
Mastering Programming
From Testing to Performance in Go

Daniel Lemire

ii

Contents

Introduction 1
Programming languages . 1
Acknowledgements . 6

Chapter 1 7
Organization . 28
Quality . 28
Documentation . 30
Regression . 31
Bug fixing . 32
Performance . 33
Conclusion . 33
Suggested reading . 34
Exercises for chapter 1 . 34

Chapter 2 35
Version control systems . 36
Distributed version control systems 44
Atomic commits . 48
Branches in Git . 51
Conclusion . 53
Exercises for Chapter 2 . 54

Chapter 3 55

iii

iv CONTENTS

Words . 55
Boolean values . 56
Integers . 56
Unsigned integers . 57
Signed integers and two’s complement 64
Floating-point numbers . 68
Arrays . 72
Strings . 73
Pointers . 78
Exercises for Chapter 3 . 84

Chapter 4 87
Setting, clearing and flipping bits 89
Efficient and safe operations over integers 91
Efficient Unicode processing 92
Basic SWAR . 93
Rotating and reversing bits 96
Fast bit counting . 97
Indexing Bits . 99
Conclusion . 100
Exercises for Chapter 4 . 100

Chapter 5 103
Hashing . 105
Estimating cardinality . 112
Integers . 117
Random shuffle . 122
Reservoir Sampling . 124
Floats . 128
Discrete distributions . 133
Cryptographic hashing and random numbers 136
Exercises for Chapter 5 . 137

Chapter 6 139
Benchmarks in Go . 139

CONTENTS v

Measuring memory allocations 141
Measuring memory usage . 144
Inlining . 150
Hardware prefetchers . 154
Cache line . 157
CPU cache . 160
Memory bandwidth . 164
Memory latency and parallelism 166
Superscalarity and data dependency 175
Branch prediction . 181
Exercises for Chapter 6 . 187

Chapter 7 189
Arrays . 190
Dynamic arrays and slices . 193
Hash tables and maps . 201
Conclusion . 208
Exercises for Chapter 7 . 209

Chapter 8 211
Threads and goroutines . 211
Wait groups . 233
Atomics . 237
Mutex . 242
False sharing . 250
Conclusion . 253
Exercises for Chapter 8 . 254

vi CONTENTS

Introduction

When I learned programming as a teenager, I quickly felt like I had
mastered it. There were loops, functions, and so on. Yet, every time I
tried to embark on an ambitious programming project, I encountered
difficulties. Computer programming is a rich activity that can require
years of practice. My goal in this book is to help readers who are already
familiar with computer programming to better master programming as
a whole. In short, the manual aims to partially answer the following
question: how can we quickly produce computer code that is correct and
efficient to solve problems relevant to an organization? In particular, I
want the reader to better connect concerns considered purely technical
(low level) like the processor and memory, with more abstract concerns
like algorithm design.

Programming languages
Computer programming normally involves a programming language. I
assume that the reader is already familiar with an established language,
such as Java, C# or C++. I also assume that the reader has a basic
understanding of computer organization and algorithms. In this manual,
we don’t aim to get you to master any particular programming language.
All languages have their strengths and weaknesses. We often choose a
particular language based on the people we work with, our familiarity with
it, or the task at hand. I want this book to be accessible to all readers,

1

2 INTRODUCTION

regardless of their preferred programming language. Nevertheless, I want
to use concrete, practical programming languages to express myself.

Instead of using a single programming language, I want to be able to use
several, depending on the concepts covered. I choose to present many
of my examples in a relatively neutral language, the Go programming
language. I don’t assume that the reader knows the Go language. In fact,
I don’t assume that the reader will choose to use the Go language in his
or her reading. It’s enough to know the basic syntax.

The curious reader may wish to take the A Tour of Go tutorial online
(https://tour.golang.org/). The developers of the Go language offer an
online tool (https://go.dev/play/) that lets you write and run programs
in Go.

