+1+ 410 293-6822; fax:
00+1+410 293-2686.

Email addresses: adina@usna.edu (Adina Crainiceanu),
lemire@gmail.com (Daniel Lemire)

of Bloom filters, and these filters need to be searched to
find the sets containing particular objects.

Our work is motivated by highly distributed data
provenance applications, in which data is tracked as it is
created, modified, or sent/received between the multiple
sites participating in the application, each site maintain-
ing the data in a cloud environment. Bloom filters can
be maintained by each individual site and shared with
a central location. For each piece of data, we need to
find the sites holding the data. Thus, we may need to
search through a large number of Bloom filters stored at
the central location.

Indexing Bloom filters is different than indexing
generic objects to improve search time. There is one
level of indirection between the elements searched for,
and the objects directly indexed by the index structure.
In particular, each Bloom filter is a compact representa-
tion of an underlying set of elements. The question of
interest is an all-membership query: given a particular
element (not a Bloom filter), which underlying sets con-
tain that element? The query subject is an element, but

Preprint submitted to Information Systems February 11, 2015

the objects we are indexing and searching through are
Bloom filters, so what we are creating is a meta-index.
The traditional index structures, such as hash indexes,
B+trees, R trees etc. and their distributed versions [1]
do not directly apply in this case as we are indexing
Bloom filters and not the keys themselves. All we are
given from each site is a Bloom filter.

There has been significant work in using Bloom fil-
ters in various applications, and developing variations
of Bloom filters. Counting filters [14, 15] support dele-
tions from the Bloom filter; compressed Bloom fil-
ters [21] are used with web caching; stable Bloom fil-
ters [11] eliminate duplicates in streams, spectral Bloom
filters [7] extend the applicability of Bloom filters to
multi-sets, multi-class Bloom Filter (MBF) [20] use per-
element probabilities. Yet there has been few attempts
to accelerate queries over many Bloom filters, what we
call the multidimensional Bloom filter problem, even
though our problem is closely related to signature file
methods (see Section 8) where one seeks to index set-
value attributes.

To solve this problem, we propose Bloofi (Bloom
Filter Index), a hierarchical index structure for Bloom
filters. Bloofi provides probabilistic answers to all-
membership queries and scales to tens of thousands of
Bloom filters. When the probability of false positives
is low, Bloofi of order d (a tunable parameter) can pro-
vide O(d logd N) search cost, where N is the number
of Bloom filters indexed. Bloofi also provides support
for inserts, deletes, and updates with O(d logd N) cost
and requires O(N) storage cost. In designing Bloofi,
we take advantage of the fact that the bitwise OR be-
tween Bloom filters of same length, constructed using
the same hash functions, is also a Bloom filter. The
resulting Bloom filter represents the union of the sets
represented by the individual Bloom filters. This prop-
erty allows us to construct a tree where the leaf levels
are the indexed Bloom filters, and the root level is a
Bloom filter that represents all the elements in the sys-
tem. This tree is used to prune the search space (elimi-
nate Bloom filters as candidates for matches) while pro-
cessing all-membership queries. Our performance eval-
uation shows that Bloofi performs best when the false
positive probability of the union Bloom filter (a Bloom
filter that is the union of all the indexed Bloom filters) is
low and provides O(d × logd N) search performance in
most cases, with O(N) storage cost and O(d × logd N)
maintenance cost. Bloofi could be used whenever a
large number of Bloom filters that use the same hash
functions need to be checked for matches.

Bloom filters are constructed over bitmaps, i.e., vec-
tor of Booleans. With bitmaps, we can exploit bit-level

parallelism: on a 64-bit processor, we can compute the
bitwise or between 64 bits using a single instruction. We
use bit-level parallelism with Bloofi to optimize the con-
struction of the data structure. However, we have also
designed an alternative data structure that is designed
specifically to exploit bit-level parallelism (henceforth
Flat-Bloofi). Though not as scalable as Bloofi, it can be
fast when the number of Bloom filters is moderate.

This article is an extended version of “Bloofi: A
Hierarchical Bloom Filter Index with Applications to
Distributed Data Provenance” [9] published in the 2nd
International Workshop on Cloud Intelligence Cloud-I
2013. The paper was completely revised, and the new
version introduces an additional data structure, Flat-
Bloofi, a new implementation for Bloofi that improves
the performance by an order of magnitude, and a new
performance evaluation.

The rest of this paper is structured as follows: Sec-
tion 2 describes a distributed data provenance applica-
tion for Bloofi. Section 3 briefly reviews the concept
of Bloom filter. Section 4 introduces Bloofi, a hierar-
chical index structure for Bloom filters. Section 5 in-
troduces the maintenance algorithms and a theoretical
performance analysis. Section 6 introduces Flat-Bloofi,
a data structure for the multidimensional Bloom filter
problem, designed to exploit bit-level parallelism. Sec-
tion 7 shows the experimental results. We discuss re-
lated work in Section 8 and conclude in Section 9.

2. Motivation: application to distributed data
provenance

In this section we describe the distributed data prove-
nance application that motivated our work on Bloofi.
Let us assume that a multinational corporation with hun-
dreds of offices in geographically distributed locations
(sites) around the world is interested in tracking the doc-
uments produced and used within the corporation. Each
document is given a universally unique identifier (uuid)
and is stored in the local repository, in a cloud envi-
ronment. Documents can be sent to another location
(site) or received from other locations, multiple docu-
ments can be bundled together to create new documents,
which therefore are identified by new uuids, documents
can be decomposed in smaller parts that become docu-
ments themselves, and so on. All these “events” that are
important to the provenance of a document are recorded
in the repository at the site generating the event. The
events can be stored as RDF triples in a scalable cloud
triple store such as Rya [25]. The data can be mod-
eled as a Directed Acyclic Graph (DAG), with labeled
edges (event names) and nodes (document uuids). As

2

documents travel between sites, the DAG is in fact dis-
tributed not only over the machines in the cloud environ-
ment at each site, but also over hundreds of geograph-
ically distributed locations. The data provenance prob-
lem we are interested in solving is finding all the events
and document uuids that form the “provenance” path of
a given uuid (all “ancestors” of a given node in the dis-
tributed graph).

Storing all the data, or even all the uuids and their lo-
cation, in a centralized place is not feasible, due to the
volume and speed of the documents generated globally.
Fully distributed data structures, such as Chord [28] or
P-Ring [10], require even more communication (mes-
sages) than the centralized solution, increasing the la-
tency and bandwidth consumption, so they are also not
feasible due to the volume and speed of the documents
generated globally. Moreover, local regulations might
impose restrictions on where the data can be stored.
However, since all the global locations belong to the
same corporation, data exchange and data tracking must
be made possible.

Without any information on the location of a uuid,
each provenance query for a uuid must be sent to all
sites. Each site can then determine the local part of
the provenance path, and return it. However, the prove-
nance might contain new uuids, so a new query needs to
be sent to each site for each new uuid connected to the
original uuid, until no new uuids are found. This recur-
sive process could consume significant bandwidth and
latency in a geographically distributed system.

To minimize the number of unnecessary messages
sent to determine the full provenance of an object, each
local site maintains a Bloom filter of all the uuids in the
local system. Updates to the Bloom filter are periodi-
cally propagated to a centralized location (the headquar-
ters for example). Since the Bloom filters are compact
representations of the underlying data, less bandwidth
is consumed when Bloom filters are sent versus send-
ing the actual data. At the central location, a Bloofi
index is constructed from the Bloom filters, and every
time a provenance query for a uuid is made, the Bloofi
index is used to quickly determine the sites that might
store provenance information for the given uuid. If the
query load is too high and having the Bloofi index in a
single location affects performance and/or availability,
multiple Bloofi indexes could be constructed in several
locations.

3. Bloom filters

Checking for the presence of a value in a set or simi-
lar data structure can be expensive, especially if the data

structure is stored on disk. When we expect many re-
quests for values that are not present, it is helpful to
have an auxiliary data structure that will quickly dismiss
these requests. Bloom filters can serve this purpose.

