ORIGINAL ARTICLE

Converting Binary Floating-Point Numbers to
Shortest Decimal Strings: An Experimental Review

Jaél Champagne Gareau?

LUniversité du Québec (TELUQ), Montreal,
Quebec, H2S 3L5, Canada

Correspondence

Daniel Lemire, Université du Québec
(TELUQ), Montreal, Quebec, H2S 3L5,
Canada

Email: daniel.lemire@telug.ca

Funding information

Natural Sciences and Engineering Research
Council of Canada, Grant Number:
RGPIN-2024-03787

Fonds de recherche du Québec,
https://doi.org/10.69777/361128

1 | INTRODUCTION

Daniel Lemirel

When sharing or logging numerical data, we must convert
binary floating-point numbers into their decimal string rep-
resentations. For example, the number = might become
3.1415927. Engineers have perfected many algorithms for
producing such accurate, short strings. We present an em-
pirical comparison across diverse hardware architectures
and datasets. Cutting-edge techniques like Schubfach and
Dragonbox achieve up to a tenfold speedup over Steele
and White’s Dragon4, executing as few as 210 instructions
per conversion compared to Dragon4’s 1500-5000 instruc-
tions. Often per their specification, none of the implemen-
tations we surveyed consistently produced the shortest pos-
sible strings—some generate outputs up to 30% longer than
optimal. We find that standard library implementations in
languages such as C++ and Swift execute significantly more
instructions than the fastest methods, with performance
gaps varying across CPU architectures and compilers. We

suggest some optimization targets for future research.

KEYWORDS
Floating-point numbers, Shortest-string algorithms, Performance
benchmarking

Processor vendors have adopted 32-bit and 64-bit IEEE 754 floating-point numbers. Consequently, we typically

represent numbers as IEEE 754 floating-point numbers in software. The corresponding types in Java, C, C# and C++

https://doi.org/10.69777/361128

are float and double. JavaScript uses the 64-bit IEEE 754 floating-point format as its default number data type.
These numbers take the form of a fixed-precision integer (the significand®) multiplied by a power of two (m x 2°). For
example, a 32-bit floating-point value approximating the constant is 13176795 x 2~22. We often convert these binary
values into decimal strings:

e when we serialize data to text formats like CSV, JSON or YAML;
e when we produce human-readable logs and telemetry;

e when we print numbers in graphical interfaces, spreadsheets and dashboards.

Producing the shortest possible string that exactly reproduces the original value can require hundreds or even thou-
sands of CPU instructions. Since many applications convert millions or even billions of values in bulk, that per-value
overhead may quickly add up to a substantial performance bottleneck.

Converting binary floating-point values into decimal strings is largely a matter of established software practices,
yet it remains under-explored in the research literature. In Section 2, we formally define the shortest-string conversion
problem. In Section 3, we survey the principal algorithmic families. Finally, we present an experimental comparison of
key implementations in Section 4—ranging from Steele and White's 1990 Dragon4 to modern methods like Schubfach
and Dragonbox—and present some directions for future work in Section 5.

Taken together, our study offers both a broad empirical perspective and new methodological insights. Our main
contributions are the following:

e Asystematic empirical evaluation of major conversion algorithms, spanning both dominant CPU families (x86-64 and
ARM/AArch64) and an expanded, openly available benchmark suite including mostly real-world datasets.

e New measurements of output behavior, including the first detailed characterization of end-to-end string lengths—
which often differ from minimal significand lengths—and instruction-level metrics that isolate algorithmic cost
from microarchitectural throughput.

e Avreassessment of existing benchmarking practices, identifying methodological limitations in prior evaluations.

2 | PROBLEM DEFINITION

Although IEEE 754 floating-point types are the default choice for representing real numbers in software—and are
widely supported by commodity processors and programming languages—their use can lead to non-obvious difficul-
ties. In this section, we formalize the problem and outline its practical implications. Table 1 describes the bit layouts
of 32- and 64-bit floating-point numbers. The IEEE 754 formats dedicate a bit for the sign: accordingly, we can dis-
tinguish between -0 and 0. A positive normal double-precision floating-point number is a binary floating-point value
whose significand is represented with 53 bits of precision: 52 bits are explicitly stored, while the leading 1 bit is implicit
(not physically stored in memory). For example, the value with a significand of 1.011, would be stored as an implicit
leading 1 and explicit bits 011. As such, the significand can be seen as a 53-bit integer m in the interval [2°2,2%3) but
interpreted as a number in [1,2) by dividing it by 252. The 11-bit exponent p ranges from —1022 to 1023 [1]. Values
smaller than 271922 are called subnormal values: their special exponent code has the value 271922 and the significand is
then interpreted as a value in [0, 1). We can uniquely identify a 64-bit number using a 17-decimal-digit representation,
although fewer digits are often needed. The 32-bit numbers are similarly defined, with a 24-bit significand m and an
8-bit exponent p ranging from —126 to 127. Numbers smaller than 226 are represented using a subnormal format.
We have that 9 digits are sufficient to uniquely identify a 32-bit number.

1The term mantissa is sometimes used as a synonym for significand, but this usage is discouraged by the IEEE 754 standard, which reserves the term significand
to denote the fractional component of a floating-point number. In contrast, mantissa historically referred to the fractional part of a logarithm.

TABLE 1 Common IEEE 754 binary floating-point numbers

name exponent bits significand (stored) decimal digits (exact)
binary64 11 bits 53 bits (52 bits) 17
binary32 8 bits 24 bits (23 bits) 9

Sign bit

Exponent
11 bits
p € [-1022, +1023]

1 bit

Oor1l
(-0 or +0)

Significand
53 bits (1 implicit + 52 explicit)
m € [2%2,2%), interpreted in [1,2)
Ex: 1.011, stored as 011

|

Y

[Convert to decimal }

Y

>
[Decimal string representation j

FIGURE 1 Conversion of a 64-bit number to a string

String representations are typically in decimal format. Converting a binary floating-point number to a decimal
string is usually done in three steps:

1. Extracting the sign bit, exponent, and significand;
2. Converting the binary significand and exponent to their decimal counterparts;

3. Generating the string representation of the resulting decimal number.

See Fig. 1. The first step—extracting the three fields from the bit pattern—is straightforward and leaves little room
for algorithmic innovation. Consequently, most research has focused on the second step: the conversion of a value
from a base-2 representation (m x 2P) to a base-10 representation (w x 109). This conversion involves determining
the decimal significand w and exponent g from the binary significand m and exponent p by solving the equation
mx2P =w x 109 [2].

An exact solution is always possible in this direction (from binary floating-point to decimal string). For p > 0,
setting g = 0 and w = m x 2P suffices, since any positive power of two is exactly representable in base ten. For p < 0,
we can set g = p and w = m x 579, making use of the identity 27 = 10P/5P.

However, the converse is not generally true: most decimal fractions cannot be represented exactly as binary
floating-point numbers. For example, 0.1 cannot be expressed as m x 2P with integer m, since m = 27P~1/5 would
require a power of two to be divisible by 5, which is impossible.

After accounting for special cases (+0, +00, NaN, and subnormals) and ignoring the sign bit, the central mathemat-

ical problem becomes finding the smallest integer w such that w x 109 maps to the original binary floating-point value
and to no other representable value. In other words, the decimal representation should unambiguously represent the
intended floating-point value rather than to any adjacent representable value. By finding the smallest integer w, we
seek to minimize the number of significant digits in the decimal string. Significant digits are the digits in a number that
contribute to its precision, including all non-zero digits and zeros between non-zero digits. For example, the number
1100 is generally considered to have two significant digits, namely the two 1s, as the trailing zeros are ambiguous
and not counted without explicit clarification. We often use scientific notation, where a number is expressed as a
coefficient multiplied by a power of 10, such as a x 10° or in “E” notation as aEb, to clearly define the significant digits.
For instance, writing 1100 as 1.1 x 103 or 1.1E3 indicates two significant digits, ensuring precision is unambiguous.
To illustrate these ideas, consider the following example using the number x. Its closest 32-bit floating-point

approximation (in binary) is 13176795 x 2-22. The corresponding exact decimal representation is:
31415927410125732421875 x 10722,

However, it is not necessary to print the entire integer part in most applications. For 32-bit floating-point numbers,
nine decimal digits are always sufficient to uniquely distinguish each value. Therefore, we can round this exact decimal
to nine digits, giving 314159274 x 1078 for our candidate decimal representation. In this case, we truncate down to
nine digits: since the next digit is ‘1’, we do not round up. However, it is actually possible to use a shorter decimal:
31415927 x 1077, This shorter form is still closer to 13176795 x 2-22 than to any other 32-bit float, and is therefore
the shortest unique decimal representation.

After determining the decimal significand and exponent, the final step is to generate the corresponding string
representation (e.g., producing 3.1415927 from w and g in w x 109). This process is not always cleanly separable
from the earlier computation: some algorithms combine string generation and significand calculation, while others
treat them as distinct stages. Typically, the decimal digits of an integer value are obtained by repeatedly extracting
the least significant digit (w mod 10) and dividing by ten, with various optimizations possible. For example, a common
optimization is to proceed by pairs of digits (w mod 100) and use a table to map the value in [0, 100) to a pair of
characters (e.g., the value 10 maps to the string ‘10’). However, even if the smallest significand has been found in the
previous step, further care is needed if we want to ensure that the output string is as short as possible. For instance,
both 9.9E1 and 99 represent the same value with two significant digits, but the latter is shorter and arguably preferred;
scientific notation should only be used when it produces a shorter overall string.

It is crucial to distinguish between two closely related but conceptually different objectives in float-to-string

conversion:

e (1) Minimal decimal significand. Most algorithms aim to compute the shortest decimal significand w such that
w x 109 round-trips to the original binary floating-point value. This solves step 2 of the conversion pipeline.

e (2) Minimal printed string. We might instead wish to find the shortest character string that round-trips, including
the choice between fixed-point and scientific notation and the placement of the decimal point.