To get started with Go on Windows, visit the official Go website at
https://go.dev/dl/ and download the latest Windows installer. Run the
installer, which will add the go binary to your system PATH. To confirm
the installation, open a Command Prompt or PowerShell and type go
version; you should see the installed version, like go version go1.21.x
windows/amd64. Next, create a directory for your Go projects, such as
C:\Users\YourName\go.

To get started with Go on macOS, the process is the same. Visit the
official Go website at https://go.dev/dl/ and download the latest macOS
installer. To confirm the installation, open a Terminal and type go
version; you should see the installed version. Next, create a directory
for your Go projects, such as /Users/YourName/go.

Using a text editor, create a file name hello.go in your Go directory:
package main

import "fmt"

func main() {
fmt.Println("Hello, World!")

}

PROGRAMMING LANGUAGES 3

The default text editor on Windows is Notepad. The default text editor
on macOS is TextEdit.

By default, you need to initialize a module each time you start a new
project. Initialize a module by navigating to your project folder and
running go mod init hello, which creates a go.mod file for dependency
management. In your case, the module file could be as simple as:
module hello

go 1.24.2

To compile your code into an executable, use go build, which generates
an executable file (e.g., hello.exe). To start a new project, you can create
a new directory and repeat the same process. The Go documentation at
https://go.dev/doc/ is an excellent resource for learning more, and the
go env command can help troubleshoot configuration issues.

Using Visual Studio Code (VS Code) as your editor can make you
more productive. After downloading and installing VS Code from
https://code.visualstudio.com/, install the Go extension (golang.go) from
the Extensions Marketplace. This extension provides features like code
completion, formatting, and debugging. Upon installation, VS Code may
prompt you to install additional tools. You can open your Go project
folder in VS Code, and the editor will recognize .go files, offering inline
error checking and suggestions. For example, writing a hello.go file in VS
Code allows you to use the integrated terminal to run go run hello.go or
set up debugging configurations.

Alternatively, GoLand is a dedicated development tools for Go develop-
ment. It provides code completion, advanced refactoring tools, built-in
debugging, and integration with Go-specific tools. You can purchase
GoLand at https://www.jetbrains.com/go/

Here are a few quick syntax points concerning variables and control
structures:

4 INTRODUCTION

x := 1 // declaration of the integer x
x = 2 // assigned '2' to the variable
if x > 2 {

x -= 1
}
for i := 0; i < 10; i++ {

x += i
}

Functions are defined in Go using the keyword func followed by the
function name. We then declare the function’s parameters by sequencing
the variable name and its type (in this case int for integer). The function
declaration ends with a type declaration corresponding to the value
returned by the function. We then proceed with the function definition:
func pair(n int) bool {

return n % 2 == 0
}

In Go, a package is a fundamental organizational unit that groups related
code together. Every Go source file begins with a package declaration,
specifying the package it belongs to, such as package main for executable
programs.

With these few syntax basics, you should be able to read code written in
Go.

Another useful language is Python. Again, you don’t need to master
Python, just be familiar with the basic syntax. Languages such as
JavaScript or Go allow you to indent your code for better readability: in
Python, this indentation is required. Here are a few quick syntax points
concerning variables and control structures:
x = 1
if x > 2 :

x -= 1

PROGRAMMING LANGUAGES 5

for i in range(10):
x += i

Functions in Go are defined with the func keyword followed by the
function name. In Python, we use the def keyword instead. We then
proceed with the function definition:
def pair(n) :

return n % 2 == 0

Unlike the Go programming language, variable types are not explicit in
Python by default. However, you can declare them.
def pair(n: int) -> bool:

return n % 2 == 0

Interested readers will easily find tutorials and other guides to Python
programming.

To install Python on Windows, visit the official Python website
(python.org) and download the latest Python installer for Windows.
Run the executable file, ensuring you check the box to “Add Python
to PATH” during the setup process. Follow the prompts to complete
the installation. Once installed, open the Command Prompt and type
python --version to verify the installation. If the version number ap-
pears, Python is successfully installed and ready for use. It comes with
the pip package manager.