Each Bloom filter [3] is a bit array (or bitmap) of
length m constructed by using a set of k hash functions.
The empty Bloom filter has all bits 0. To add an element
to the filter, each of the k hash functions maps the new
element to a position in the bit array. The bit in that po-
sition is turned to 1. To check whether an element is a
member of the set represented by the Bloom filter, the
k hash functions are applied to the test element. If any
of the resulting k positions is 0, the test element is not
in the set, with probability 1. If all k positions are 1,
the Bloom filter matches the test element, and the test
element might be in the set (it might be a true positive
or a false positive). There is a trade-off between the size
of the Bloom filter and the probability of false positives,
pfalse, returned by it. We have that pfalse ≈ (1 − e−kn/m)k

assuming that there are n elements in the filter [22]; the
probability is minimal when k = m/n ln 2. The proba-
bility pfalse can be lowered by increasing the size of the
Bloom filter (m). For a fixed number of elements (n), the
probability goes to zero exponentially. In the rest of the
paper we assume that all the Bloom filters indexed have
the same length and use the same set of hash functions.

4. Indexing Bloom filters

We are given a collection of N Bloom filtersB. Given
a query for a value, we want to find all Bloom filters that
are a match. We are most interested in the case where
there are relatively few such Bloom filters and when a
sequential search is potentially inefficient.

4.1. Bloofi: a hierarchical Bloom filter index
Bloofi, the Bloom filter index, is based on the follow-

ing idea. We construct a tree: the leaves of the tree are
the Bloom filters to be indexed, and the parent nodes
are Bloom filters obtained by applying a bitwise OR on
the child nodes. This process continues until the root is
reached. The index has the property that each non-leaf
Bloom filter in the tree represents the union of the sets
represented by the Bloom filters in the sub-tree rooted
at that node. As a consequence, if an object matches a
leaf-level Bloom filter, it matches all the Bloom filters
in the path from that leaf to the root. Conversely, if a
particular Bloom filter in Bloofi does not match an ob-
ject, there is no match in the entire sub-tree rooted at
that node.

Using Bloofi, a membership query starts by first
querying the root Bloom filter: if it does not match the

3

queried object, then none of the indexed sets contain
the object and a negative answer is returned. If the root
does match the object, the query proceeds by checking
which of the child Bloom filters matches the object. The
query continues down the path of Bloom filters match-
ing the object, until the leaf level is reached. In a bal-
anced tree, the height of Bloofi is logarithmic in the
number of Bloom filters indexed, and each step in the
query process goes down one level in the tree. In the
best case, a query with a negative answer is answered in
constant time (check the root only), and a query with a
positive answer is answered in logarithmic time. How-
ever, if multiple paths in the index are followed during
the query process, the query time increases. Section 5.1
introduces our heuristics for Bloofi construction such
that the number of “misleading” paths in the Bloofi is
reduced (similar Bloom filters are in the same sub-tree).

There are many possible implementations for Bloofi:
as a tree similar with binary search trees, AVL trees,
B+ trees, etc. Due to the flexibility allowed by having a
balanced tree with the number of child pointers higher
than two, we implement Bloofi like a B+ trees. We
start with an order parameter d, and each non-leaf node
maintains l child pointers: d ≤ l ≤ 2d for all non-root
nodes, and 2 ≤ l ≤ 2d for the root. Each node in Bloofi
stores only one value, which is different than general
search trees. For the leaves, the value is the Bloom filter
to be indexed. For all non-leaf nodes, the value is ob-
tained by applying bitwise OR on the values of its child
nodes. Throughout the paper we use the usual defini-
tions for tree, node in a tree, root, leaf, depth of a node
(the number of edges from root to the node), height of a
tree (maximum depth of a node in the tree), sibling, and
parent.

Fig. 1 shows an example of a Bloofi index of order 2.
Each internal node has between 2 and 4 child pointers.
The leaf level of the tree contains the original Bloom fil-
ters indexed by the Bloofi index, with identifiers 1, 2, 3,
4, 5, and 6. The node identifiers are shown here for ease
of presentation, but they are also used in practice during
updates and deletes to identify the node that needs to be
updated or deleted (see Section 5.2 and Section 5.3 for
details). In the rest of the paper, we often use “node X”
to refer to the node with identifier X. At the next higher
level, the values are obtained by applying bitwise OR
on the values of the children nodes, so the value of the
node 7 is the bitwise OR between values of nodes 1, 2,
3, and 4. The process continues until the root is reached.

We use the following notation. Given a node, its
parent is written node.parent. The ordered set of its
children is written by node.children. The number of
children is written node.nbDesc with the convention

1 1 1 1 1

Id:9

0 1 0

1Id:7 1 1 1 0 0 0 0

1
0
0
0
0
0
0
0

Id:1

0
1
0
0
0
0
0
0

Id:2

0
0
1
0
0
0
0
0

Id:3

0
0
0
1
0
0
0
0

Id:4

0 0 0 0 1 0 1 0 Id:8

0
0
0
0
1
0
0
0

Id:5

0
0
0
0
0
0
1
0

Id:6

Figure 1: Bloofi Tree of Order 2

that node.nbDesc is zero for a leaf node. For i =
0, . . . node.nbDesc − 1, node.children[i] is the (i + 1)th

children of the node.
Each node has a corresponding bit array indicated by

node.val. We let | be the bitwise OR operation so that
when node is not a leaf, the bit array is just the aggrega-
tion of the bit array of the children:

node.val =node.children[0].val
∣∣∣ node.children[1].val

∣∣∣ · · ·∣∣∣ node.children[node.nbDesc − 1].val.

Individual bit values in the bit array are accessed as
node.val[i] for i = 0, . . . ,m.

Since Bloofi is a balanced tree, with each internal
node having at least d child nodes, where d is the or-
der of the tree, the height of a Bloofi index of order d is
at most blogdNc, where N is the number of Bloom filters
to index.

4.2. Search
The search algorithm (Algorithm 1) returns the iden-

tifiers of all the leaf-level Bloom filters that match a
given object in the subtree rooted at the given node. It
first checks whether the current node value matches the
object (line 3). If not, then none of the Bloom filters
in that sub-tree match the object, so the empty set is
returned (line 4). If the current node does match the ob-
ject, then either it is a leaf, in which case it returns the
identifier (line 8), or it is an inner node, in which case
the findMatches function is called recursively for all
of its child nodes (lines 12–13).

Example. Consider a query for object value 4 in
the Bloofi tree in Figure 1. The findMatches func-
tion in Algorithm 1 is invoked with arguments root

4

Algorithm 1 : findMatches(node,o)
1: //RETURN VALUE: the identifiers of leaves in the sub-

tree rooted at node with Bloom filters matching the ob-
ject o

2: //if node does not matches the object, return empty set,
else check the descendants

3: if not match(node.val,o) then
4: return ∅;
5: else
6: //if this node is a leaf, just return the identifier
7: if node.nbDesc = 0 then
8: return node.id;
9: else

10: //if not leaf, check the descendants
11: returnList = ∅;
12: for i = 0; i < node.nbDesc; i++ do
13: returnList.add(findMatches(node.children[i],o));
14: return returnList;

and 4. In line 3 of Algorithm 1, the algorithm checks
whether the value of the root matches 4. For sim-
plicity of presentation, assume that there is only one
hash function used by the Bloom filters, the function
is h(x) = x mod 8, and the elements in the underly-
ing set are integers. Since root.val[4] is 1, the root
matches the queried object 4 and the search proceeds
by invoking the findMatches function for each of
its child nodes. The first child node, node 7, does not
match the queried object, so findMatches for that
sub-tree returns ∅. The second child node of the root,
node 8, matches 4, so the search continues at the next
lower level. Node 5 matches the queried object, and is a
leaf, so the findMatches function returns the identi-
fier 5. Leaf 6 does not match the queried object, so that
findMatches call returns ∅. Now, the recursive call
on node 8 returns with the value {5}, and finally the call
on the root returns {5}, which is the result of the query.

Search cost. The complexity of the search process is
given by the number of findMatches invocations.
In the best case, if there are no leaf-level Bloom filters
matching a given object, the number of Bloom filters to
be checked for matches is 1 (the root). To find a leaf-
level Bloom filter that matches a query, the number of
findMatches invocations is O(d logd N) in the best
case (one path is followed, and at each node, all chil-
dren are checked to find the one that matches) and O(N)
in the worst case (since the maximum number of nodes
in a Bloofi tree is dN + (N − 1)/(d − 1)e, the search cost
is O(N) if all nodes need to be checked for matches).

5. Bloofi maintenance

We introduce the algorithms for inserting, deleting,
and updating Bloom filters.

5.1. Insert

Ideally, when inserting Bloom filters, we would like
to keep them in partitions so that the overlap between
different partitions is small. That is, we would like sim-
ilar Bloom filters to be grouped together as much as
possible. And, conversely, we would like Bloom fil-
ters from different partitions to be as different as pos-
sible. Such problems are commonly NP-hard (e.g., the
Minimum Graph Bisection Problem) though they can be
sometimes approximated efficiently. We leave a more
formal investigation of this problem to future work and
use a heuristic.