These two goals coincide for many values but are not equivalent. Two representations with the same number of signif-
icant digits may differ in total length depending on formatting choices. For example, the binaryé4 value 12000000000
has a shortest significand “12”, but the shortest overall string is “12e9” (4 characters), whereas the canonical scientific
form “1.2e10” contains six characters. Consequently, existing algorithms typically optimize (1)—the computation of
the minimal significand—but not necessarily (2).

Representation subtleties can significantly affect float-to-string conversions. Consider the integer 2 150000 128.
We can represent it exactly as a 32-bit floating-point number (8398438 x28). The previous 32-bit floating-point number

is 2149999 872 or 8398437 x 28. The number 2 150 000 000 falls between these two 32-bit floating-point values. When
a decimal value lies exactly halfway between two floats, as here, IEEE 754 requires rounding to the value whose least
significant bit is zero (round-to-even).2 Hence, the string 2150000000 is parsed as the 32-bit float value 2150000128.
Thus, when converting the 32-bit floating-point number 2150000128 to a string, we should write 2. 15e9 to minimize
the number of digits in the significand and the string length. Such cases underscore the need for careful handling of
rounding and highlight edge cases that conversion algorithms must address.

3 | RELATED WORK

This section reviews the main algorithmic families for shortest float-to-string conversion, then pinpoints why existing

benchmarks leave important questions unanswered.

3.1 | Existing Algorithms

The conversion of binary floating-point numbers to their decimal string representation has been a subject of research
over the years. However, there are relatively few scholarly contributions.

A crucial but long-overlooked contribution was made by Coonen in his 1980 technical report [3] and extended
in Chapter 7 of his 1984 PhD Thesis [4]. Coonen was the first to articulate the modern view of the correct-rounding,
formulating the requirement that a printed decimal must round back to the original binary floating-point value and
introducing the interval-based reasoning later reused in algorithms such as Grisu and RyQ. Although this work cir-
culated primarily as a technical report and was not widely cited in early literature, its importance has since been
recognized—most prominently by Loitsch, who identifies Coonen’s work as the earliest description of a correct floating-
point-to-decimal algorithm.

In 1990, Steele and White [5] authored the foundational article that brought these ideas into the programming-
language community and established the Dragon family of algorithms. They report that their work was originally
conducted in the late 1970s and circulated informally for many years before publication. Their Dragon4 algorithm can
thus be viewed as a practical successor to the conceptual framework introduced by Coonen. The publication of the
IEEE 754 standard in 1985 [6] occurred after many implementations were already in use, and Steele and White’s paper
was the first widely disseminated description of a fully practical correct-rounding and shortest-decimal algorithm.

In their paper, Steele and White introduce core objectives for the conversion of floating-point values to decimal
representation. They distinguish between fixed-format outputs—where the number of digits is predetermined (e.g.,
always printing five digits)—and free-format outputs, where the algorithm determines the number of digits dynami-
cally.

For the free-format case, they propose three essential properties that a correct conversion algorithm from binary
floating-point values to decimal should satisfy:

1. No loss of information: Converting back the generated decimal representation must recover the original floating-
point value (i.e., round-trip conversion is the identity function).
2. No extra information: The generated decimal representation must not contain extraneous digits (i.e., we want the

minimal significand possible).

2Round-to-even, also known as banker’s rounding, is a method for rounding decimal numbers to reduce bias in calculations, often used in financial or statistical
contexts. When a number is exactly halfway between two integers (e.g., 2.5 or 3.5), instead of always rounding up (as in standard rounding), round-to-even
rounds to the nearest even integer. This method evens-out the frequency of rounding up and down over many operations.

3. Correct rounding: Multiple values may satisfy the first two properties. Among these, the algorithm should produce
the one closest to the original floating-point value, using round-to-even in the case of a tie.

To address these objectives, Steele and White first present a practical, though approximate, algorithm for gen-
erating free-format output: Dragon2 (see Fig. 2 for a Python sketch). The algorithm first rescales the floating-point
value so that it falls within the interval [0, 1), and then uses floating-point arithmetic to compute the digits. As the
authors remark, the algorithm is not accurate due to its reliance on floating-point arithmetic. Thus, some values may
not be recovered exactly from the output string. Next, they present an algorithm which they named Dragon4: they
omit Dragon3.3 Several other algorithms in this domain are named after dragons. Dragon4 is based entirely on integer
arithmetic, and it can therefore be exact (see Fig. 3 for a sketch in Python). Instead of scaling the floating-point inte-
ger, it scales two integers R and S representing the floating-point value. The fraction R/S represents the value which
is iteratively scaled to be in a safe subinterval of [0, 1). The downside of Dragon4 is that it may require big-integer

arithmetic and several division operations.

from math import floor

def fp3(f, n, B = 10, b = 2):
assert 0 <= f < 1
F, k, R, M= [], 0, £f, (b #* -n) / 2
while True:
k+=1
U = floor(R * B)
R=R*B-U

M *= B
if R<MorR>1-M:
break

F.append (U)
F.append(U + (R > 0.5 or (R == 0.5 and U % 2)) * 1)
return F

def dragon2(f, n = 24, B = 10):
if £ ==
return "0.0"
x =0
while f < 1: x, f =x -1, f * B
while f > B: x, f =x+ 1, f /B
return (£"{floor(f)}.{''.join(map(str, fp3(f - floor(f), n, B)))}"
fU"{f'E{x}' if x else ''}")

FIGURE 2 Python sketch of the Dragon2 [5] algorithm for non-negative numbers. The algorithm supports
conversions between arbitrary bases, not just from base-2 to base-10. Parameters b and B denote the input and
output radix, respectively. The parameter n indicates the input precision, in number of significand binary digits (e.g.,
the defaultn = 24 corresponds to binary32 precision; see Table 1).

The algorithm produces the digits one by one, stopping when the following digits would be all zeros. For producing
fixed-format outputs, we can generate the number of digits and then round the final digit if needed. If fewer digits are
produced by the free-format approach than we desire, we pad with zeros. The rounding up may then require changing
already produced digits (e.g., if the digit 9 is rounded up). Steele and White observe that this can be avoided by an
algorithm that already produces the correct digits, knowing how many are needed.

A significant amount of computation in Dragon4’s algorithm is spent scaling the values: the computation of the

3Ina retrospective article [7], Steele and White explain that the reference to a Dragon has to do with dragon curves, a mathematical curiosity. This curve is
constructed by combining two types of steps: Folds and Peaks, whose initials (“FP") allude to floating-point numbers.

constant k in Fig. 3 requires many operations. For example, a floating-point value such as 1e-300 requires over
299 iterations, each of which entails three multiplications.

def fpp2(f, e, p, B = 10):
assert 0 < f < 2 %k p
ep=e - p
R, S = f << max(ep, 0), 1 << max(-ep, 0)
Mminus = Mplus = 1 << max(ep, 0)
if £==1<< (p - 1):
Mplus, R, S = Mplus << 1, R << 1, § << 1
k=0
while R < (S8 +B - 1) // B:
k, R, Mplus, Mminus = k - 1, R * B, Mplus * B, Mminus * B
while 2 * R + Mplus >= 2 * S:
k, S=k+1, S *B
D, even = {}, True
while True:
k =1
U, R = divmod(R * B, S)
Mminus, Mplus = Mminus * B, Mplus * B
low = 2 * R < Mminus
high = 2 * R > 2 * S - Mplus
if low or high:
round_up = (high and not low) or (low and high and (2 * R > S or (2 * R == S and not even)))
D[k] = U + int(round_up)

break
D[kl = U
even = U 7, 2 == 0
return D

de

h

dragon4(f, B = 10):

if £ == 0: return "0.0"

import struct

int_val = struct.unpack('>Q', struct.pack('>d', £))[0]
mantissa = (int_val & OxFFFFFFFFFFFFF) | (1 << 52)
exponent = ((int_val >> 52) & Ox7FF) - 1023 - 52
return fpp2(mantissa, exponent + 54, 54, B)

FIGURE 3 Python sketch of the Dragon4 [5] algorithm for non-negative numbers.

Following Steele and White, Gay [8] presented methods for accurately converting between binary floating-point
numbers and decimal strings, with a specific focus on ensuring correct rounding. He describes the dtoa function,
which implements various modes such as free-format (shortest-string) and fixed-format output. A key insight is that
instead of using the relatively slow Steele-White algorithm to compute the parameter k (see Fig. 3), we can use a faster
floating-point approach, correcting it if needed. Further, Gay observes that when the number of significant digits is
sufficiently small, we may use a faster algorithm based on floating-point arithmetic, producing an exact result with
fewer computations. We may also check whether the floating-point value is an integer, in which case a conversion
to an integer value and its printing might be faster. Gay's dtoa function is several times faster than Dragon4. Fig. 4
illustrates dtoa using Python code. For simplicity, it omits the path where the dtoa function uses floating-point
arithmetic. Burger and Dybvig [9] contributed techniques similar to Gay’s by developing a scale estimator.