To install Python on macOS, the process is similar. Go to python.org and
download the latest Python installer for macOS. Open the downloaded
.pkg file and follow the installer’s instructions, which typically involve
agreeing to the license and selecting the install location (default settings
are usually fine). After installation, open the Terminal and type python3
--version to confirm Python is installed correctly. The corresponding
package manager pip3 should also have been isntalled.

6 INTRODUCTION

Acknowledgements
I would like to thank professor Robert Godin and Wojciech Muła for
their comments.

Chapter 1

Our most important goal in writing software is that it be correct. The
software must do what the programmer wants it to do. It must meet the
needs of the user.

In the business world, double-entry bookkeeping1 is the idea that trans-
actions are recorded in at least two accounts (debit and credit). One of
the advantages of double-entry bookkeeping, compared to a more naive
approach, is that it allows for some degree of auditing and error finding.
If we compare accounting and software programming, we could say that
double-entry accounting and its subsequent auditing is equivalent to
software testing.

For an accountant, converting a naive accounting system into a double-
entry system is a difficult task in general. In many cases, one would have
to reconstruct it from scratch. In the same manner, it can be difficult to
add tests to a large application that has been developed entirely without
testing. And that is why testing should be first on your mind when
building serious software.

A hurried or novice programmer can quickly write a routine, compile
and run it and be satisfied with the result. A cautious or experienced
programmer will know not to assume that the routine is correct.

Common software errors can cause problems ranging from a program
that abruptly terminates to database corruption. The consequences can

1https://en.wikipedia.org/wiki/Double-entry_bookkeeping

7

https://en.wikipedia.org/wiki/Double-entry_bookkeeping
https://en.wikipedia.org/wiki/Double-entry_bookkeeping

8 CHAPTER 1

be costly: a software bug caused the explosion of an Ariane 5 rocket
in 1996 (Dowson, 19972). The error was caused by the conversion of a
floating point number to a signed integer represented with 16 bits. Only
small integer values could be represented. Since the value could not be
represented, an error was detected and the program stopped because such
an error was unexpected. The irony is that the function that triggered
the error was not required: it had simply been integrated as a subsystem
from an earlier model of the Ariane rocket. In 1996 U.S. dollars, the
estimated cost of this error is almost $400 million.

The importance of producing correct software has long been understood.
The best scientists and engineers have been trying to do this for decades.

There are several common strategies. For example, if we need to do a
complex scientific calculation, then we can ask several independent teams
to produce an answer. If all the teams arrive at the same answer, we can
then conclude that it is correct. Such redundancy is often used to prevent
hardware-related faults (Yeh, 19963). Unfortunately, it is not practical to
write multiple versions of your software in general.

Many of the early programmers had advanced mathematical training.
They hoped that we could prove that a program is correct. By putting
aside the hardware failures, we could then be certain that we would not
encounter any errors. And indeed, today we have sophisticated software
that allows us to sometimes prove that a program is correct.

Let us consider an example of formal verification to illustrate our point.
We can use the z3 library from Python (De Moura and Bjørner, 20084).
If you are not a Python user, don’t worry: you don’t have to be to follow
the example. We can install the necessary library with the command pip
install z3-solver or the equivalent. Suppose we want to be sure that
the inequality (1 + y) / 2 < y holds for all 32-bit integers. We can
use the following script:

2https://doi.org/10.1145/251880.251992
3https://doi.org/10.1109/AERO.1996.495891
4https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1145/251880.251992
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/251880.251992
https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.1007/978-3-540-78800-3_24

9

import z3
y = z3.BitVec("y", 32)
s = z3.Solver()
s.add((1 + y) / 2 >= y)
if(s.check() == z3.sat):

model = s.model()
print(model)

In this example we construct a 32-bit word (BitVec) to represent our
example. By default, the z3 library interprets the values that can be
represented by such a variable as ranging from -2147483648 to 2147483647
(from −231 to 231 − 1 inclusive). We enter the inequality opposite to
the one we wish to show ((1 + y) / 2 >= y). If z3 does not find a
counterexample, then we will know that the inequality (1 + y) / 2
< y holds.