The algorithm for inserting (Algorithm 2) finds a leaf
which is “close” to the input Bloom filter in a given met-
ric space, and inserts the new Bloom filter next to that
leaf. The intuition is that similar Bloom filters should
be in the same sub-tree to improve search performance.
As distance metric, we use the Hamming distance. That
is, we count the number of bits that differ. This can
be computed quickly by computing the cardinality of
the bitwise exclusive OR of two bit arrays along with
fast functions to count the number of 1s in the result-
ing words (e.g., Long.bitCount in Java). We could
consider other distance metric, and we experiment with
Cosine and Jaccard metrics in Section 7.2.6.

The new Bloom filter is inserted by first updating the
value of the current node by computing the bitwise or
with the value of the filter to be inserted (since that node
will be in the sub-tree), and then recursively calling the
insert function on the child node most similar with the
new value (line 10). Once the most similar leaf node is
located, a new leaf is created for the new Bloom filter
(line 33) and is inserted as a sibling of the node by call-
ing the insertIntoParent function (Algorithm 3).
This function takes as parameters the new node newEn-
try, and the most similar node to it, node. We insert
newEntry as a sibling of node. If the number of children
in the parent is still at most 2d, the insert is complete.
If an overflow occurs, the node splits (lines 9-16) and
the newly created node is returned by the function. The
splits could occasionally propagate up to the root level.
In that case, a new root is created, and the height of the
Bloofi tree increases (line 18).

Example. Consider the Bloofi tree in Fig. 1 and
assume that we insert the Bloom filter with value
“00100100”. The new node is inserted as a child of node
7 (Hamming distance between the new node and nodes

5

Algorithm 2 : insert(newBloomFilter, node)
1: // D is a distance function between bit arrays
2: //insert into the sub-tree rooted at the given node
3: //RETURN: null or pointer to new child if split occurred
4: //if node is not leaf, direct the search for the new filter

place
5: if node.nbDesc > 0 then
6: //update the value of the node to contain the new filter
7: node.val = node.val

∣∣∣ newBloomFilter;
8: //find the most similar child and insert there
9: find child C minimizing D(C.val, newBloomFilter)

10: newSibling = insert(newBloomFilter,C);
11: //if there was no split, just return null
12: if newSibling = null then
13: return null;
14: else
15: //there was a split; check whether a new root is

needed
16: if node.parent = null then
17: //root was split; create a new root
18: newRoot = new BFINode() ; // create new node
19: newRoot.val = node.val

∣∣∣ newSibling.val;
20: newRoot.parent = null;
21: newRoot.children.add(node);
22: newRoot.children.add(newSibling);
23: root = newRoot;
24: node.parent = newRoot;
25: newSibling.parent = newRoot;
26: return null;
27: else
28: newSibling =

insertIntoParent(newSibling, node)
29: return newSibling;

//current node is root or not
//there was a split or not

30: else
31: //if node is leaf, need to insert into the parent
32: //create a node for newBloomFilter
33: newLeaf = new BFINode();
34: newLeaf.val = newBloomFilter;
35: //insert the new leaf into the parent node
36: newSibling = insertIntoParent(newLeaf, node);
37: return newSibling;

//current node is leaf or not

Algorithm 3 : insertIntoParent(newEntry,
node)

1: //insert into the node’s parent, after the node pointer
2: //RETURN: null or pointer to new child if split occurred
3: node.parent.children.addAfter(newEntry, node);
4: newEntry.parent = node.parent;
5: //check for overflow
6: if node.nbDesc > 2d then
7: return null;
8: else
9: //overflow, so split

10: P = node.parent;
11: P′ = new BFINode();
12: move last d children from P to P′;
13: update parent information for all children of P′;
14: re-compute P.val as the OR between its children val-

ues;
15: compute P′.val as the OR between its children values;
16: return P′;

1 1 1 1 1 1 1 0
Id:9

1
Id:7

1 1 0 0 0 0 0

1
0
0
0
0
0
0
0

Id:1

0
1
0
0
0
0
0
0

Id:2

0
0
1
0
0
0
0
0

Id:3

0 0 1 1 0 1 0 0
Id:11

0
0
1
0
0
1
0
0

Id:10

0
0
0
1
0
0
0
0

Id:4

0 0 0 0 1 0 1 0
Id:8

0
0
0
0
1
0
0
0

Id:5

0
0
0
0
0
0
1
0

Id:6

Figure 2: Bloofi Tree After Insert and Split

6

7 and 8 is 4, so let’s assume that node 7 is chosen as the
closest node), which needs to split. The resulting Bloofi
tree is shown in Fig. 2.

Theorem 1 gives the cost of the insert algorithm for
Bloofi. The cost metric we use to measure the perfor-
mance of an operation in Bloofi is the number of Bloofi
nodes accessed by that operation: either the Bloom filter
value is read/modified by that operation, or the parent or
children pointers in the node are read/modified.

Theorem 1 (Insert Cost). The number of Bloofi nodes
accessed during the insert operation in Bloofi is
O(d logd N), where d is the order of the Bloofi index and
N is the number of Bloom filters that are indexed.

PROOF. The following components are part of an insert
operation:

1. The values of all nodes in the path from the root
to the new leaf are updated to reflect the newly in-
serted Bloom filter. Updating the value of a node
means computing the OR with the newly inserted
Bloom filter, so only the old and the new Bloom fil-
ter values need to be accessed. The cost of the up-
date is therefore constant (2). The height of Bloofi
tree is at most blogdNc and at each level we per-
form a constant amount of work, so the total cost
for that update is O(logd N).

2. At each level in the tree, a search for the most simi-
lar child node is performed (line 9), and the cost of
that search is O(d), so total cost due to the search
for the placement of the new leaf is O(d logd N).

3. The cost of a split is O(d) since there are at most
2d + 1 children for a node. In the worst case, the
split propagates up to the root, and the height of
the tree is O(logd N), so the worst case cost for the
split operations is O(d logd N).

From the three points, we see that the cost of the insert
operation is O(d logd N).

5.2. Delete
The delete algorithm (Algorithm 4) deletes the given

node from the Bloofi index. When the procedure is first
invoked with the leaf to be deleted as argument, the
pointer to that leaf in the parent is deleted. If the parent
node is not underflowing (at least d children are left),
the Bloom filter values of the nodes in the path from the
parent node to the root are re-computed to be the bitwise
OR of their remaining children (line 32) and the delete
procedure terminates. If there is an underflow (lines 11–
29), the parent node tries to redistribute its entries with

a sibling. If redistribution is possible, the entries are re-
distributed, parent information in the moving nodes is
updated, and the Bloom filter values in the parent node,
sibling node, and all the way up to the root are updated
(lines 15–21). If redistribution is not possible, the par-
ent node merges with a sibling, by giving all its entries
to the sibling (lines 23–29). The Bloom filter value in
the sibling node is updated, and the delete procedure is
called recursively for the parent node. Occasionally, the
delete propagates up to the root. If only one child re-
mains in the root, the root is deleted and the height of
the tree decreases (lines 7–9).

Example. Assume that the node with id 5 and value
“00001000” is deleted from Fig. 1. The resulting tree,
after deletion of node 5 and redistribution between 8 and
7 is shown in Fig. 3.

Theorem 2 (Delete Cost). The number of Bloofi nodes
accessed during the delete operation in Bloofi is
O(d logd N), where d is the order of the Bloofi index and
N is the number of Bloom filters that are indexed.

PROOF. (1) Once the reference to a node is deleted
from its parent in the Bloofi tree (constant cost oper-
ation), the values of the nodes from the deleted node
to the root need to be recomputed, so the total cost is
O(d logd N). (2) Occasionally, a redistribute or merge is
needed, with a cost in O(d). In the worst case, the merge
and delete propagates up to the root, so the worst case
cost for merge is O(d logd N). From (1) and (2) it fol-
lows that the cost of the delete operation is O(d logd N).

When subjected to many insertions and deletions,
though the Bloofi tree remains balanced, it could be that
the partition of the Bloom filters as per their Hamming
distance could degrade in quality. The performance of
Bloofi could diminish in such instances and it could be-
come necessary to reconstruct the Bloofi data structure.