Loitsch [10] explored an integer-based approach to achieve quick and accurate conversions. Their approach uses
a combination of precomputed powers of ten and a diy_£p (do-it-yourself floating-point) representation (a 64-bit in-
teger coupled with an integer for the exponent) to approximate the decimal output quickly. The precomputed powers

of ten must hold roughly 635 precomputed values for 64-bit floating-point numbers. Starting from a suboptimal Grisu

def gay(f, e, p, kp, B = 10):
assert 0 < f < 2x%x*p
ep=e - p
R, S = f << max(ep, 0), 1 << max(-ep, 0)
Mminus = Mplus = 1 << max(ep, 0)
if £ == 1 << (p-1):
Mplus, R, S = Mplus << 1, R << 1, § << 1
k = kp
if k < 0:
R, Mplus, Mminus = R * B *x -k, Mplus * B ** -k, Mminus * B ** -k
elif k > 0O:
S, Mplus = S * B ** k, Mplus * B ** k
if 2 * R + Mplus >= 2 * S:
k, S=k+1, S *B
D, even = {}, True
while True:
k-=1
U, R = divmod(R * B, S)
Mminus, Mplus = Mminus * B, Mplus * B
low = 2 * R < Mminus
high = 2 * R > 2 * S - Mplus
if low or high:
round_up = (high and not low) or (low and high and (2 * R > S or (2 * R == S and not even)))
D[k] = U + int(round_up)

break
D[kl = U
even = U J, 2 ==
return D

def dtoa(f, B = 10):

if £ == 0: return "0.0"

import struct, math

int_val = struct.unpack('>Q', struct.pack('>d', £))[0]

mantissa = (int_val & OxFFFFFFFFFFFFF) | (1 << 52)

exponent = ((int_val >> 52) & Ox7FF) - 1023 - 52

if exponent >= -52 and exponent <= 0 and (mantissa >> -exponent << -exponent == mantissa):
return str(mantissa >> -exponent) # exact integer

x, 1 = f * 2x*(-exponent-52), exponent + 52

kp = int(math.floor(0.301029995663981 * 1 + (x - 1.5) * 0.289529654602168 + 0.1760912590558))

return gay(mantissa, exponent + 54, 54, kp, B)

FIGURE 4 Python sketch of the Gay's dtoa function for non-negative numbers.

algorithm, they have developed an algorithm called Grisu2 which is often, but not always, able to produce the shortest
representation. They have also developed another algorithm called Grisu3 which detects when its output may not be
the shortest. Loitsch proposes falling back on another printing algorithm like Dragon4 when Grisug3 fails.

Andrysco, Jhala, and Lerner [11] introduced the Errol algorithm for printing floating-point numbers, aiming for
both correctness and speed. Initially, they claimed it was significantly faster than Grisu3; however, they later acknowl-
edged in their repository that this evaluation was flawed: “Our original evaluation of Errol against the prior work of Grisu3
was erroneous. .. Corrected performance measurements show a 2x speed loss to Grisu3.” We tested their implementation,*
but found it contained unsafe code, so we do not consider Errol further.

Adams [12, 13] introduced the Ryt algorithm, which, like Grisu3, targets fast and correct printing of floating-point
numbers, but with the crucial advantage of always guaranteeing correct output, thus eliminating the need for a fallback

algorithm. The correctness of Ryd relies on several key elements described in the 2018 paper [12]. First, Ryl decodes

4https://github.com/marcandrysco/Errol

https://github.com/marcandrysco/Errol

a floating-point number into a unified representation that handles both normalized and subnormal cases, written as
f = (=1)%-mys -2, where ms is an unsigned integer. The algorithm then calculates the interval of decimal values that
would be decoded back to the original binary float, by determining the midpoints to the immediately smaller and larger
representable floating-point numbers. These midpoints define an interval [u, w), scaled by 2°2, within which any value
will round to the original float. This interval is then converted into decimal base, yielding an interval [a, ¢) - 1010, The
core digit-generation step identifies the shortest decimal representation within this interval by iteratively removing
digits from right to left. At each step, it ensures that the shortened decimal string still lies within the valid interval,
thus guaranteeing that parsing this string returns the original float. To handle rounding modes correctly, Ryl analyzes
the prime factorization of the significand to decide whether the result should be rounded up or down. This process is
carried out using only fixed-precision integer operations, which avoids costly high-precision multiplications. A major
contribution of Ry is a reduction in the number of bits required for intermediate computations. Instead of converting
the entire binary value to decimal in one high-precision operation, Ryl combines incremental decimal conversion
with its digit-generation loop. This allows the use of smaller intermediate values, aided by precomputed lookup tables
for multipliers such as | 2%/59] + 1 or [57%279/2K |, which enable efficient and accurate calculation. In a follow-up
paper [13], Adams extends Ry to create Ryu Printf, supporting the %£, %e, and %g formats with runtime-configurable
precision. To maintain efficiency, Ryl Printf introduces a segmentation approach, converting the significand into
segments of decimal digits (e.g., 9 digits per segment for 32-bit integers). Each segment is computed independently,

so computational cost is linear in the number of digits generated, rather than superlinear as in naive approaches.

TABLE 2 Overview of binary floating-point to string algorithms. A technique is considered exact if the obtained
string representation is always sufficient to recover the original binary floating-point number.

Technique Source Publication Date Exact
Dragon2 Steele and White [5] 1990 No
Dragon4 Steele and White [5] 1990 Yes
dtoa Gay [8] 1990 Yes
Grisu Loitsch [10] 2010 No
Grisu2 Loitsch [10] 2010 No
Grisu3 + Dragon4 Loitsch [10] 2010 Yes
Ryd Adams [12, 13] 2018 Yes
Schubfach Giulietti [14] 2020 (informal) Yes
Grisu-Exact Jeon [15] 2020 (informal) Yes
Dragonbox Jeon [16] 2022 (informal) Yes

Other algorithms not formally published in the peer-reviewed literature include Giulietti's Schubfach [14], which
decomposes a floating-point value into its significand and exponent, computes tight decimal bounds, and dispatches
into specialized computation paths based on the number’s properties; Jeon’s Dragonbox [16], inspired by the Ry
algorithm; and Jeon's earlier Grisu-Exact [15], a Grisu-family variant that guarantees shortest, correctly rounded out-
puts. See Table 2 for a summary of each algorithm’s characteristics. For each entry, we list the original source and
indicate whether it produces exact free-format strings (i.e., the strings that permit error-free round-trip parsing). The

Grisu3 + Dragon4 technique denotes Grisu3 with a Dragon4 fallback.

10|

3.2 | Limitations of Prior Benchmarks

Several open-source benchmarks have been published to compare the performance of algorithms converting floating-
point numbers to decimal strings. Notable examples include Yip’s dtoa-benchmark®, Lugowski's parse—benché, and
Bolz's Drachennest’. Many algorithm papers—or their associated repositories—also report benchmark results. Table 3
summarizes the most relevant recent benchmarks, the algorithms they compare, and the test data they use.

TABLE 3 Overview of existing benchmarks and their limitations

Benchmark Compared algorithms Test data

dtoa-benchmark Mostly Grisu family methods Generates 1 000 random 64-bit values;

parse-bench Principally Rya, Dragonbox and Three hard-coded values (123456, 1, 333.323) re-
std::to_chars peated many times;

Drachennest Grisu3, Ryd, Schubfach, Drag- Random doubles in [1,2]; random doubles in
onbox, std: :to_chars [10%,10K*1]: random doubles in [0; 10'°]; random 64-

bit bit-patterns;

Ryu’s paper C impl. of Ryl v. double- Random sampling (Mersenne Twister) of 1,000 32-
conversion (Grisu3 impl.); and 64-bit values interpreted as floats;
Java impl. of Ryl v. OpenJDK’s
native formatter and Jaffer's
variant [17]

Dragonbox’s Ryd, Grisu-Exact, Schubfach, 100,000 random numbers (random significand and ex-
preprint Dragonbox ponent) measured 1,000 times each; 1,000,000 uni-
formly generated floats measured 1,000 times each;

A key limitation of these benchmarks is that they do not cover all important algorithms listed in Table 2, nor
do they evaluate standard or third-party libraries from other languages (e.g., Google’s double-conversion or Swift’s
C++ dtoa). Another common limitation is the restricted hardware and compiler environments used for evaluation:
for example, the Dragonbox preprint benchmarks were run solely on an Intel i7-7700HQ using Clang-cl. In addition,
none of these benchmarks measure the length of the generated strings, even though string length is crucial for fair
comparison—algorithms producing shorter outputs may not be directly comparable to those producing longer ones.

The benchmark datasets themselves also have important shortcomings. All but RyQ’s paper consider only 64-bit
floating-point numbers. Nevertheless, 32-bit floating-point values remain widely used in applications where reduced
memory footprint or bandwidth efficiency matter. Benchmarks that focus exclusively on 64-bit numbers therefore
miss important practical scenarios, e.g., in mobile applications, GPUs, and embedded systems. More importantly, all
rely on synthetic data, whereas uniformly distributed floating-point numbers are rarely encountered in practice. In
real-world applications—such as telemetry, finance, or science—floating-point values typically exhibit non-uniform dis-
tributions, with some values much more frequent than others. Taken together, these methodological gaps—incomplete

algorithm and library coverage; lack of real-world datasets and 32-bit numbers; limited hardware and compiler con-

Shttps://github.com/miloyip/dtoa- benchmark
6https ://github.com/alugowski/parse-bench
7h1:1:ps ://github.com/abolz/Drachennest

https://github.com/miloyip/dtoa-benchmark
https://github.com/alugowski/parse-bench
https://github.com/abolz/Drachennest

11

figurations; and absence of any evaluation of output string lengths—motivate our empirical study.

3.3 | Parsing Numbers

A tangentially related problem consists of parsing strings to recover binary floating-point numbers. The early work
was conducted by Clinger [18, 19]. His work describes an accurate decimal to binary conversion. Gay [8] improved
upon Clinger's work by introducing several new optimizations. Lemire [20] provides a significantly (e.g., 4x) faster
approach by observing that, in the common case, the significand fits in a 64-bit word and only needs to be multiplied
by (at most) a 128-bit integer. Mushtak and Lemire completed the work by showing that no fallback is necessary: the

core algorithm is guaranteed to succeed [21].

4 | EXPERIMENTS

This section details our experimental setup and methodology, designed to address the gaps identified previously. We
first describe the systems used for benchmarking, the datasets employed, and the algorithms and libraries tested. The

subsequent subsections present the results and main findings of our experiments.

4.1 | Systems

Our benchmarks were executed on the systems listed in Table 4. The Apple M4 Max results were obtained on a Mac-
Book Pro (2024), while all other systems—except the Ryzen 9900X—were hosted on Amazon Web Services (AWS). For
most systems, we compared binaries compiled with both the GNU C++ compiler (g++) and the LLVM Clang compiler
(clang++), using the corresponding standard libraries (1ibstdc++ and 1ibc++). On the Apple M4 Max, only Clang
was used. Unless otherwise noted, we used g++ version 13 and clang++ version 18. On the Apple M4 Max, we used
Apple Clang 17. On the AMD Ryzen 9900X, we used g++-15 and clang++-20.