When running the script, Python displays the integer value 2863038463
which indicates that z3 has found a counterexample. The z3 library
always gives a positive integer and it is up to us to interpret it correctly.
The number 2147483648 becomes -2147483648, the number 2147483649
becomes -2147483647 and so on. This representation is often called the
two’s complement5. Thus, the number 2863038463 is in fact interpreted
as a negative number. Its exact value is not important: what matters is
that our inequality ((1 + y) / 2 < y) is incorrect when the variable
is negative. We can check this by giving the variable the value -1, we
then get 0 < -1. When the variable takes the value 0, the inequality is
also false (0<0). We can also check that the inequality is false when the
variable takes the value 1. So let us add as a condition that the variable
is greater than 1 (s.add(y > 1)):
import z3
y = z3.BitVec("y", 32)
s = z3.Solver()
s.add((1 + y) / 2 >= y)

5https://en.wikipedia.org/wiki/Two%27s_complement

https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Two%27s_complement

10 CHAPTER 1

s.add(y > 1)

if(s.check() == z3.sat):
model = s.model()
print(model)

Since the latter script does not display anything on the screen when it is
executed, we can conclude that the inequality is satisfied as long as the
variable of variable is greater than 1.

Since we have shown that the inequality (1 + y) / 2 < y is true,
perhaps the inequality (1 + y) < 2 * y is true too? Let’s try it:
import z3
y = z3.BitVec("y", 32)
s = z3.Solver()
s.add((1 + y) >= 2 * y)
s.add(y > 1)

if(s.check() == z3.sat):
model = s.model()
print(model)

This script will display 1412098654, half of 2824197308 which is interpreted
by z3 as a negative value. To avoid this problem, let’s add a new condition
so that the double of the variable can still be interpreted as a positive
value:
import z3
y = z3.BitVec("y", 32)
s = z3.Solver()
s.add((1 + y) / 2 >= y)
s.add(y > 0)
s.add(y < 2147483647/2)

if(s.check() == z3.sat):

11

model = s.model()
print(model)

This time the result is verified. As you can see, such a formal approach
requires a lot of work, even in relatively simple cases. It may have been
possible to be more optimistic in the early days of computer science, but
by the 1970s, computer scientists like Dijkstra were expressing doubts:

we see automatic program verifiers verifying toy programs and
one observes the honest expectation that with faster machines
with lots of concurrent processing, the life-size problems will
come within reach as well. But, honest as these expectations
may be, are they justified? I sometimes wonder. . . (Dijkstra,
19756)

It is impractical to apply such a mathematical method on a large scale.
Errors can take many forms, and not all of these errors can be concisely
presented in mathematical form. Even when it is possible, even when we
can accurately represent the problem in a mathematical form, there is no
reason to believe that a tool like z3 will always be able to find a solution:
when problems become difficult, computational times can become very
long. An empirical approach is more appropriate in general.

Over time, programmers have come to understand the need to test their
software. It is not always necessary to test everything: a prototype or
an example can often be provided without further validation. However,
any software designed in a professional context and having to fulfill an
important function should be at least partially tested. Testing allows us
to reduce the probability that we will have to face a disastrous situation.

There are generally two main categories of tests.

• There are unit tests. These are designed to verify a particular
component of a software program. For example, a unit test can be
performed on a single function. Most often, unit tests are automated:

6https://doi.org/10.1145/800027.808478

https://doi.org/10.1145/800027.808478
https://doi.org/10.1145/800027.808478
https://doi.org/10.1145/800027.808478

12 CHAPTER 1

the programmer can execute them by pressing a button or typing
a command. Unit tests often avoid the acquisition of valuable
resources, such as creating large files on a disk or making network
connections. Unit testing does not usually involve reconfiguring the
operating system. They are often derived from the expectations of
the programmers.