5.3. Update
Object insertions in the underlying set lead to updates

of the Bloom filters, so we expect the update operation
for Bloofi to be quite frequent. Instead of treating a
Bloom filter update as a delete followed by insert, we
use an “in-place” update. If the Bloofi tree becomes in-
efficient in routing due to updates (too many false posi-
tives during search) the Bloofi tree can be reconstructed
from scratch in batch mode. Algorithm 5 shows the
pseudo-code for the update algorithm. The algorithm
takes as parameters the leaf node corresponding to the
updated value and the new Bloom filter value for that
node. All the Bloom filters in the path from the leaf to
the root are updated by OR-ing with the new value.

7

Algorithm 4 : delete(childNode)

1: //find the parent node
2: parentNode = childNode.parent;
3: //remove the reference to the node from its parent
4: parentNode.children.remove(childNode);
5: //check whether the tree height needs to be reduced
6: if parentNode = root AND parentNode.nbDesc = 1

then
7: root = parentNode.children.get(0);
8: root.parent = null;
9: return null

10: //if not, check if underflow at the parent
11: if parentNode.underflow then
12: //underflow, so try to redistribute first
13: sibling = sibling of parentNode;
14: if sibling.canRedistribute then
15: //redistribute with sibling
16: remove some children from sibling to even out

the number of children
17: insert new children into parentNode
18: update .parent information for all nodes moved
19: //update value of all nodes involved, up to the

root
20: sibling.val = OR of all children value;
21: recomputeValueToTheRoot(parentNode);
22: else
23: //merge with sibling
24: move all children from parentNode to sibling;
25: update .parent information for all nodes moved
26: //recompute sibling value
27: sibling.val =OR of all childrenValue
28: //delete the parentNode
29: delete(parentNode);

//merge or redistribute
30: else
31: //no underflow
32: //re-compute the value of all Bloom filters up to

the root
33: recomputeValueToTheRoot(parentNode);

Algorithm 5 : update(leaf,newBloomFilter)

1: //update all values on the path from leaf to the root
2: node = leaf;
3: repeat
4: node.val = node.val

∣∣∣ newBloomFilter;
5: node = node.parent;
6: until node = null

1 1 1 1 0
Id:9

0 1 0

1Id:7 1 1 0 0 0 0 0

1
0
0
0
0
0
0
0

Id:1

0
1
0
0
0
0
0
0

Id:2

0
0
1
0
0
0
0
0

Id:3

0 0 0 1 0 0 1 0 Id:8

0
0
0
1
0
0
0
0

Id:4

0
0
0
0
0
0
1
0

Id:6

Figure 3: Bloofi Tree After Delete and Redistribute

1 1 1 1 1

Id:9

0 1 1

1Id:7 1 1 1 1 0 0 0

1
0
0
0
0
0
0
0

Id:1

0
1
0
0
0
0
0
0

Id:2

0
0
1
0
0
0
0
0

Id:3

0
0
0
1
0
0
0
0

Id:4

0 0 0 0 1 0 1 1 Id:8

0
0
0
0
1
0
0
0

Id:5

0
0
0
0
0
0
1
1

Id:6

Figure 4: Bloofi Tree After Update

8

Example. In the Bloofi tree in Fig. 1, assume that
we update the value of node 6 to be “00000011”. The
values of all the nodes in the path from node 6 to the
root are OR-ed with “00000011” and the resulting tree
is shown in Fig. 4.

Theorem 3 (Update Cost). The number of Bloofi
nodes accessed during the update operation in Bloofi is
O(logd N), where d is the order of the Bloofi index and
N is the number of Bloom filters that are indexed.

5.4. Improving pruning efficiency

In Bloofi, each non-leaf node value is the bitwise
OR of its children values. As the total number of ob-
jects in the underlying sets indexed by Bloofi increases,
the probability of false positive results returned by the
Bloom filters at the higher levels in the tree increases.
In the worst case, all bits in the Bloofi nodes at higher
levels in the tree could be one. This leads to decreased
pruning efficiency of the higher levels in the tree, as
more false positive paths are followed during search. To
improve upon the number of Bloom filters that need to
be checked for matches during a query, we propose the
following heuristic.

During the insert procedure, we do not split a node
that has all the bits set to one, even if the node is full.
This could stop the splitting a little too early, but it
avoids creating multiple levels in the tree with all the
bits set to one. Our experimental results in Section 7.2
show that the search cost is indeed improved by using
this heuristic when the root level value has all bits set to
one. Effectively, Bloofi can be viewed as a forest instead
of a tree.

Alternatively, we could dynamically change the size
of the Bloom filters when the false positive probability
at the root reaches 1. In such a case, if the application
allows, we could reconstruct the base Bloom filters to
have a lower false positive probability, and reconstruct
the Bloofi tree from bottom-up. The index construction
time for 100 000 Bloom filters was only about 15 sec-
onds in our experiments, so periodic reconstruction of
the index is a viable solution.

6. Bit-level parallelism

Bloofi keeps the Bloom filters as they are, and only
adds new (aggregated) Bloom filters to accelerate the
queries. However, in a worst case scenario, Bloofi may
need to check many Bloom filters. In such a case, Bloofi
may not be faster, and could even be slower, than a naive
approach which merely checks every Bloom filter.

Checking for membership in a Bloom filter is equiv-
alent to checking the value of a few bits at random loca-
tions in a bitmap. Though fast, this operation does not
exploit bit-level parallelism: the processor’s ability to
do several bitwise operations in one instruction.

Let us assume that we have a 64-bit processor. We
propose a new approach (Flat-Bloofi) which stores the
data corresponding to 64 Bloom filters in a packed
data structure. Each Bloom filter is backed by a m-bit
bitmap. In their place, we construct a single array of
64-bit integers of length m (henceforth a Flat-Bloofi ar-
ray). The first 64-bit integer corresponds to the first bit
of each of the 64 bitmaps. And so on. Thus, the value
of the ith bit of the jth bitmap is the value of the jth bit
of the ith integer in Flat-Bloofi array. Given N Bloom
filters, we create dN/64e Flat-Bloofi arrays. When N is
not a multiple of 64, some bits are unused in one of the
Flat-Bloofi arrays.

We organize Flat-Bloofi using the following data
structures:

• We maintain ζ Flat-Bloofi arrays. With this data,
we can index L = ζ × 64 Bloom filters.

• We use an array β of L bits, of which exactly N are
set to true. This indicates which index locations are
in use. Thus if a Bloom filter is deleted from the
index and then a new one inserted, we can reuse
the space.

• We use a hash table which maps from Bloom fil-
ter identifiers to internal index values (in the range
[0, L)). We also maintain an array of identifiers of
length up to L which gives us the identifier of the
Bloom filter stored at a given index. Combined to-
gether, the hash table and the array of identifiers
provide a two-way index from Bloom filter identi-
fiers to index locations.

Queries. Given k hash functions, we map a given value
to k index locations in the range [0,m). For each Flat-
Bloofi array, we retrieve the corresponding k 64-bit in-
tegers and compute their bit-wise AND aggregate. We
then iterate over the bits having a value of true: each
one corresponds to a matching Bloom filter. We use our
array of identifiers to recover the corresponding Bloom
filter identifiers. Thus if we have N Bloom filters, we
will access no more than k × ζ 64-bit integers from
the Flat-Bloofi arrays. Iterating through the set bits
can be done quickly using fast functions such as Java’s
Long.bitCount.

9

Insertion. When inserting a new Bloom filter, using the
bit array β, we first seek an available index. If none
is found, then we create a new array of 64-bit integers,
thus, effectively, making available 64 new index posi-
tions. The bit array β, the array of identifiers, and the
hash table mapping to index values are updated. Finally,
we iterate through all of the set bits in the bitmap of the
new Bloom filter and set the corresponding bits in the
Flat-Bloofi array using a bit-wise OR operation.

Deletion. When deleting a Bloom filter, we use the
hash table to recover its index using its identifier. The
key is then removed from the hash table. The corre-
sponding bit in β is set to false. There are then two
possibilities.

• If this Bloom filter was stored alone in a Flat-Bloofi
array, then the Flat-Bloofi array is removed. We
also remove the corresponding 64 bits in β as well
as the corresponding 64 entries in the array of iden-
tifiers. We scan the values of the hash table, and
deduct 64 from all index entries exceeding index
of the deleted Bloom filter.

• Otherwise, we go through the Flat-Bloofi array and
unset the bits corresponding to the Bloom filter us-
ing a bit-wise AND operation. Because we do not
keep a copy of the original Bloom filter, we need to
update every single component of the Flat-Bloofi
array.

We believe that this compaction approach should pro-
vide reasonable performance and memory usage in a
context where deletions and insertions are frequent.
In the worst case scenario, however, and after many
deletions, we could have N Flat-Bloofi arrays indexing
N Bloom filters. To guard against such inefficiencies,
we would need more aggressive compaction strategies,
but we leave them to future work.