To our knowledge, this is the first evaluation to include both contemporary x86-64 (Zen 2-5, Ice Lake, Sapphire
Ridge) and ARM/AArché4 (M4 Max, Neoverse N1/V1/V2) architectures in a unified experimental framework.

4.2 | Data

We use three core datasets selected to represent distinct numerical formats and common use cases when converting
floating-point numbers to strings. These datasets, summarized in Table 5, include compactly represented integers,

high-precision floating-point numbers serialized as strings, and synthetically generated uniformly distributed numbers.

e The mesh dataset contains vertex coordinates from a triangulated 3D surface. Many values are small (typically in
[=1,3]) and are represented with few characters, including a large proportion of exact integers.
e The canada dataset is derived from a JSON file [22] from the GeoJSON project, containing 64-bit floating-point

numbers serialized as strings. These values represent geographic coordinates and attributes (e.g., 83.109421000000111),

and are representative of Geographic Information Systems (GIS) and navigation pipelines.

e The unit dataset consists of uniformly generated floating-point numbers in the interval [0, 1). While synthetic, it
serves as a useful baseline for comparison with prior work, where such distributions are common (e.g., to store
normalized values or probabilities).

For all benchmarks, we use arrays of either 32- or 64-bit numbers. When the original source provides only 64-bit

12

TABLE 4 Systems used for benchmarking

Processor Frequency Microarchitecture Memory
Apple M4 Max 4.4t04.5GHz unnamed (aarch64, 2024) LPDDR5X (7500 MT/s)
AMD Ryzen 9 9900X 4.4 to 5.6 GHz Zen 5 (x86-64, 2024) DDRS5 (6000 MT/s)
AWS Graviton 2 2.5t02.5GHz Neoverse N1 (aarché4, 2019) DDR4 (3200 MT/s)
AWS Graviton 3 2.6 to 2.6 GHz Neoverse V1 (aarch64, 2022) DDRS5 (4800 MT/s)
AWS Graviton 4 2.8t02.8GHz Neoverse V2 (aarch64, 2024) DDRS5 (5600 MT/s)
AMD EPYC 7R32 2.8t03.3GHz Zen 2 (x86-64, 2019) DDR4 (2933 MT/s)
AMD EPYC 7R13 2.7t03.7GHz Zen 3 (x86-64, 2021) DDR4 (3200 MT/s)
AMD EPYC 9R14 3.0to0 3.7GHz Zen 4 (x86-64, 2023) DDR5 (4800 MT/s)
Intel Xeon 8124M 3.0t0 3.5GHz Skylake-SP (x86-64, 2017) DDR4 (2666 MT/s)
Intel Xeon 8375C 2.6 to 3.8 GHz Ice Lake-SP (x86-64, 2021) DDR4 (3200 MT/s)
Intel Xeon 8488C 2.0to3.8GHz Sapphire Ridge (x86-64, 2023) DDRS5 (4800 MT/s)

TABLE 5 Dataset summary. An integer value is defined as a number exactly representable by a 64-bit signed
integer. The number of digits is the minimum required for exact round-trip conversion.

Average digits
Name Count Integers

32-bit 64-bit
mesh 73019 44 557 4.7 6.6
canada 111126 46 7.3 15.3
unit 100000 0 7.5 16.0

numbers, we cast them to 32-bit prior to benchmarking.

To better approximate real-world workloads and address the limitations of prior benchmarks discussed in Sec-
tion 3.2, we also assembled a collection of additional datasets drawn from finance, astronomy, machine learning,
and meteorology [23]. These are summarized in Table 6. They consist entirely of floating-point values that arise in
deployed systems and public APIs, and thus complement the three core datasets above. Specifically:

e bitcoin: daily closing prices of Bitcoin (USD), typical of financial APIs and market-data feeds.

e marine: values from a marine-robotics inverse-kinematics example, representative of control and scientific-computing
workloads.

e mobilenetv3_large: model weights from the MobileNetV3-Large ImageNet model, characteristic of machine-learning
pipelines and neural-network parameter storage.

e gaia: astrometric and photometric values from the ESA Gaia DR3 catalog (positions, parallaxes, fluxes), represent-
ing large-scale scientific data with substantial dynamic range.

e noaa_global_hourly_2023: surface-station telemetry (temperature, pressure, visibility), representative of noisy

real-world measurement streams.

13

e noaa_gfs: fields extracted from NOAA GFS forecast-model output (temperature, humidity, wind components),
representative of large-scale gridded scientific simulations.

TABLE 6 Additional real-world datasets used in some of our experiments. “Integers” counts values exactly
representable as 64-bit signed integers.

Name Count Integers Binary type
bitcoin 943 0 binary64
marine 114950 0 binary32
mobilenetv3_large 5507432 0 binary32
gaia 3879638 0 binary64
noaa_global_hourly_2023 1000000 428161 binary32
noaa_gfs 4841536 970436 binary32

Results in Sections 4.4-4.7 are reported for the mesh, canada and unit datasets. Section 4.8 presents additional
experiments on the datasets listed in Table 6. Complete results are available in our public benchmark data repository.

4.3 | Software Implementations

We benchmark a selection of C and C++ libraries capable of converting IEEE floating-point numbers to their short-
est decimal string representations. Our benchmarking code, synthetic data generators, and datasets are all publicly
available online.® The benchmarked libraries and algorithms are the following:

e Grisu3 and Schubfach: Both are evaluated using the Drachennest library.”?

e Dragon4: Benchmarked using a dedicated libraryl© rather than the Drachennest version.

e Ryi: Evaluated using the Ryu library.1!

e Dragonbox: Benchmarked with the Dragonbox library.12 The author of Dragonbox observes that the string gen-
eration they include is not officially part of the algorithm. They make it possible for users to provide their own
algorithm to convert significands and exponents to strings.

e Google double-conversion (Grisu3-based): We include Google’s double-conversion library.1®> We use double-
conversion with the default flag. There are additional flags: e.g., for forcing a trailing decimal point (and optional
zero) for integer-valued floats like "123." or for emitting '+ in positive exponents. We omit Google's Abseil and
snprintf, as they do not guarantee shortest-string output.

e fmt (Dragonbox-based): Evaluated using the fmt library,2* which employs a version of Dragonbox internally.

8https://github.com/fastfloat/float_serialization_benchmark
9https ://github.com/abolz/Drachennest, git hash e6714a3 (May 2021). Only 64-bit function is available for Grisu3. We exclude Grisu2, as it can produce
longer-than-necessary significands. Drachennest also implements Dragon4, but due to concerning faults (see: https://github.com/fastfloat/float_
serialization_benchmark/pull/18), we benchmark Dragon4 using a separate implementation.
10https ://github.com/lemire/Dragond.git, git hash Oce72aa (March 2025). Modified for portability (renamed Math.h to DragonMath.h). This is an imple-
mentation of Juckett [24] based on Burger and Dybvig's variant of Dragon4 [9], and is expected to be faster than a straightforward Dragon4. However, its
64-bit implementation is not entirely correct (e.g., 5e-324 outputs a long string of zeros).
https://github. com/ulfjack/ryu, git hash e6714a3 (February 2024).
12}ttps://github. com/jk- jeon/dragonbox, version 1.1.3 (June 2022).
Bhttps://github. com/google/double- conversion, version 3.3.1 (February 2025).
https://github.com/fmt1ib/fmt, version 11.1.4.

https://github.com/fastfloat/float_serialization_benchmark
https://github.com/abolz/Drachennest
https://github.com/fastfloat/float_serialization_benchmark/pull/18
https://github.com/fastfloat/float_serialization_benchmark/pull/18
https://github.com/lemire/Dragon4.git
https://github.com/ulfjack/ryu
https://github.com/jk-jeon/dragonbox
https://github.com/google/double-conversion
https://github.com/fmtlib/fmt

e SwiftDtoa: The Swift language implementation includes a C++ function combining ideas from Grisu2 and Rya.1°
e std:ito_chars: C++17’s standard floating-point to string function.

All algorithms above (except as noted) provide correct round-trips for both 32- and 64-bit floats. Drachennest’s
Grisu3 implementation is limited to 64-bit values. The Dragon4 implementation used is not fully correct for 64-bit;
e.g., it mishandles subnormals such as 5e-324.

When libraries expose flags or configuration options that alter the printed format (e.g., forcing a trailing decimal
point, controlling exponent signs, or choosing between fixed and scientific styles), we systematically use the default
settings provided by the library.

For consistency, we focus on algorithms that generate the entire output string. Though there are differences in
the strings generated, we take these small differences into account in our analysis (See Section 4.5). Libraries like
Gay's dtoal® and teju_jagual” were not benchmarked, as they compute only the decimal significand and exponent,
requiring additional string-generation code. Though it is not difficult to implement the string generation, such work
would have an impact on the benchmarking results. We also restrict our study to C and C++ implementations. Fair
cross-language benchmarking is outside our scope, and other languages often adopt techniques originating in C or
C++,

4.4 | None Provide the Shortest Strings

A key goal in floating-point to string conversion is to produce the shortest possible decimal string representations.
Despite the centrality of string length in practical deployments (serialization, logging, telemetry), prior benchmark
studies have never quantified end-to-end output length at scale. Our results provide, to our knowledge, the first such
characterization. We define the number of significant digits by omitting leading and trailing zeros, so that strings like
1.0, 10,and 0. 1 each have exactly one significant digit. This becomes clearer when using scientific notation: 1E0, 1E1,
and 1E-1. Although tested algorithms produce strings with the fewest digits required for exact round-trips (except
Dragon4 for 64-bit numbers due to the aforementioned bug in the available implementation), none consistently gener-
ate the shortest strings in terms of total character length.18 For instance, the C++17 standard library’s std: : to_chars
renders the number 0.00011 as 0.00011 (7 characters), while the shorter scientific form 1.1e-4 (6 characters) is possi-
ble. Similarly, it outputs 12300 as 1.23e+04 (8 characters) rather than the shorter 1.23e4 (6 characters). Such longer
outputs result from formatting rules inherited from the C standard, particularly regarding scientific notation (%e):

A double argument representing a floating-point number is converted in the style [-]d.ddde#dd. [...],

The exponent always contains at least two digits, and only as many more digits.

