

Lubinsky, D. S.

More on distribution of eigenvalues of smooth Toeplitz matrices. (English) Zbl 08108412 Pure Appl. Funct. Anal. 10, No. 3, 593-604 (2025).

Given a sequence $\{a_j\}_{j=0}^{\infty}$ of non zero complex numbers, let A_{mn} denote the Toeplitz matrix $(a_{m-j+k})_{1\leq j,k\leq n}$, where $a_j=0$ for j<0. The author is interested in the distribution of the eigenvalues of A_{mn} as $n\to\infty$ and m=m(n) satisfies $\frac{1}{R}\leq \frac{m}{n}\leq R$ for some R>1, and under the basic assumption that the sequence $\{a_j\}_{j=0}^{\infty}$ is "smooth" in the sense that

$$\frac{a_{j-1}a_{j+1}}{a_j^2} = \exp\left(-\frac{1}{\rho_j}(1+o(1))\right),$$

for so-called asymptotic comparison sequence $\{\rho_j\}_{j\geq 1}$.

In this article – which, as its title suggests, follows on from previous publications by the same author in the same field of research – we focus on counting measures that weight absolute values of the eigenvalues, or absolute values of their real parts. We also obtain an upper bound on the determinant of A_{mn} .

To conclude the article, three problems are formulated:

- (1) Formulate conditions for $det(A_{mn})$ to be non zero;
- (2) Estimate below the eigenvalue of smallest modulus of A_{mn} , under suitable conditions;
- (3) Formulate conditions that permit some form of asymptotics for $\det(A_{mn})$.

Reviewer: Frédéric Morneau-Guérin (Québec)

MSC:

15B05 Toeplitz, Cauchy, and related matrices

15A18 Eigenvalues, singular values, and eigenvectors

15A15 Determinants, permanents, traces, other special matrix functions

Keywords:

Toeplitz matrices; eigenvalue distribution

Full Text: Link

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2025 FIZ Karlsruhe GmbH