Note We could further accelerate the queries by re-
placing many (ζ) Flat-Bloofi arrays, with a single array
containing words of ζ × 64 bits. This would improve
memory locality. However, it would make compaction
more expensive.

Update. Updating a Bloom filter is easiest: we go
through the corresponding Flat-Bloofi array and set the
corresponding bits as we did with an insertion.

7. Experimental evaluation

We evaluate Bloofi’s and Flat-Bloofi’s search perfor-
mance and maintenance cost for different number and

size of Bloom filters, different underlying data distribu-
tions, and, for Bloofi, different similarity metrics used
for Bloofi construction and different order values. We
also compare Bloofi and Flat-Bloofi’s performance with
the “naive” case, where the Bloom filters are searched
linearly, without any index. We show that in most cases,
Bloofi achieves logarithmic search performance, with
low maintenance cost, regardless of the underlying data
distribution.

7.1. Experiments setup

We implemented Bloofi and Flat-Bloofi in Java
and ran our experiments using Oracle’s JDK version
1.7.0 45. For Bloom filters, we use the implementation
provided by Skjegstad [27], modified to use faster hash-
ing and a more efficient BitSet implementation [19].
The experiments were run on a HP Z820 Workstation
with an Intel Xeon E5-2640 processor (2.50 GHz) hav-
ing 6 cores. Our test machine had 32 GB of RAM
(DDR3-1600, 4×8 GB). We did not use parallelism and
all our data structures are in RAM.

7.1.1. Performance metrics
As performance metrics we use:

• search bf-cost: the number of Bloom filters
checked to find the one(s) matching a queried ob-
ject, averaged over 50 000 searches

• search time: the average time, in milliseconds, to
find all the Bloom filters matching a queried object

• storage cost: space required to store the Bloom
filters and/or the associated index structure, if ap-
plicable. For Bloofi, we estimate this cost as the
number of bytes for a Bloom filter, multiplied by
the number of nodes in the Bloofi tree, including
the leaves; for Flat-Bloofi, the storage cost is esti-
mated as the number of bytes for a Bloom filters,
multiplied by number of Bloom filters rounded up
to a multiple of 64 (Flat-Bloofi uses longs for stor-
age); for the “naive” case, the storage cost is esti-
mated as the number of bytes for a Bloom filters,
multiplied by number of Bloom filters

• maintenance bf-cost: the average number of Bloofi
nodes accessed during an insert, delete, or update
operation

• maintenance time: the average time, in millisec-
onds, for an insert, delete, or update operation

10

7.1.2. Parameters varied
As described in Section 3, a Bloom filter is a bit ar-

ray of length m constructed using a set of k hash func-
tions. In practice, when constructing a Bloom filter,
one does not specify the length and the number of hash
functions. It is unlikely that the average engineer would
know which values to pick. Rather, one specifies the ex-
pected maximal number of elements to be stored, nexp,
(a possibly large number) as well as the desired proba-
bility of having a false positive, ρfalse, (e.g., 1%). One
can reasonably expect an engineer to be able to set these
values from domain knowledge. Then the number of
hash functions and the size of the bitmaps can be com-
puted using the following formulas k = d− ln ρfalse/ ln 2e
and m =

⌈
k/ ln 2 ∗ nexp

⌉
.

In the experiments we vary the following parameters:

• N: the number of Bloom filters indexed;

• d: Bloofi order;

• m: the size, in bits, of the Bloom filters indexed: m
is varied indirectly, by specifying nexp;

• n: the number of elements in each Bloom filter in-
dexed;

• ρfalse: the desired probability of false positives in
the Bloom filters indexed;

• index construction method: iterative, where we in-
sert Bloom filters one by one using the algorithm in
Section 5.1, or bulk. For the bulk construction, we
first sort all Bloom filters such that the first Bloom
filter is the one closest to the empty Bloom filter,
the second is the filter closest to the first Bloom
filter, etc., and then construct the Bloofi tree by al-
ways inserting next to the right-most leaf;

• similarity measure: the measure used to define
“closeness” during insert. We consider Hamming,
Cosine and Jaccard distances;

• data distribution: nonrandom, with non-
overlapping ranges for each Bloom filter: each
Bloom filter i contains n integers in the range
[i × n, (i + 1) × n) and random, with overlapping
ranges for data in the Bloom filters: each Bloom
filter i contains n random integers in a randomly
assigned range.

For each experiment we vary one parameter and use
the default values shown in Table 1 for the rest. We

parameter value

N — Number of Bloom filters indexed 1000
d — Bloofi order 2
m — Bloom filter size (bits) 100 992
n — Nb of elements in each Bloom filter 100
ρfalse — Desired probability of false positives 0.01
Construction method iterative
Similarity measure Hamming
Data distribution nonrandom

Table 1: Default Values for Parameters

run each experiment 10 times, and we report the aver-
ages over the last 5 runs. Since our values x are inte-
gers, we picked hash functions at random of the form
h(x) = ax mod m where a is an odd integer defining
the hash function. We found that this choice gave good
performance in our case.

7.2. Performance results

7.2.1. Varying number of Bloom filters indexed N
Fig. 5a shows the increase in search time as N in-

creases from 100 to 100 000 for Bloofi, Flat-Bloofi, and
Naive case. Note the logarithmic scale on both X and
Y axes. For Bloofi, the increase in search time is log-
arithmic as long as the false positive probability (pfalse)
at the root is less than one (N ≤ 1000), but the increase
is higher than logarithmic after that, due to high value
for pfalse at the high levels of the tree. However, even
for 100 000 filters, Bloofi still performs orders of mag-
nitude better than the “naive” case. The difference be-
tween “naive” case and Bloofi is not so big when only a
few Bloom filters are checked, likely because the search
time depends not only on the number of Bloom filters
checked, but also on the locality of nodes in memory.
We see that the curves for Bloofi and Flat-Bloofi inter-
sect each other. For small numbers of Bloom filters,
Flat-Bloofi performs better, due to its superior memory
locality and exploitation of bit-level parallelism. How-
ever as the number of Bloom filters increases, Bloofi
performs better, due to its superior pruning abilities.

For Bloofi, using bulk construction leads to improved
search performance, since a global sort of all the Bloom
filters is performed before the bulk insert, while the
incremental construction is greedy and might not lead
to optimal placement. However, the cost of sorting is
O(N2) in our implementation, which leads to high in-
dex construction time for the bulk construction.

To evaluate the effect of the in-place update for Bloofi
introduced in Section 5.3, we performed experiments
where the Bloofi tree is built incrementally using only

11

10-4

10-3

10-2

10-1

100

101

102

102 103 104 105

S
e
a
rc

h
 T

im
e
 (

m
s)

Number of Bloom Filters Indexed

Flat
Bloofi

Bloofi-Bulk
Naive

Flat-AU
Bloofi-AU
Naive-AU

(a) Search Time vs. N

101

102

103

104

105

102 103 104 105

S
e
a
rc

h
 B

F
-C

o
st

Number of Bloom Filters Indexed

Ideal
Bloofi

Bloofi-Bulk
Bloofi-AU

Naive

(b) Search BF-Cost vs. N

103

104

105

106

107

102 103 104 105

S
to

ra
g

e
 C

o
st

 (
k
B

)

Number of Bloom Filters Indexed

Flat
Bloofi

Bloofi-Bulk
Naive

(c) Storage Cost vs. N

Figure 5: Varying Number of Bloom Filters N

half of the elements in each Bloom filter. The rest of
the elements are inserted then in each Bloom filter and
Bloofi is updated in-place. We perform a similar exper-
iment for Flat-Bloofi and the Naive case. The AU (Af-
ter Updates) curves in Fig. 5a show the search time in
the final data structure. As we expected, for Flat-Bloofi
and Naive, the After Updates and normal curves are al-
most identical, since the properties of these data struc-
tures are not affected by updates. However, the Bloofi-
AU and Bloofi curves are also almost identical, which
shows that the in-place update maintains the search per-
formance of the Bloofi tree.

Fig. 5b shows similar trends for the search bf-cost
(average number of Bloom Filter nodes accessed for
a search). The search bf-cost performance metric is
not used for Flat-Bloofi and Naive, as for these data
strictures, all the Bloom filters are checked during a
search. In the “ideal” case for Bloofi, when exactly
one path from root to the leaf is followed during search,
the search bf-cost is approximately l logl N + 1 if each
non-leaf node has l children, and the search bf-cost in-
creases logarithmically with N. In our experiments, the
increase in search bf-cost is logarithmic as long as the
false positive probability (pfalse) at the root is less than
one (N ≤ 1000), but the increase is higher than logarith-
mic after that, due to high value for pfalse at the high lev-
els of the tree. However, even for 100 000 filters, Bloofi
still performs two orders of magnitude better than the
“naive” case. If the size of the Bloom filters increases,
the search cost decreases to the “ideal” cost, as shown
in Fig. 8a.