These rules mandate a positive exponent sign and at least two digits for the exponent, following historical prece-
dent. When converting floating-point numbers, std: : to_chars chooses the shortest notation between fixed-point

(%£) and scientific (%e), favoring fixed-point notation if lengths are equal.l? Similar constraints affect libraries such

Lhttps://github.com/swiftlang/swift.git, git hash 6a862d2 (March 2025).

16Gay’s dtoa: https://www.netlib.org/fp/, retrieved January 2025.

17Teju Jagua: https://github.com/cassioneri/teju_jagua, git hash e62fcfc (March 2025).

18\We assess shortest-string behavior by cross-comparing output lengths across algorithms and against the valid decimal representation already present in the
dataset. A shorter dataset string implies that none of the tested algorithms produced a minimal-length result.

19For example, the 32-bit value 4.27819e+09 can be equally represented by the strings 4.27819e+09 (scientific), 4278190080, or 4278190000 (both fixed-
point); all have the same string length (10 characters). The C++ standard requires choosing fixed-point notation in case of a tie. Among possible fixed-point
outputs, the standard then mandates selection of the string numerically closest to the exact value. Here, 4278190080 (with 9 significant digits) is chosen
over 4278190000 (6 significant digits), even though it has more digits, since significant digits are not considered, only string length and numerical proximity.

https://github.com/swiftlang/swift.git
https://www.netlib.org/fp/
https://github.com/cassioneri/teju_jagua

TABLE 7 Average number of characters. We use the libstdc++ std: : to_chars implementation.

Name mesh canada unit

32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

Dragon4 5863 7.589 8.823 16.800 9.628 18.273
fmt 5913 7.589 8.823 16.800 9.627 18.272
Grisu3 - 7.589 - 16.800 - 18.273
Grisu-Exact 7.697 9571 10.824 18.800 11.515 20.160
Schubfach 5.863 7.589 8.823 16.800 9.628 18.273
Dragonbox 8.005 9.879 10.824 18.800 11.515 20.160
Ryud 8.005 9.879 10.824 18.800 11.515 20.160

double_conversion 5.863 7.737 8.823 16.800 9.627 18.272

swiftDtoa 7.034 8.810 8.825 16.801 9.627 18272
std::to_chars 5863 7.589 8.823 16.800 9.627 18.272
Shortest 4.537 6.263 8.823 16.800 9.626 18.268

as fmt, Grisu3, Schubfach, double_conversion, and swiftDtoa. In contrast, Ryd, Dragonbox, and Grisu-Exact do not

strictly follow these rules but frequently prefer scientific notation even when longer (e.g., printing 0.1 as 1E-1).

Table 7 summarizes the average string length in characters across our three core datasets. For 32-bit numbers,
algorithms like Dragon4, double_conversion, fmt, and std: :to_chars consistently produce the shortest average
lengths across the mesh (approximately 5.9 characters), canada (8.8 characters), and unit (approximately 9.6 characters)
datasets. Conversely, Grisu-Exact, Ryd, and Dragonbox consistently yield longer strings (7.7 to 8.0 characters for mesh;

10.8 characters for canada; 11.5 characters for unit).

Similar trends emerge for 64-bit numbers: Dragon4, fmt, Grisu3, Schubfach, and std: : to_chars produce shorter
average lengths (7.6 for mesh, 16.8 for canada, and around 18.3 for unit), closely followed by double_conversion and
swiftDtoa. Grisu-Exact, Ryl, and Dragonbox consistently produce longer strings (approximately 9.9 for mesh, 18.8
for canada, and 20.16 for unit).

The Shortest row in Table 7 illustrates the optimal achievable lengths. Notably, on the mesh dataset, std: : to_chars
produces strings that are significantly longer than optimal. For example, its outputs are roughly 30% longer than the
true minimum for 32-bit numbers and about 20% longer for 64-bit numbers. These discrepancies show that differ-
ences in total character length between implementations are substantial, underscoring the importance of evaluating

both digit count and final string length when benchmarking conversion algorithms.

This behavior is not a correctness issue, but rather a deliberate design decision shared by nearly all modern al-
gorithms, which are engineered to minimize the number of significant digits of the decimal significand—not the total
character length of the printed string. Formatting decisions (fixed vs. scientific notation, exponent width, trailing zeros)
are delegated to the caller or the standard library. Our measurements show that this separation can yield unexpect-
edly large gaps between the shortest valid significand and the shortest possible printed representation—sometimes
exceeding 30%. This highlights a practical yet previously overlooked distinction between shortest significand and short-

est string.

16|

4.5 | Performance Comparison: Schubfach and Dragonbox are faster

We compiled all functions in release mode using the default CMake parameters (-03 -DNDEBUG). When possible (e.g.,
on x86-64 systems), we enabled hardware-specific optimizations (-march=native). CPU performance counters were
used to record the number of completed instructions and CPU cycles, in addition to wall-clock time, to better capture
microarchitectural effects.

Tables 8 and 9 present detailed benchmarking results for 64-bit float-to-string conversion on Apple M4 Max and
AMD Ryzen 9900X processors. We report three key metrics: nanoseconds per float (ns/f), instructions per float (ins/f),
and instructions per cycle (ins/c), to capture both algorithmic efficiency and hardware utilization. While previous work
has occasionally reported wall-clock timing, instruction-level metrics for float-to-string conversion (in particular ins/f
and ins/c) have not been systematically analyzed in the literature. We use these to distinguish intrinsic algorithmic
cost (ins/f) from microarchitectural utilization (ins/c), exposing differences invisible to timing-only evaluations.

To assess measurement stability, each benchmark was repeated 100 times. On dedicated hardware (Apple M4
Max, AMD Ryzen 9900X), timing variability was consistently low (median 0.7%, max 2.7%). In contrast, on cloud
instances, a handful of runs showed higher variability (median 0.9%, max 6.9%). These outliers likely reflect intermittent
resource contention or infrastructure noise inherent to virtualized environments, but appear to affect all algorithms
similarly. Cycles per float (c/f) tracked timing variability closely, with a median variation of 0.4%, though rare outliers
again reached 6%. In all cases, instructions per float (ins/f) remained completely deterministic (0.0% variability),
confirming that the executed instruction path is unaffected by runtime fluctuations. Observed performance jitter
therefore arises solely from external factors impacting timing and cycle counts, rather than any non-determinism in
the algorithms themselves.

TABLE 8 Apple M4 Max results (Apple/LLVM 17, 64-bit floats)

Name mesh canada unit

ns/f ins/f ins/c ns/f ins/f ins/c ns/f ins/f ins/c

Dragon4 69 1500 53 150 3000 4.8 170 3300 4.6
fmt 22 530 54 29 640 5.0 30 510 3.8
Grisu3 10 260 5.6 24 440 4.2 26 470 4.0
Grisu-Exact 11 320 6.3 15 340 5.1 18 340 4.2
Schubfach 7.2 210 6.4 12 310 5.9 14 290 4.7
Dragonbox 7.7 220 6.6 9.5 240 5.6 12 230 4.2
Ryd 9.9 270 6.0 12 330 6.3 13 310 54

double_conversion 26 640 5.5 42 910 5.1 43 880 4.8
swiftDtoa 14 390 6.0 16 360 5.1 20 390 4.4
std::to_chars 13 350 5.8 15 440 6.6 16 410 5.6

Across all datasets on the Apple M4 Max processor (Table 8), Dragonbox and Schubfach consistently achieve
the fastest performance, with runtime (ns/f) measures ranging from 7.2 to 14. Schubfach notably achieves the lowest
runtime on the mesh dataset (7.2 ns/float), while Dragonbox leads on the canada dataset (9.5 ns/float). Both algorithms

also show minimal instruction counts (210 to 310 instruction/float), reflecting efficient implementations. Ryt closely

TABLE 9 AMD Ryzen 9900X results (g++15, 64-bit floats)

Name mesh canada unit

ns/f ins/f ins/c ns/f ins/f ins/c ns/f ins/f ins/c

Dragon4 82 2300 50 170 4700 52 190 5000 4.9
fmt 30 570 35 40 840 3.8 35 560 2.9
Grisu3 12 290 4.5 29 630 4.0 26 510 3.6
Grisu-Exact 18 370 3.7 24 520 3.9 21 370 31
Schubfach 9.9 250 4.5 24 490 3.7 19 320 3.0
Dragonbox 11 260 43 18 410 41 15 240 3.0
Ryt 14 320 4.3 24 580 4.3 20 400 3.5

double_conversion 27 610 4.0 45 1000 4.0 39 810 3.7
swiftDtoa 23 490 3.8 28 590 3.8 27 440 3.0
std::to_chars 18 490 4.8 30 780 4.8 25 600 4.3

follows, with runtimes ranging from 9.9 to 13 ns/float and instruction counts between 270 and 330 ins/f. On the Apple
M4 Max, Dragon4 is consistently the slowest, with ns/f measures between 69 (mesh) and 170 (unit), and significantly
higher instruction counts (1500 to 3300 instruction/float). The double_conversion and fmt functions exhibit moderate
performance (22 to 43 ns/float), substantially faster than Dragon4 but slower than Dragonbox and Schubfach. The
remaining algorithms—Grisu-Exact, Grisu3, swiftDtoa, and std: :to_chars—occupy the intermediate performance
range (10 to 26 ns/float). Performance trends are similar on the AMD Ryzen 9900X processor (Table 9). Schubfach
and Dragonbox again perform best across datasets (e.g., Schubfach at 9.9 ns/float, Dragonbox at 11 ns/float for mesh).
Dragon4 remains the slowest, with even higher instruction counts (up to 5000 ins/f on unit) and longer runtimes (up to
190 ns/float). The relative ranking of other algorithms (std: : to_chars, double_conversion, fmt, etc.) remains largely
consistent with the Apple M4 Max results.