• Integration tests aim to validate a complete application. They
often require access to networks and access to sometimes large
amounts of data. They sometimes require manual intervention
and specific knowledge of the application. Integration testing may
involve reconfiguring the operating system and installing software.
They can also be automated, at least in part. Most often, they are
based on unit tests that serve as a foundation. Integration tests
can validate several requirements such as security or environmental
compliance. They are often closer to the user needs than the unit
tests.

Unit tests are often part of a continuous integration process (Kaiser et
al., 19897). Continuous integration often automatically performs specific
tasks including unit testing, backups, applying cryptographic signatures,
and so on. Continuous integration can be done at regular intervals, or
whenever a change is made to the code.

Unit tests are used to structure and guide software development. Tests
can be written before the code itself, in which case we speak of test-driven
development. Often, tests are written after developing the functions.
Tests can be written by programmers other than those who developed the
functions. It is sometimes easier for independent developers to provide
tests that are capable of uncovering errors because they do not share the
same assumptions.

It is possible to integrate tests into functions or an application. For
example, an application may run a few tests when it starts. In such a
case, the tests will be part of the distributed code. However, it is more

7https://doi.org/10.1109%2FCMPSAC.1989.65147

https://doi.org/10.1109%2FCMPSAC.1989.65147
https://doi.org/10.1109%2FCMPSAC.1989.65147
https://doi.org/10.1109%2FCMPSAC.1989.65147

13

common not to publish unit tests. They are a component reserved for
programmers and they do not affect the functioning of the application.
In particular, they do not pose a security risk and they do not affect the
performance of the application.

Experienced programmers often consider tests to be as important as the
original code. It is therefore not uncommon to spend half of one’s time
on writing tests. The net effect is to substantially reduce the initial speed
of writing computer code. Yet this apparent loss of time often saves time
in the long run: setting up tests is an investment. Software that is not
well tested is often more difficult to update. The presence of tests allows
us to make changes or extensions with less uncertainty.

Tests should be readable, simple and they should run quickly. They often
use little memory.

Unfortunately, it is difficult to define exactly how good tests are. There
are several statistical measures. For example, we can count the lines of
code that execute during tests. We then talk about test coverage. A
coverage of 100% implies that all lines of code are concerned by the tests.
In practice, this coverage measure can be a poor indication of test quality.

Consider this example8:
package main

import (
"testing"

)

func Average(x, y uint16) uint16 {
return (x + y)/2

}

func TestAverage(t *testing.T) {
if Average(2,4) != 3 {

8https://play.golang.org/p/nwMUq2o_WlX

https://play.golang.org/p/nwMUq2o_WlX
https://play.golang.org/p/nwMUq2o_WlX

14 CHAPTER 1

t.Error(Average(2,4))
}

}

Our test simply checks that the average of 2 and 4 is 3.

In the Go language, we can run tests with the command go test. We put
the tests in files named with the suffix _test.go (e.g., mycode_test.go),
the test functions have the prefix Test (e.g., TestAverage) which take
as a parameter a value of type *testing.T: in case of error, we call the
function t.Error where t is of type *testing.T. In our example, we
have an Average function with a corresponding test. The test will run
successfully. If you called the file average_test.go, you can run test
tests as go test average_test.go. The coverage is 100%.