To evaluate the effects of the heuristic introduces in
Section 5.4, we run the same experiment without using
the heuristic, so always splitting the root even if all the
bits were set to 1. When there are Bloofi nodes with all
bits 1, both the search bf-cost and the search time when
the heuristic is used are lower than when the heuris-
tic is not used (search bf-cost is 104.29 vs. 110.17 for
N = 10 000 and 876.33 vs. 974.92 for N = 100 000).

This shows that using the heuristic increases the search
performance of Bloofi index when the false positive
probability at the high levels in the tree is high.

Fig. 5c shows the increase in the storage cost for
Bloofi, Flat-Bloofi, and Naive, as the number of Bloom
filters indexed increases. In all cases, the storage cost
increases linearly with N. The storage cost is lowest
for Naive case, as no extra information besides the ac-
tual Bloom filters is maintained. Flat-Bloofi has a small
overhead, only because sometimes rounds up the space
to multiples of 64, so it can take advantage of the bit-
level parallelism. The storage cost for Bloofi is also
quite low, as the number of non-leaf nodes in the Bloofi
tree is less than N. The storage cost for bulk construc-
tion (Bloofi-bulk) is slightly higher than for incremental
construction (Bloofi), because constructing a tree by al-
ways inserting in the right-most leaf leads in general to
skinnier trees, with more levels and more nodes.

Fig. 6a shows the cost, in terms of time, of main-
taining Bloofi, Flat-Bloofi, and the Naive data struc-
ture. The maintenance cost for Naive is negligible,
as the Bloom filters are just maintained in a list. For
Flat-Bloofi, the maintenance cost increases only slightly
with the number of Bloom filters, as the cost of the dif-
ferent operations in Flat-Bloofi depends mainly on the
size of the Bloom filters and the number of bits turned
on, and does not depend much on the number of Bloom
filters. For Bloofi, the trend is increasing for the insert
and delete, as there are more nodes in the Bloofi tree
that get impacted by insert or delete. The cost of up-
dates does not increase after the root becomes all one
and does not split, because we use in-place updates and
the height of the tree does not increase after N > 10000.

We find the relative cost of insert, delete, and update
for Bloofi and Flat-Bloofi quite interesting. For Bloofi,
update is the cheapest operation, both as time and num-
ber of Bloom filters accessed (see Fig. 6b), since only
the values of the nodes from the leaf to the root need
to be updated (OR-ed with the new value). However,

12

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102 103 104 105

O
p

e
ra

ti
o
n

 T
im

e
 (

m
s)

Number of Bloom Filters Indexed

Flat-Insert
Bloofi-Insert
Naive-Insert
Flat-Delete

Bloofi-Delete

Naive-Delete
Flat-Update

Bloofi-Update
Naive-Update

(a) Maintenance Time vs. N

101

102

103

102 103 104 105

A
v
e
ra

g
e
 N

b
 N

o
d

e
s

A
cc

e
ss

e
d

Number of Bloom Filters Indexed

Bloofi-Insert
Bloofi-Delete

Bloofi-Update

(b) Maintenance BF-Cost vs. N

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25

A
v
e
ra

g
e
 N

b
 N

o
d

e
s

A
cc

e
ss

e
d

Bloofi Order

Bloofi-Insert
Bloofi-Delete

Bloofi-Update

(c) Maintenance BF-Cost vs. d

Figure 6: Maintenance Cost

for Bloofi, the insert operation is the most expensive
as bf-cost, but delete becomes the most expensive as
time, with the increased number of indexed Bloom fil-
ters. The reason for this difference is that while during
a delete operation fewer nodes are accessed (no need
to search for the place in the tree), we do more work
at each node — we need to re-compute the values of
each node in the path from the leaf to root, by OR-ing
all the children value. During insert, the values of the
nodes get updated by OR-ing with the newly inserted
Bloom filter. For Flat-Bloofi, when inserting a sparse
Bloom filter, only a few words need to change, so it is
fast. When deleting, we do not know which bit changed,
so we have to set them all to zero, which takes longer.
If the Bloom filters would be more dense, it is possible
that deletions could be faster than insertions. During up-
dates, we do not know how the new Bloom filter differs
from the old one, and we cannot compute the difference
(with XOR) since we no longer have the old one, so we
have to go through the set bits in the Bloom filter, and
set them all to 1. The running time is close to an insert,
which is what we see in Fig. 6a. Comparing Bloofi and
Flat-Bloofi, Bloofi’s updates are cheaper, as Bloofi only
needs to OR the new value with a few Bloom filters. For
inserts, Flat-Bloofi is faster, as it does not need to search
(and compute distances) the tree for the best place to in-
sert the new node. For deletes, Bloofi is faster when
the number of Bloom filters is below 10 000 (and the
pfalse at the root is not 1), but Flat-Bloofi’s cost does not
depend much on the number of Bloom filters, so it be-
comes faster for large number of Bloom filters indexed.

The maintenance bf-cost for Bloofi, as the average
number of Bloom filters accessed during a maintenance
operation, is shown in Fig. 6b. The maintenance bf-cost
increases logarithmically with N (Fig. 6b), as expected
from Theorems 1–3. The bf-cost of insert is higher than
the delete, as the place for the new node needs to be
found during insert. The update cost is the lowest, as
we use in-place updates, and no splits, merges, or redis-

tributions are needed. The update bf-cost does not in-
crease after the root of the Bloofi tree becomes one, as
the root does not split in that case, so the height of the
Bloofi tree does not increase with the increased number
of indexed Bloom filters.

7.2.2. Varying Bloofi order d
Fig. 7a and Fig. 7b show the search time and search

bf-cost as the order of Bloofi increases. The search bf-
cost and search time increase as d increases, since the
search cost is proportional to d logd N. For a constant
N, the function f (x) = x logx N is convex, with mini-
mum value when x = 2.718(e). The best search per-
formance is achieved for Bloofi tree of low order. The
search bf-cost obtained from experiments is close to the
ideal search cost for full trees (2d children per non-leaf
node), which shows that our algorithms for tree con-
struction perform well, and not many nodes outside of
the path from the root to the answer leaf are checked
during search. Bulk construction performs better than
incremental construction, due to the global sort. The
Bloofi and Bloofi-AU lines are almost identical, which
shows that our in-place update maintains the perfor-
mance of the Bloofi tree.

The storage cost decreases with order (Fig. 7c), as the
number of non-leaf nodes in a Bloofi tree of order d is
between N−1

2d−1 and N−1
d−1 , so higher the order, the lower the

overhead of storing the constructed Bloofi tree. While
the storage cost is lower for higher orders, the search
cost is higher (Fig. 7b), so there is a trade-off between
search and storage cost. We expect search performance
to be more important than storage in practice, and the
storage cost of Bloofi is similar with the Naive case
even in the worst case (at most twice as much space
is needed for Bloofi as it is needed for the Naive case),
so we believe that Bloofi trees of low order will be used
more in practice. The storage cost for bulk construction
is slightly higher than for incremental construction, be-
cause always inserting into the right-most leaf leads to

13

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 5 10 15 20 25

S
e
a
rc

h
 T

im
e
 (

m
s)

Bloofi Order

Bloofi
Bloofi-Bulk

Bloofi-AU

(a) Search Time vs. d

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25

S
e
a
rc

h
 B

F
-C

o
st

Bloofi Order

Ideal-Skinny
Ideal-Full

Bloofi
Bloofi-Bulk

Bloofi-AU

(b) Search BF-Cost vs. d

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25

S
to

ra
g

e
 C

o
st

 (
M

B
)

Bloofi Order

Bloofi
Bloofi-Bulk

Bloofi-AU
Naive

(c) Storage Cost vs. d

Figure 7: Varying Bloofi Order d

skinnier, taller trees, with more nodes.
Fig. 6c shows the variation of maintenance bf-cost

with the order of Bloofi tree. The insert and delete
costs (O(d logd N)) increase with d, while the update
cost (O(logd N)) decreases with d.

7.2.3. Varying Bloom filter size
We vary the Bloom filter size m by varying the num-

ber of expected elements in the Bloom filter nexp from
100 to 100 000. m =

⌈
k/ ln 2 ∗ nexp

⌉
.