Differences in algorithm outputs—particularly string lengths—must be considered when interpreting these results.
Dragonbox and Ryq, for instance, often produce longer strings than Schubfach and std: : to_chars, potentially influ-
encing relative runtimes. Nevertheless, large performance gaps persist even among algorithms generating comparable
string lengths (e.g., Schubfach vs. fmt), underscoring genuine algorithmic efficiency differences.

A consistent trend across both the Apple M4 Max and AMD Ryzen 9900X results is that all algorithms perform
fastest on the mesh dataset, are slower on the canada dataset, and slowest on the unit dataset (as indicated by the
ns/f column in Tables 8 and 9). This ranking reflects the differences in output string lengths reported in Table 7, with
the unit dataset producing the longest outputs. While it is tempting to attribute the slowdown solely to the increased
cost of formatting longer strings, the instructions-per-cycle (ins/c) results reveal an additional effect: all algorithms
achieve lower ins/c on the unit dataset compared to mesh, indicating reduced pipeline throughput.

To further investigate, we profiled the execution of the std: : to_chars algorithm on the Ryzen 9900X. On the unit
dataset, 28% of executed instructions and 34% of cycles occur within the string formatting routine. For comparison,
on the mesh dataset, these figures are notably lower: 19% of instructions and 21% of cycles. This increase confirms
that longer outputs entail a greater share of processing within the formatting function, yet a substantial portion of

instructions and cycles remains attributable to other algorithm components. Furthermore, the higher ratio of cycles to

instructions spent in string formatting on the unit dataset suggests microarchitectural bottlenecks, such as increased
memory latency or branch misprediction. Overall, these results indicate that the performance degradation on the unit
dataset arises from both increased output costs and diminished execution efficiency within the processor pipeline.
Figures 5, 6, and 7 visualize algorithmic performance (logo ns/f) across datasets, CPUs, compilers, and floating-
point widths.20 In these heatmaps, dark blue regions correspond to the fastest execution speeds, transitioning through
light blue and light red to dark red, which indicates the slowest performance. This gradient clearly highlights the influ-
ence of compiler choice, CPU architecture, and numerical width (32-bit vs. 64-bit). Several notable insights emerge:

e Compiler choice affects algorithmic performance. On the mesh dataset, Schubfach often runs faster when compiled
with clang++ (with libc++), while Dragonbox frequently benefits from g++ (with libstdc++). For example, on the
Xeon 8488C CPU, Schubfach was approximately 7% faster with clang++, whereas Dragonbox was 12.5% faster
with g++. This effect is observed on the majority of CPUs in our study, though the exact magnitude of the compiler
advantage varies across architectures and algorithms.

e CPU architecture influences overall performance. The Neoverse N1 (Graviton 2), with three arithmetic units but only
one capable of executing multiplications, consistently exhibits slower performance across algorithms. In contrast,
recent high-end processors like AMD Zen 5 feature six arithmetic units, three of which can perform multiplications
in parallel. This greater arithmetic parallelism likely contributes to Apple’s M4 Max and similar CPUs typically
ranking among the fastest in our tests. This interpretation is further supported by our measurements: the mean
instructions-per-cycle (ins/c) across all algorithms and datasets is 3.8 on the Ryzen 9900X, compared to just 2.6
on the Graviton2. Such differences in ins/c reflect the ability of more advanced CPUs to execute a greater number
of instructions in parallel.

e Algorithmic choice dominates relative performance. While CPU architecture and compiler matter, the number of
instructions required by each algorithm varies far more, making algorithm selection the single largest determinant
of speed. For example, on the Ryzen 9900X and the unit dataset, ins/f values ranged from 5000 (dragon4) to 240
(dragonbox), whereas ins/c values across all CPUs and algorithms stayed between 2.3 and 5.6. To further support
our observation, figures 8, 9 and 10 show the relative performance of the algorithms compared to Dragon4
on selected CPUs. The Apple CPU achieves relatively high performance with Schubfach, Ryl and Dragonbox
compared to Dragon4. In other words, it benefits more from a switch to the more recent algorithms than the
other selected CPUs. The Neoverse V2 processor has slightly lower relative performance than the other selected
CPUs. Yet the curves are visibly correlated: on the canada and unit dataset, Dragonbox gives the best results
while on the mesh dataset, Schubfach is slightly superior to Dragonbox. The other processors have similar ratios

4.6 | Advanced CPU instructions are not exploited

We also investigated whether recent float-to-string algorithms are able to leverage advanced instructions available on
modern CPUs, such as fused multiply-add (FMA) and vectorization (SIMD). On x86-64, CPUs are grouped into distinct
architectural levels (x86-64-v1, v2, v3, and v4), each introducing new instruction sets and capabilities.21 The x86-64-
v1 level is the baseline introduced by AMD in 2003, and it includes foundational 64-bit capabilities like CMOV, SSE,
and SSE2, compatible with early processors like AMD K8 and Intel Prescott. The x86-64-v2 level, defined in 2020 by
AMD, Intel, Red Hat, and SUSE, adds instructions such as SSE3, SSE4.1, SSE4.2, and POPCNT, aligning with processors
from around 2008-2011, like Intel Nehalem. The x86-64-v3 level introduces AVX, AVX2, FMA, and MOVBE, targeting

20Raw benchmark data for these visualizations are available on the paper’s website at https://www. jaelgareau.com/en/publication/gareau_lemire-
spe25.
21gee https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels.

https://www.jaelgareau.com/en/publication/gareau_lemire-spe25
https://www.jaelgareau.com/en/publication/gareau_lemire-spe25
https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels

19

(3/su)ot60]
« « < ~N @
e e e S

2.0

<
—_

2.2

PR [re-oxen pw aiddy
2e-0-xei vl a1ddy
. ¥9-D-X0066 U3ZAY
| -59-0%X0066 UsZAy

- Z€-9-X0066 UazAY

- ZE-D-X0066 U9ZAY

- ¥9-9-ZA-9s19n09N

- 19-D-ZA\-9519N03N

- Z€-9-ZA-9519003N

- ZE-D-TN\-9SI3N03N

- ¥9-D-TA-3S13A03N

- 19-D-TA-2519A03N

- ZE-D-TA-9S19N0N

- ZE-D-TA-9519M03N

- £9-D-TN-2519M03N

- 19-D-TN-9519A03N

- Z€-D-TN-9sJ9n0aN

- ZE-D-TN-9S13N03N

- ¥9-D-0888 U0dX [23u]
~¥9-2-088%8 U0RX 23Ul
- TE-9-D88Y8 U0AX 21Ul
- Z€-2-288Y8 U03X 93U
~¥9-9-DGL€8 UOdX [93U]
~¥9-2-DGLE8 UOAX [u]
- Z€-D-DGLEG UOX [23u]
~ZE-D-OSLEY UOBX ||
- ¥9-D-WYTT8 UodX [33u|
- 9-D-WbZT8 U03X [93U]
- ZE-O-WPZT8 U03X [93u]
- TED-WPTT8 UodX [33u|
~¥9-9-vT46 DAd3 AWV
~¥9-0-7T46 DAd3 AWV
- Z2€-97TY6 DAd3 AWV
~Z€-D-vTd6 DAd3 AWV
~$9-9-Z€YL DAd3 AWV
- ¥9-0-Z€YL DAd3 AWV
- Z€-9-Z€YL DAdI AWV
- ZE-D-TEYL DAd3 AWV
~¥9-9-ETYL DAd3 AWV
~¥9-0-ETYL DAd3 AWV
- ZE-9-ETYL DAd3 AWV
- ZE-D"ETYL DAd3 AWV

grisu3 -

swiftDtoa -

fmt_format -
grisu_exact -

x
3

2
c
s
>
<

o

wpobly

double_conv. -
std::to_chars -

)

ithm performance (logo ns/f) across CPUs, compilers, and widths (mesh dataset;

FIGURE 5 Algor

(4/5u)°t60]
o © o

N
NoH A -

eI ou < S
NN — -

[O - ro-oncew v aiddy

2€-D-XeW vin 3(ddy
| B [T [BT
I

¥9-9-X0066 U9zAY

79-2-X0066 U3ZAY
ZE-9-X0066 UazZAY
.... .. ZE-DX0066 UIZAY

- ¥9-9-ZA\-9S19N09N

- $9-D-ZA-2S19N03N

- ZE-9-ZA-9SIaN0AN

- ZE-D"ZA-9SI9N03N

- ¥9-D-TA-8S19n03N

- ¥9-D-TA-9SJ9N03N

- Z€-9-TA-95I9A00N

- ZE-D-TA-9519N0BN

- $9-9-TN-95I9A03N

- ¥9-D-TN-9SJ2N03N

- Z€-9-TN-9s19n03N

- CE-D-TN-3SI3N03N

- ¥9-9-0888 U0dX [3u]
~¥9-2-D881%8 UOSX [23u]
- T€-9-D88%8 03X |23u]
- Z€-2-08818 UOdX [23U]
~¥9-9-0GLE8 U0SX |9u|
~¥9-D-DGLES UOSX 23Ul
- Z€-9-DGLEG UOX [3u]
~TE-D-DGLEG UOAX [9U]
~79-O-WYTT8 UoaX 33Ul
- ¥9-D-NbZT8 U0SX [93U]
- ZE-O-WPTT8 UOdX [33u]
- TED-WYTT8 UodX [3u]
~%9-9-¢T46 DAdI AWY
~¥9-0-7T46 DAd3 AWV
~Z€-9-YTY¥6 DAdI AWV
~ZE-D¥T4¥6 DAd3 AWV
~¥9-9-ZE€YL DAd3 AWY
~¥9-D-Z€YL DAd3 AWV
~TE-9-TE€YL DAdI AWV
~TE-D-ZEYL DAdI AWV
~¥9-9-€TYL DAd3 AWY
~¥9-D-€THL DAd3 AWV
- CE-9-ETYL DAdI AWY
~ZE-D"ETYL DAd3 AWV

grisu3 -

swiftDtoa -

dragonbox ..

schubfach -
double_conv. -

fmt_format -
grisu_exact -
std::to_chars -

wyiobly

ithm performance (log;o ns/f) across CPUs, compilers, and widths (canada dataset)