Unfortunately, the Average function may not be as correct as we would
expect. If we pass the integers 40000 and 40000 as parameters, we would
expect the average value of 40000 to be returned. But the integer 40000
added to the integer 40000 cannot be represented with a 16-bit integer
(uint16): the result will be instead (40000+4000)%65536=14464. So the
function will return 7232 which may be surprising. The following test
will fail:
func TestAverage(t *testing.T) {

if Average(40000,40000) != 40000 {
t.Error(Average(40000,40000))

}
}

It is easy in Go to automatically generate a coverage report. It is more
convenient to create a module first.
In a new directory, create the following three files.

go.mod:

15

module lemire.me/average

go 1.24.4

average.go:
package average

func Average(x, y uint16) uint16 {
return (x + y) / 2

}

func Average2(x, y uint16) uint16 {
return (x + y) / 2

}

average_test.go:
package average

import (
"testing"

)

func TestAverage(t *testing.T) {
if Average(2, 4) != 3 {

t.Error(Average(2, 4))
}

}

While in the newly created directory, run the following commands:
go test -coverprofile=coverage.out
go tool cover -func=coverage.out

Go will then inform you that the coverage is 50%. Indeed, the Average2
function is not tested.

16 CHAPTER 1

Code coverage is useful for identifying parts of a program that are not
reached by tests. In the case of unfamiliar code, it provides an overview
of what is happening. A lack of coverage may indicate dead code (code
that serves no purpose).

When possible and fast, we can try to test the code more exhaustively,
like in this example9 where we include several values:
package main

import (
"testing"

)

func Average(x, y uint16) uint16 {
if y > x {

return (y - x)/2 + x
} else {

return (x - y)/2 + y
}

}

func TestAverage(t *testing.T) {
for x := 0; x < 65536; x++ {

for y := 0; y < 65536; y++ {
m := int(Average(uint16(x),uint16(y)))
if x < y {

if m < x || m > y {
t.Error("error ", x, " ", y)

}
} else {

if m < y || m > x {
t.Error("error ", x, " ", y)

9https://play.golang.org/p/nlq_J_-Tw8F

https://play.golang.org/p/nlq_J_-Tw8F
https://play.golang.org/p/nlq_J_-Tw8F

17

}
}

}
}

}

Our test merely checks that the result falls within [x,y] when y>x and
within [y,x] when x>y. In practice, one could be more careful and check
that we compute the average. We leave this as an exercise to the reader.

With a bit of patience, it is possible to test billions of cases. For ex-
ample, the following test verifies that all integers from math.MinInt32
to math.MaxInt32 can be converted to a string (using strconv.Itoa)
and then have the original integer recovered from the produced string
(strconv.ParseInt).
package int32test

import (
"math"
"strconv"
"testing"

)

func TestInt32StringConversion(t *testing.T) {
for i := int64(math.MinInt32); i <= math.MaxInt32; i++ {

s := strconv.Itoa(int(i))
parsed, err := strconv.ParseInt(s, 10, 32)
if err != nil {

t.Errorf("Parsing error for %d: %v", i, err)
continue

}
if parsed != i {

t.Errorf("For %d, got %d after conversion",
i, parsed)

18 CHAPTER 1

}
}

}

If you name this file exhaustive_test.go, you should be able to run go
test exhaustive_test.go in a few minutes.

In practice, it is rare that we can do exhaustive tests. We can instead
use pseudo-random tests. For example, we can generate pseudo-random
numbers and use them as parameters. In the case of random tests, it is
important to keep them deterministic: each time the test runs, the same
values are tested. This can be achieved by providing a fixed seed to the
random number generator as in this example10:
package main

import (
"testing"
"math/rand"

)

func Average(x, y uint16) uint16 {
if y > x {

return (y - x)/2 + x
} else {

return (x - y)/2 + y
}

}

func TestAverage(t *testing.T) {
rand.Seed(1234)
for test := 0; test < 1000; test++ {

x := rand.Intn(65536)
y := rand.Intn(65536)

10https://play.golang.org/p/XGoxJoxfiEJ

https://play.golang.org/p/XGoxJoxfiEJ
https://play.golang.org/p/XGoxJoxfiEJ

19

m := int(Average(uint16(x),uint16(y)))
if x < y {

if m < x || m > y {
t.Error("error ", x, " ", y)

}
} else {

if m < y || m > x {
t.Error("error ", x, " ", y)

}
}

}
}

Tests based on random exploration are part of a strategy often called
fuzzing (Miller at al., 199011).