Fig. 8a shows the search bf-cost variation with the
Bloom filter size in a system with 100 000 total ele-
ments (1000 filters with 100 elements each). The search
bf-cost for Bloofi is always below Naive cost, and it de-
creases to the ideal cost as the size of the Bloom filters
increases and the false positive probability at the high
level nodes in Bloofi decreases. In fact, O(d logd N)
search cost is achieved as soon as pfalse < 1 for the root,
even if pfalse is close to 1 (0.993 in our experiments for
size 100 992).

The search time (Fig. 8b) also decreases for Bloofi
as pfalse at the higher levels is reduced, while the search
time for Naive case is almost constant. For small Bloom
filter sizes, the search time for the Naive case is slightly
lower than using Bloofi, likely due to memory locality.
The search time for Flat-Bloofi is lower than for Bloofi
when the pruning capabilities of Bloofi are reduced, due
to the efficient bit level parallelism exploited by Flat-
Bloofi. As the size of the Bloom filters increases, the
memory locality of Flat-Bloofi is reduced, and the trend
for the search time is upward, while the trend is down-
ward for Bloofi.

7.2.4. Varying the probability of false positives
Fig. 9a shows how the search bf-cost for Bloofi in-

creases as we increase the desired probability of false
positives in the Bloom filters indexed. As expected, the
bf-cost slowly increases as ρfalse and implicitly pfalse in-
creases, as the pruning capabilities of Bloofi are reduced

when pfalse increases. pfalse < 1 at the root for all the
ρfalse values tested in the experiment, so Bloofi’s perfor-
mance is close to the ideal case.

A more surprising result is shown in Fig. 9b. The
search time for the Naive case, Bloofi, and Flat-Bloofi
is decreasing in the experiment, even if the search bf-
cost is increasing. The main reason is the memory lo-
cality. As the ρfalse increases, the size of the Bloom fil-
ters decreases, leading to better memory locality proper-
ties. Flat-Bloofi, with its efficient exploitation of the bit-
level parallelism benefits the most from the low memory
footprint. This is consistent with the results shown in
Fig. 8b. A second reason for the decrease in the search
time for all cases is that the number k of hash functions
used for the Bloom filters decreases as ρfalse increases.
k = d− ln ρfalse/ ln 2e and decreases from 24 to 4 in the
experiment. As fewer hash functions are used, fewer
bits in the Bloom filters need to be checked for matches.
This contributes to the faster search time.

7.2.5. Varying the number of elements n

Fig. 9c shows how the search time varies with the
increase in n, the number of elements in the indexed
Bloom filters, as the size of the Bloom filters remains
constant. Flat-Bloofi provides the best performance in
this case, as it benefits from the memory locality and
bit-level parallelism, and the performance is almost con-
stant regardless of the actual number of elements in
the Bloom filter. Search time for Bloofi increases only
slightly as long as pfalse < 1 at the root, even when the
number of elements in the system is ten times larger
than the expected number of elements in a Bloom filter
(for n = 100, there are 100 000 elements in the system,
and nbElExp = 10 000). Bloofi’s performance degrades
as its pruning capabilities are reduced when pfalse = 1 at
the root. The search bf-cost for Bloofi varies in a similar
way (not shown).

14

101

102

103

103 104 105 106 107

S
e
a
rc

h
 B

F
-C

o
st

Bloom Filter Size (bits)

Ideal
Bloofi
Naive

(a) Search BF-Cost vs. Filter Size

10-3

10-2

10-1

103 104 105 106 107

S
e
a
rc

h
 T

im
e
 (

m
s)

Bloom Filter Size (bits)

Flat
Bloofi
Naive

(b) Search Time vs. Filter Size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

102 103 104 105

S
e
a
rc

h
 B

F
-C

o
st

Number of Bloom Filters Indexed

Hamming
Cosine

Jaccard

(c) Search BF-Cost vs. Metric vs. N

Figure 8

101

102

103

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Se
ar

ch
 B

F-
Co

st

Desired False Positive Probability

Ideal
Bloofi
Naive

(a) Search BF-Cost vs. ρfalse

10-3

10-2

10-1

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Se
ar

ch
 T

im
e

(m
s)

Desired False Positive Probability

Flat
Bloofi
Naive

(b) Search Time vs. ρfalse

10-3

10-2

10-1

100

100 101 102 103 104

Se
ar

ch
 T

im
e

(m
s)

Number of Elements in Bloom Filters

Flat
Bloofi
Naive

(c) Search Time vs. n

Figure 9

7.2.6. Varying similarity metric
During Bloofi construction, we use a similarity met-

ric to measure the similarity between two Bloom filters,
and this metric determines the location of the Bloom fil-
ters in Bloofi. In this section we experiment with several
metrics:

• Hamming(A, B) = |A xor B|,

• Jaccard(A, B) = 1 − |A and B|/|A or B|,

• and Cosine(A, B) = 1 − |A and B|/‖A‖2 × ‖B‖2,

where |A| is the number of 1s in the bit array A. The
search bf-cost is similar for all the metrics (Fig. 8c).
When Jaccard is used, the search cost is a little lower,
but the differences are small, and they might be just due
to chance. A similar trend was obtained for search time,
as shown in Fig. 10a. The search time is the lowest for
Jaccard, and highest for Hamming.

7.2.7. Varying underlying data distribution
We use the following distributions for the underly-

ing data in the Bloom filters: nonrandom, in which we
insert in each Bloom filter 0 ≤ i ≤ N the n integers
in the range [i × n, i × n + n), and random, in which
we insert in each Bloom filter n integers randomly cho-
sen from a random range assigned to that Bloom fil-
ter. n is the actual number of elements in the Bloom

filters, which is set to 100 for these experiments. In
the nonrandom case, there is no overlap between the
sets represented by different Bloom filters, while in the
random case, we could have overlap between the sets.
We expect that in a real scenario, the random case is
more common. The search cost is shown in Fig. 10b
and the search time is shown in Fig. 10c. We expected
the performance in the random case to be a little worse
than in the nonrandom case, since multiple Bloom fil-
ters might match a queried object. However, the overlap
of ranges in the nonrandom case was not enough to lead
to a substantial increase in the search cost or search time
for the nonrandom case, even if the number of results
was indeed larger for nonrandom case. The search per-
formance is similar for both distributions used, which
shows that Bloofi is robust to the underlying data distri-
bution.

7.3. Experimental results conclusion
Our experimental evaluation shows that:

• For Bloofi, the search cost increases logarithmic
with N, but gets worse if the false positive prob-
ability at the root is 1. For optimal performance,
the size of the Bloom filters should be based on the
estimate for the total number of elements in the en-
tire system. If the false positive probability at the
root is below 1, even if close to 1, the search cost
is O(d logd N).

15

10-3

10-2

10-1

100

102 103 104 105

S
e
a
rc

h
 T

im
e
 (

m
s)

Number of Bloom Filters Indexed

Hamming
Cosine

Jaccard

(a) Search Time vs. Metric vs. N

101

102

103

104

105

102 103 104 105

S
e
a
rc

h
 B

F
-C

o
st

Number of Bloom Filters Indexed

Bloofi-Random
Bloofi-Nonrandom

Naive

(b) Search BF-Cost vs. Data Distribution
vs. N

10-4

10-3

10-2

10-1

100

101

102

102 103 104 105

S
e
a
rc

h
 T

im
e
 (

m
s)

Number of Bloom Filters Indexed

Flat-Nonrandom
Bloofi-Nonrandom
Naive-Nonrandom

Flat-Random
Bloofi-Random
Naive-Random

(c) Search Time vs. Data Distribution vs. N

Figure 10

• For Flat-Bloofi, the search time increases with N.
For low number of Bloom filters, search time for
Flat-Bloofi is lower than for Bloofi.
• Search costs for Bloofi increase with order, since

search cost is in O(d logd N), so low order is pre-
ferred for Bloofi.
• Storage cost for Bloofi is O(N + N/d)
• For Bloofi, insert cost and delete cost are

O(d logd N), and update cost is O(logdN)
• Bulk construction gives slightly better search re-

sults, since the trees constructed with bulk con-
struction are skinnier. However, differences in per-
formance between bulk and incremental construc-
tion are small. The cost of sorting, which is the
first step in bulk construction, is O(N2) in our im-
plementation, so the operation is expensive. Our
experimental results show that the Bloofi algorithm
for insertion produces a tree close to the tree ob-
tained by using a global ordering of Bloom filters.
• The distance metric used to compare the “close-

ness” between Bloom filters does not have a big
effect on the search performance of the resulting
Bloofi tree, but the Jaccard distance seems to lead
to best search performance.