FIGURE 6 Algor

(3/5u)0t60]
v o w® o ~
N & A =

b e
- -

O [oo v iddy

[2€-D-%e vl 31ddy
.- ¥9-9-X0066 U9zAY
+9-D-X0066 UazAY
Z€-9°X0066 UaZAY
.. Z€-D2-X0066 UdZAY
- 79-9-ZA-9SI9N03N
. - #9-D-ZA-9S19A03N
.. 2€-D-ZA-9519M00N
.. 2€-D-ZA-9519N03N

- ¥9-D-TA-9519A0aN

- b9-D-TA-9512R0N

- 26-9-TA-2519000N

- ZE-D-TA-9SI9A03N

- b9-D-TN-2512A03N

- 9-D-TN-2519A03N

- ZE-9-TN-9519N09N

- ZE-D-TN-3SI9A03N

- 9-9-088Y8 U0AX (33Ul
| -v9-0088v8 UoaX (B3I
| -ze-9-088p8 uoSX 23Ul
|| -ze-o0gspe uoax Bl

- $9-9-D5L€8 U0aX (33U

~19-2-DGLE8 03X |3l
| -ze-o-dssgg uosx Pl

- 2€-2-05L£8 UodX [93U]

- 9-9-WPZT8 UoaX [a3ul

- $9-D-WHZT8 UOBX [3u]

- 2€-9-WpZT8 UoaX fa1ul

- 2€-2-NPZ 18 U0BX 23Ul

- 9-D P46 DAdI WY

- 9-0-TH6 JAdT AWY
| -zeo-vTue OAdI AWy
| -zeormdeoad3any
-$9-9-Z€4L DAdI WY
- 9-D-Z€YL DAd3 AWY
- 26-9-284L DA3 AWY
- 2€-2-2€4L DAd3 AWY
- 9-9-ETHL DAd3 QWY
- ¥9-D-ETHL DAd3 AWV
- Z€-9-€TUL DAd3 AWY
- Z€-0-€THL DAdT AWY

grisu3 -
ryd

swiftDtoa I.

fmt_format -
grisu_exact
schubfach
dragonbox
double_conv. -
std::to_chars -

wyiobly

ithm performance (logqg ns/f) across CPUs, compilers, and widths (unit dataset)

FIGURE 7 Algor

20

AMD EPYC 7R13-C-64
Intel Xeon 8488C-C-64
Neoverse-V2-C-64
Ryzen 9900X-C-64
Apple M4 Max-C-64

ittt

Rel. speedup (vs. Dragon4)
o

4_
2.
at VE) D03 ct cn v} o%
oue T g SO o gt gu X ot 7 grago®
Algorithm

FIGURE 8 Relative speedup (vs. dragon4) for selected CPUs (mesh dataset)

53 -C-
T 5.0 ~* AMDEPYC7R13-C64
o ~e— Intel Xeon 8488C-C-64
g —eo— Neoverse-V2-C-64
5 1257 Ryzen 9900X-C-64
. Apple M4 Max-C-64
£ 10.0
5
3 7.5-
o
a 5.0
%]
2 254
T T T T T T T T
- at PAE) . DLOd act ach Q pOo*
qoue T g SO ot B 7 grago"

Algorithm

FIGURE 9 Relative speedup (vs. dragon4) for selected CPUs (canada dataset)

g 14 - —e— AMD EPYC 7R13-C-64
o —o— Intel Xeon 8488C-C-64
3124 —o Neoversev2-c-64
5 —e— Ryzen 9900X-C-64
7 104 —* Apple M4 Max-C-64
2
Q 8-
=
o
2 6
Q
0
— 4
(9]
o
T T T T T T T T
B at feud .) ct cn ¥y OX
do\‘\‘o\e’go\'\ fnt jo(m g(\s\l s\N‘ﬂDw g(\s\l,e*a sd_\“bfa ¢ dra‘)"“b

Algorithm

FIGURE 10 Relative speedup (vs. dragon4) for selected CPUs (unit dataset)

CPUs from 2013-2015, such as Intel Haswell. The x86-64-v4 level incorporates AVX-512, doubling vector instruction
width to 512 bits, and is supported by newer CPUs like AMD Zen 4 and Zen 5.

Table 10 summarizes the performance of Schubfach and Dragonbox across all architectural levels on the Ryzen 9900X

TABLE 10 Schubfach vs. Dragonbox across architectural levels (g++15, 64-bit floats, Ryzen 9900X).

Level Name mesh canada unit

ns/f ins/f ins/c ns/f ins/f ins/c ns/f ins/f ins/c

x86-64-vl schubfach 9.8 250 4.6 23 490 3.9 18 310 3.2
dragonbox 11 260 4.2 18 410 4.0 15 240 3.0
x86-64-v2 schubfach 9.7 250 47 23 490 3.9 18 310 3.2
dragonbox 11 260 4.2 18 410 41 15 240 2.9
x86-64-v3 schubfach 9.7 250 47 23 490 3.9 18 310 3.2
dragonbox 11 260 4.2 18 410 4.1 15 240 2.9
x86-64-v4 schubfach 9.8 240 4.6 24 480 3.6 19 310 2.9
dragonbox 11 260 4.2 18 410 4.1 15 250 3.0

(Zen 5). The results show that enabling newer instructions provides, at best, marginal improvements in performance.
In one instance (Dragonbox on the unit data), the version of our software compiled for the most advanced (x86-64-v4)
instructions required slightly more instructions. In another (Schubfach on the canada data), targeting x86-64-v4 saved
a small number of instructions. This suggests that the Schubfach and Dragonbox implementations do not benefit from
advanced instructions on x86-64 processors.

4.7 | Converting 32-bit numbers may be faster?

When converting floating-point numbers to strings, the output is typically shorter for 32-bit than for 64-bit values: at
most nine digits suffice for 32-bit numbers, while up to seventeen are needed for 64-bit numbers. We might therefore
expect that 32-bit conversions are generally faster, since less work is required for formatting and string generation.
Figure 11 confirms this expectation on the Apple M4 Max processor. The fastest implementations convert over
96 Mfloat/s for 32-bit floats (Schubfach: 109 Mfloat/s, Dragonbox: 112 Mfloat/s, Rya: 96 Mfloat/s), while their 64-
bit performance is typically lower (Schubfach: 83 Mfloat/s, Dragonbox: 106 Mfloat/s, Ryu: 83 Mfloat/s). The dif-
ference is especially pronounced for the slowest algorithm: Dragon4 processes only 12 Mfloat/s for 32-bit versus
7 Mfloat/s for 64-bit. Interestingly, some algorithms—particularly std: : to_chars and Dragonbox—show little or no
difference between 32- and 64-bit speeds (e.g., std: :to_chars achieves 66 Mfloat/s for both widths; Dragonbox
reaches 112 Mfloat/s for 32-bit and 106 Mfloat/s for 64-bit). This suggests that in certain libraries, the conversion
routine is dominated by fixed overhead, or that the core bottleneck is not string length but the underlying algorithm.
Another notable point is that character throughput (total characters produced per second) is higher for 64-bit
numbers, since their decimal representations are, on average, nearly twice as long. Thus, while more numbers can be
processed per second in the 32-bit case, more textual data can be produced per second in the 64-bit case.

4.8 | Additional real-world datasets

To verify that our conclusions are not an artifact of the three core datasets, we also benchmarked all implementations

on the additional real-world datasets listed in Table 6. For space reasons, we report here only a condensed view of

22

0 1 32-bit B B 64-bit

120 — 106 112
106
< 100 — 96
C
o
o 82 83 83
S 80 -
<
2 66 66
0
S 60 —
=
%5 45
(%]
c 40 —
5 34
g
20 2
7
o Im
t?o [a) S S c
o £ ! > oon
o : 2 v &
o kel w [a)
S
(72}

FIGURE 11 Throughput (Mfloat/s) on Apple M4 Max (canada dataset, 32-/64-bit)

the results. We ran the full benchmark suite on these datasets on both the Apple M4 Max and AMD Ryzen 9 9900X
processors described in Table 4, using the same compiler configurations as in Section 4.1.

Table 11 reports detailed results for the three implementations we use in this section—Dragonbox, Schubfach,
and Ryd—which are representative of the performance trends observed across all algorithms in the full benchmark.
The absolute numbers vary across datasets and architectures, but the relative ordering is consistent with our findings
for mesh, canada, and unit: Dragonbox and Schubfach are typically the fastest, while Ryd is consistently slower by a
moderate but systematic margin.

Several patterns mirror those observed earlier. First, algorithms that emit longer strings—particularly Rya and
Dragonbox—show slightly higher instruction counts on high-dynamic-range datasets, such as bitcoin or gaia. Sec-
ond, datasets dominated by exact integers or very small magnitudes (e.g., noaa_global_hourly_2023 and marine_ik)
yield the shortest strings and therefore the fastest conversions among the real-world datasets. Datasets that are still
relatively small but contain fewer integers (e.g., noaa_gfs) produce moderately longer strings and slightly slower per-
formance, though they are still faster than high-dynamic-range sets.

Crucially, none of the additional datasets reveals outliers that contradict our earlier conclusions. Across all work-
loads, Dragonbox and Schubfach remain among the fastest implementations, Ryl is competitive but consistently
slower, and the performance gaps fall squarely within the ranges observed on the core datasets.

String-length behavior generalizes just as cleanly. None of the implementations reaches the theoretically shortest
possible strings, and the excess is again frequently in the 20-30% range, particularly on datasets with large exponents
such as bitcoin and gaia. This reinforces our earlier finding that minimizing the number of significant digits is insuf-
ficient to guarantee shortest-string output, and that real-world workloads tend to amplify these effects.

Overall, these results support the robustness of our conclusions across a broad range of practical numerical do-
mains, including finance, astronomy, machine learning, and meteorology. Detailed per-dataset results for all algorithms

are available in our public benchmark repository.

TABLE 11 Performance (ns/f, ins/f, ins/c) of Dragonbox, Rya, and Schubfach on six additional real-world
datasets. Results are shown for two CPUs (Ryzen 9 9900X, Apple M4 Max) and exhibit the same ranking and trends
seen on the core datasets.