The Go language lets you fuzz automatically, without having to generate
your own random values:
// go test -fuzz=FuzzMoyenne
package main

import (
"testing"

)

func Moyenne(x, y uint16) uint16 {
if y > x {

return (y-x)/2 + x
} else {

return (x-y)/2 + y
}

}

11https://doi.org/10.1145/96267.96279

https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279

20 CHAPTER 1

func FuzzMoyenne(f *testing.F) {
f.Fuzz(func(t *testing.T, x uint16, y uint16) {

m := Moyenne(x, y)
if x < y {

if m < x || m > y {
t.Errorf("error with x=%d, y=%d", x, y)

}
} else {

if m < y || m > x {
t.Errorf("error with x=%d, y=%d", x, y)

}
}

})
}

We generally distinguish two types of tests. Positive tests aim at verifying
that a function or component behaves in an agreed way. Thus, the first
test of our Average function was a positive test. Negative tests verify
that the software behaves correctly even in unexpected situations. We
can produce negative tests by providing our functions with random data
(fuzzing). Our second example can be considered a negative test if the
programmer expected small integer values.

The tests should fail when the code is modified (Budd et al., 197812). On
this basis, we can also develop more sophisticated measures by testing for
random changes in the code and ensuring that such changes often cause
tests to fail.

Some programmers choose to generate tests automatically from the code.
In such a case, a component is tested and the result is captured. For
example, in our example of calculating the average, we could have captured
the fact that Average(40000,40000) has the value 7232. If a subsequent
change occurs that changes the result of the operation, the test will fail.
Such an approach saves time since the tests are generated automatically.

12https://doi.org/10.1109/AFIPS.1978.195

https://doi.org/10.1109/AFIPS.1978.195
https://doi.org/10.1109/AFIPS.1978.195

21

We can quickly and effortlessly achieve 100% code coverage. On the other
hand, such tests can be misleading. In particular, it is possible to capture
incorrect behaviour. Furthermore, the objective when writing tests is not
so much their number as their quality. The presence of several tests that
do not contribute to validate the essential functions of our software can
even become harmful. Irrelevant tests can waste programmers’ time in
subsequent revisions.

Regarding integration tests, the extensive external systems they often
rely on, such as databases, network services, or third-party APIs, can
frequently be simulated using mocks or stubs. In this context, a mock is a
simulated version of an external component that exposes the same API as
the real system but allows the test author to control its behavior directly
within the test. This enables testing of the application’s interactions
with these systems without relying on their actual availability, which can
be costly, slow, or prone to external failures. The ability to use mocks
effectively hinges on a well-designed system architecture, particularly
one that employs dependency injection to provide services rather than
hardcoding dependencies, ensuring components are loosely coupled and
easily replaceable.

Dependency injection is a design pattern in software engineering that
promotes loose coupling between components by passing dependencies
(services or objects a component needs) into a component rather than
having the component create or directly reference them. This approach
makes the system more modular, testable, and maintainable, as depen-
dencies can be easily swapped or mocked during testing without altering
the component’s code. Instead of hardcoding dependencies (embedding
them), they are “injected” from the outside, typically through construc-
tors, setters, or interfaces.

For example, consider an application that integrates with a payment
processing service. In a real-world scenario, the application sends requests
to the service’s API to process transactions. During integration testing,
connecting to the actual payment service might be impractical due to costs,
network issues, or the need for specific test scenarios (e.g., simulating a

22 CHAPTER 1

failed payment). Instead, a mock can be created to mimic the payment
service’s API. The mock would respond to API calls in a controlled way,
as defined by the test. For instance, a test might configure the mock to
return a “payment successful” response for a valid request or a “payment
declined” error for an invalid card number. This allows the test to verify
how the application handles these responses without ever contacting the
real payment service.