8. Related work

Part of the existing work related to Bloom filters [7,
11, 13, 14, 21] is concerned with extending or improv-
ing the Bloom filters themselves and does not deal with
the problem of searching through a large set of Bloom
filters.

Applications of the Bloom filters to web caching [14]
use multiple Bloom filters, but their number is in gen-
eral small and a linear search through the Bloom filters
is performed. [16] introduces an XML filtering system
based on Bloom filters, and uses a data structure similar
to Flat-Bloofi. Mullin [23] uses Bloom filters to reduce

the cost of semijoins in distributed databases. Most ap-
plications of Bloom filter [4, 6], use the Bloom filters
directly and do not search through a large number of
Bloom filters.

B+ trees [8] inspired the implementation of the Bloofi
tree. However, each node in Bloofi has only one value,
and the children of a node do not represent completely
disjoined sets, so multiple paths might be followed dur-
ing search.

A closely related idea to that of the multidimen-
sional Bloom filter problem dates back to superimposed
codes [26] and descriptor files [24]: descriptors (effec-
tively bit arrays) are searched through large files with
a hierarchical data structure constructed by OR-ing the
descriptions. When applied to set-valued attributes,
these descriptors are called “signatures”: each possi-
ble value is mapped to a fixed number of bit positions
that are set to true if the value is present, sets are con-
structed by setting all the bit positions corresponding
to all values. The S-tree [12, 17] is an implementation
of this idea which resembles Bloofi: signatures are or-
ganized in a similar tree structure using the Hamming
distance to aggregate similar signatures. S-trees are pri-
marily used to index set-valued attributes. Our problem
differs in that we are provided Bloom filters in a dis-
tributed setting, and must quickly locate which Bloom
filter matches a given query.

Our Flat-Bloofi approach is similar to the word-
parallel, bit-serial (WPBS) approach used for scanning
signatures [2, 18], except that our data structure is in-
memory, supports moderately fast deletion and does not
require dedicated hardware.

9. Conclusions and future work

We introduced Bloofi, a hierarchical index structure
for Bloom filters. By taking advantage of intrinsic prop-
erties of Bloom filters, Bloofi reduces the search cost

16

of membership queries over thousands of Bloom filters
and efficiently supports updates of the existing Bloom
filters as well as insertion and deletion of filters. Our
experimental results show that Bloofi scales to tens of
thousands of Bloom filters, with low storage and main-
tenance cost. In the extreme worst case, Bloofi’s perfor-
mance is similar with not using any index (O(N) search
cost), and in the vast majority of scenarios, Bloofi de-
livers close to logarithmic performance even if the false
positive probability at the root is close to (but less than)
one. When there are fewer Bloom filters, we found that
an alternative designed to exploit bit-level parallelism
(Flat-Bloofi) fared better.

We could pursue more advanced applications. For
example, Bloofi and Flat-Bloofi could be applied when
only current data from a moving window needs to be
maintained. If the window of interest is multiple days,
separate Bloom filters can be constructed for data col-
lected each day. Old Bloom filters can be deleted from
Bloofi, and new filters inserted, so only the objects in
the current window are represented in the Bloofi index.

10. Acknowledgements

Special thanks to C. Crainiceanu for insightful
discussions while developing Bloofi, and D. Rapp,
A. Skene, and B. Cooper for providing motivation and
applications for this work.

11. References

[1] M. K. Aguilera, W. Golab, and M. A. Shah. A practical scal-
able distributed b-tree. Proc. VLDB Endow., 1(1):598–609, Aug.
2008.

[2] S. R. Ahuja and C. S. Roberts. An associative/parallel processor
for partial match retrieval using superimposed codes. In Pro-
ceedings of the 7th Annual Symposium on Computer Architec-
ture, ISCA ’80, pages 218–227, New York, NY, USA, 1980.
ACM.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM, 13(7):422–426, July 1970.

[4] A. Broder and M. Mitzenmacher. Network applications of
Bloom filters: A survey. In Internet Math., pages 636–646,
2002.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, and D. A. Wal-
lach. BigTable: A distributed storage system for structured data.
In OSDI, pages 205–218, 2006.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. BigTable:
A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):1–26, June 2008.

[7] S. Cohen and Y. Matias. Spectral Bloom filters. In Proceedings
of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’03, pages 241–252, New York, NY,
USA, 2003. ACM.

[8] D. Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–
137, June 1979.

[9] A. Crainiceanu. Bloofi: A hierarchical bloom filter index with
applications to distributed data provenance. In Proceedings of
the 2Nd International Workshop on Cloud Intelligence, Cloud-I
’13, pages 4:1–4:8, New York, NY, USA, 2013. ACM.

[10] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, and
J. Shanmugasundaram. P-ring: An efficient and robust p2p
range index structure. In Proceedings of the 2007 ACM SIG-
MOD International Conference on Management of Data, SIG-
MOD ’07, pages 223–234, New York, NY, USA, 2007. ACM.

[11] F. Deng and D. Rafiei. Approximately detecting duplicates for
streaming data using stable Bloom filters. In Proceedings of
the 2006 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’06, pages 25–36, New York, NY, USA,
2006. ACM.

[12] U. Deppisch. S-tree: A dynamic balanced signature index for
office retrieval. In Proceedings of the 9th Annual International
ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’86, pages 77–87, New York, NY,
USA, 1986. ACM.

[13] S. Dutta, S. Bhattacherjee, and A. Narang. Towards “intel-
ligent compression” in streams: A biased reservoir sampling
based Bloom filter approach. In Proceedings of the 15th Inter-
national Conference on Extending Database Technology, EDBT
’12, pages 228–238, New York, NY, USA, 2012. ACM.

[14] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Sum-
mary cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[15] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Blooming
trees: Space-efficient structures for data representation. In Pro-
ceedings of the 2008 IEEE International Conference on Com-
munications, pages 5828–5832, May 2008.

[16] X. Gong, W. Qian, Y. Yan, and A. Zhou. Bloom filter-based
XML packets filtering for millions of path queries. In In Proc.
ICDE, pages 890–901, 2005.

[17] D. L. Lee, Y. M. Kim, and G. Patel. Efficient signature file meth-
ods for text retrieval. IEEE Trans. Knowl. Data Eng., 7(3):423–
435, Jun 1995.

[18] D. L. Lee and F. Lochovsky. HYTREM—a hybrid text-retrieval
machine for large databases. IEEE Trans. Comput., 39(1):111–
123, Jan 1990.

[19] D. Lemire. JavaEWAH — a compressed alternative to the
Java BitSet class (version 0.8.3). https://github.com/
lemire/javaewah [last checked 10-03-2014], 2014.

[20] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang. Scalable data cen-
ter multicast using multi-class Bloom filter. In Proceedings of
the 2011 19th IEEE International Conference on Network Pro-
tocols, ICNP ’11, pages 266–275, Washington, DC, USA, 2011.
IEEE Computer Society.

[21] M. Mitzenmacher. Compressed Bloom filters. In Proceedings
of the Twentieth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’01, pages 144–150, New York, NY,
USA, 2001. ACM.

[22] M. Mitzenmacher and E. Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, New York, NY, USA, 2005.

[23] J. K. Mullin. Optimal semijoins for distributed database sys-
tems. IEEE Trans. Softw. Eng., 16(5):558–560, May 1990.

[24] J. L. Pfaltz, W. J. Berman, and E. M. Cagley. Partial-
match retrieval using indexed descriptor files. Commun. ACM,
23(9):522–528, Sept. 1980.

[25] R. Punnoose, A. Crainiceanu, and D. Rapp. Rya: A scalable
RDF triple store for the clouds. In Proceedings of the 1st In-
ternational Workshop on Cloud Intelligence, Cloud-I ’12, pages
4:1–4:8, New York, NY, USA, 2012. ACM.

17

[26] C. Roberts. Partial-match retrieval via the method of superim-
posed codes. Proceedings of the IEEE, 67(12):1624–1642, Dec
1979.

[27] M. Skjegstad. Java-BloomFilter — a stand-alone Bloom
filter implementation written in java (version 1.0). https:
//github.com/magnuss/java-bloomfilter [last
checked 10-03-2014], 2011.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’01, pages 149–160,
New York, NY, USA, 2001. ACM.

[29] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic transactional
cloud storage with range query support. Proc. VLDB Endow.,
3(1-2):506–514, Sept. 2010.

18