Dataset Algorithm AMD Ryzen 9 9900X Apple M4 Max
ns/f ins/f ins/c ns/f ins/f ins/c
bitcoin (f64) dragonbox 12.0 290 4.3 8.6 270 6.4
ryu 230 530 41 13.0 420 6.6
schubfach 15.0 340 4.1 84 310 74
gaia (f64) dragonbox 22.0 380 3.2 140 250 4.1
ryu 260 540 3.7 160 320 4.8
schubfach 26.0 460 33 160 310 4.8
marine_ik (f32) dragonbox 9.3 210 4.2 5.7 180 7.1
ryu 140 370 4.6 82 270 7.2
schubfach 10.0 260 4.6 6.3 230 8.2
mobilenetv3_large (f32) dragonbox 18.0 220 22 140 180 3.1
ryu 19.0 350 33 140 250 43
schubfach 17.0 270 28 130 240 4.4
noaa_gfs_1p00 (f32) dragonbox 12.0 190 2.9 9.1 160 4.2
ryu 150 310 3.8 110 220 5.0

schubfach 13.0 240 3.3 9.0 210 55
noaa_global_hourly_2023 (f32) dragonbox 10.0 210 3.7 7.7 170 5.1
ryu 17.0 400 43 130 310 5.6
schubfach 89 220 44 68 190 6.6

5 | CONCLUSION

Although the original Dragon4 algorithm required thousands of instructions to convert a single IEEE floating-point
number to a decimal string, modern methods accomplish the same task in just a few hundred instructions. This
tenfold improvement over three decades represents an average software efficiency gain of about 8 % per year—a
striking reminder that performance gains in software, like those in hardware, can accumulate to significant effect over
time [25].

Yet, despite these advances, our results show that widely used libraries (such as fmt and 1ibc++) still require
more instructions than state-of-the-art algorithms like Dragonbox. This suggests that these libraries may be priori-
tizing other trade-offs (e.g., code size or portability), or that further performance optimizations remain unexplored.
Moreover, while each algorithm we tested produces a valid string representation, none consistently generates the

shortest possible output. We identify two key directions for future research:

e High performance string generation. Historically, converting decimal significands and exponents into ASCII strings
was a minor portion of the overall float-to-string process. However, as core conversion algorithms have become
dramatically faster, this final string generation step can now consume a significant share of runtime—for example,
only 2% of cycles in Dragon4 on the unit dataset, but up to 34% in std: : to_chars. Future work should explore
advanced optimizations for this stage, ideally decoupled from earlier steps, to further accelerate end-to-end con-

version. Related to this, several modern algorithms (e.g., Dragonbox, Schubfach, and Ryu) efficiently compute

24

the shortest decimal significand but leave the final construction of the shortest string to user-defined routines.
Developing unified backends that consistently generate the shortest possible decimal string across algorithms
represents a promising direction for future work.

e Exploiting modern CPU features. Our results show that current algorithms do not fully utilize advanced instruc-
tions such as FMA and SIMD, and that enabling SIMD extensions (e.g., AVX-512) yields, at best, marginal gains
for single-value conversions. Future work should investigate whether these capabilities can be leveraged by re-
formulating the problem—for example, by designing algorithms that convert multiple floats to strings in parallel
(batch conversion). Such an approach could better exploit vectorization and other modern CPU features, poten-
tially unlocking significant performance gains for applications that require bulk formatting of floating-point data.

Also, as future work, we might investigate the generation of the significand and exponent independently from the

generation of the string.

Author Contributions

Jaél Champagne Gareau: conceptualization; investigation; software; experimentation; writing-review and editing.
Daniel Lemire: conceptualization; software; validation; experimentation; data analysis; writing-original draft; writing-

review and editing.

Funding Information

This work was supported by the Natural Sciences and Engineering Research Council of Canada, Grant Number: RGPIN-
2017-03910. The first author is supported by a postdoctoral grant from Fonds de recherche du Québec, https:
//doi.org/10.69777/361128.

Data Availability Statement

All our data and software is freely available online. The C++ benchmarking software is available online at https:
//github.com/fastfloat/float_serialization_benchmark. All of our test datasets are at https://github.com/
fastfloat/float-data. We collected performance data and we make it available on the paper’s webpage at https:

//www.jaelgareau.com/en/publication/gareau_lemire-spe25/.

references

[1] Goldberg D. What Every Computer Scientist Should Know about Floating-Point Arithmetic. ACM Comput Surv 1991
Mar;23(1):5-48.

[2] Matula DW. In-and-out conversions. Commun ACM 1968 Jan;11(1):47-50.

[3] Coonen JT. An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic. Computer 1980
Jan;13(1):68-79.

[4] Coonen JT. Contributions to a Proposed Standard for Binary Floating~Point Arithmetic. Thesis, University of California;
1984.

[5] Steele Jr GL, White JL. How to print floating-point numbers accurately. In: Proceedings of the ACM SIGPLAN 1990
conference on Programming language design and implementation; 1990. p. 112-126.

https://doi.org/10.69777/361128
https://doi.org/10.69777/361128
https://github.com/fastfloat/float_serialization_benchmark
https://github.com/fastfloat/float_serialization_benchmark
https://github.com/fastfloat/float-data
https://github.com/fastfloat/float-data
https://www.jaelgareau.com/en/publication/gareau_lemire-spe25/
https://www.jaelgareau.com/en/publication/gareau_lemire-spe25/

[10]

[11]

[12]

[13]

[14]

IEEE Computer Society Standards Committee. IEEE Standard for Binary Floating-Point Arithmetic, vol. 754. New York,
NY: IEEE; 1985. ANSI/IEEE Std 754-1985.

Steele GL, White JL. How to print floating-point numbers accurately. SIGPLAN Not 2004 Apr;39(4):372-389.

Gay DM, Correctly rounded binary-decimal and decimal-binary conversions; 1990. AT&T Bell Laboratories Numerical
Analysis Manuscript 90-10.

Burger RG, Dybvig RK. Printing Floating-Point Numbers Quickly and Accurately. SIGPLAN Not 1996
May;31(5):108-116.

Loitsch F. Printing Floating-Point Numbers Quickly and Accurately with Integers. In: Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation PLDI 10, New York, NY, USA: Association
for Computing Machinery; 2010. p. 233-243. https://doi.org/10.1145/1806596.1806623.

Andrysco M, Jhala R, Lerner S. Printing Floating-Point Numbers: A Faster, Always Correct Method. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL '16, New York, NY,
USA: Association for Computing Machinery; 2016. p. 555-567.

Adams U. Ry: fast float-to-string conversion. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation; 2018. p. 270-282.

Adams U. Ry revisited: printf floating point conversion. Proceedings of the ACM on Programming Languages
2019;3(0O0PSLA):1-23.

Giulietti R, The Schubfach way to render doubles; 2020. https://drive.google.com/file/d/
11uHhyQF9zK1M8yJ1nebU00gVYhfC6CBN/view [last checked January 2026].

Jeon J, Grisu-Exact: A Fast and Exact Floating-Point Printing Algorithm; 2020. https://github.com/jk-jeon/Grisu-
Exact/blob/master/other_files/Grisu-Exact.pdf [last checked January 2026].

Jeon J, Dragonbox: A New Floating-Point Binary-to-Decimal Conversion Algorithm; 2022. https://github.com/jk-
jeon/dragonbox/blob/master/other_files/Dragonbox.pdf [last checked January 2026].

Jaffer A, Easy Accurate Reading and Writing of Floating-Point Numbers; 2018. https://arxiv.org/abs/1310.8121 [last
checked January 2026].

Clinger WD. How to Read Floating Point Numbers Accurately. SIGPLAN Not 1990 Jun;25(6):92-101.

Clinger WD. How to Read Floating Point Numbers Accurately. SIGPLAN Not 2004 Apr;39(4):360-371.

Lemire D. Number parsing at a gigabyte per second. Software: Practice and Experience 2021;51(8):1700-1727.
Mushtak N, Lemire D. Fast number parsing without fallback. Software: Practice and Experience 2023;53(7):1467-1471.
Langdale G, Lemire D. Parsing gigabytes of JSON per second. The VLDB Journal 2019;28(6):941-960.

Champagne Gareau J, Lemire D, float-data: A collection of floating-point numbers; 2025. https://github.com/
fastfloat/float-data [last checked January 2026].

Juckett R, Printing Floating-Point Numbers; 2014. https://www.ryanjuckett.com/printing-floating-point-numbers/
[last checked January 2026].

Leiserson CE, Thompson NC, Emer JS, Kuszmaul BC, Lampson BW, Sanchez D, et al. There’s plenty of room at the Top:
What will drive computer performance after Moore’s law? Science 2020;368(6495):eaam9744.

https://doi.org/10.1145/1806596.1806623
https://drive.google.com/file/d/1luHhyQF9zKlM8yJ1nebU0OgVYhfC6CBN/view
https://drive.google.com/file/d/1luHhyQF9zKlM8yJ1nebU0OgVYhfC6CBN/view
https://github.com/jk-jeon/Grisu-Exact/blob/master/other_files/Grisu-Exact.pdf
https://github.com/jk-jeon/Grisu-Exact/blob/master/other_files/Grisu-Exact.pdf
https://github.com/jk-jeon/dragonbox/blob/master/other_files/Dragonbox.pdf
https://github.com/jk-jeon/dragonbox/blob/master/other_files/Dragonbox.pdf
https://arxiv.org/abs/1310.8121
https://github.com/fastfloat/float-data
https://github.com/fastfloat/float-data
https://www.ryanjuckett.com/printing-floating-point-numbers/

	Introduction
	Problem Definition
	Related Work
	Existing Algorithms
	Limitations of Prior Benchmarks
	Parsing Numbers

	Experiments
	Systems
	Data
	Software Implementations
	None Provide the Shortest Strings
	Performance Comparison: Schubfach and Dragonbox are faster
	Advanced CPU instructions are not exploited
	Converting 32-bit numbers may be faster?
	Additional real-world datasets

	Conclusion