Suppose we have an application that processes orders and interacts with
a payment service. We want to test the order processing logic without
calling the real payment service, using a mock instead.
package main

import (
"fmt"

)

type PaymentService interface {
ProcessPayment(orderID string, amount float64)

(string, error)
}

type RealPaymentService struct{}

func (r *RealPaymentService) ProcessPayment(orderID string,
amount float64) (string, error) {

// Simulate calling an external payment gateway.
return "tx_12345", nil

}

type MockPaymentService struct {
// Fields to control mock behavior.
transactionID string
err error

}

23

func (m *MockPaymentService) ProcessPayment(orderID string,
amount float64) (string, error) {
// Return predefined values for testing.
return m.transactionID, m.err

}

type OrderProcessor struct {
paymentService PaymentService

}

func NewOrderProcessor(paymentService PaymentService)
*OrderProcessor {

return &OrderProcessor{
paymentService: paymentService,

}
}

func (op *OrderProcessor) ProcessOrder(orderID string,
amount float64) (string, error) {

transactionID, err
:= op.paymentService.ProcessPayment(orderID, amount)
if err != nil {

return "", fmt.Errorf("payment failed: %w", err)
}
return transactionID, nil

}

func main() {
// Example usage in a real application.
realPaymentService := &RealPaymentService{}
processor := NewOrderProcessor(realPaymentService)
transactionID, err := processor.ProcessOrder("order_001",

99.99)
if err != nil {

24 CHAPTER 1

fmt.Printf("Error: %v\n", err)
return

}
fmt.Printf("Real service transaction ID: %s\n",

transactionID)

// Example usage in a test scenario with a mock.
mockPaymentService := &MockPaymentService{

transactionID: "mock_tx_999",
err: nil,

}
processor = NewOrderProcessor(mockPaymentService)
transactionID, err = processor.ProcessOrder("order_002",

49.99)
if err != nil {

fmt.Printf("Error: %v\n", err)
return

}
fmt.Printf("Mock service transaction ID: %s\n",

transactionID)
}

This Go code demonstrates dependency injection to facilitate integration
testing by allowing a component, OrderProcessor, to work with either a
real or mock implementation of a PaymentService. The PaymentService
interface defines a ProcessPayment method, which is implemented by
two structs: RealPaymentService, simulating interaction with an ex-
ternal payment gateway, and MockPaymentService, used for testing
with configurable responses. The OrderProcessor struct depends on a
PaymentService, which is injected via the NewOrderProcessor construc-
tor, ensuring loose coupling. The ProcessOrder method calls the injected
service’s ProcessPayment method and handles its response, returning
a transaction ID or an error. This design allows the OrderProcessor

25

to remain agnostic about whether it’s interacting with a real or mock
service, enhancing modularity and testability.

In the main function, the code showcases both real and test sce-
narios. First, it creates a RealPaymentService, injects it into an
OrderProcessor, and processes an order, printing a transaction ID
(e.g., tx_12345). Then, it demonstrates a test scenario by injecting
a MockPaymentService, configured with a predefined transactionID
(mock_tx_999) and no error. The OrderProcessor processes another
order, printing the mock’s transaction ID. The mock’s fields allow test
authors to simulate various outcomes (e.g., success or failure) without
relying on an external system. This structure exemplifies how dependency
injection enables seamless swapping of dependencies, making integration
tests faster, more reliable, and independent of external services.

Table-based tests allow for verifying a function using a predefined set of
inputs and expected outputs, organized in a data structure, typically a
slice of structs. This approach is particularly effective for testing a function
with multiple test cases, such as an empty string, zero, or a maximum
value, while reducing code duplication. In the following example, we test
a function that calculates the square of an integer, validating its behavior
with varied inputs, including an empty string converted to an integer,
zero, and a value exceeding the maximum integer.
package main

import (
"strconv"
"testing"

)

func square(n int64) int64 {
return n * n

}

func TestSquare(t *testing.T) {

26 CHAPTER 1

tests := []struct {
name string
input string
expected int64
err bool

}{
{

name: "empty string",
input: "",
expected: 0,
err: true,

},
{

name: "zero",
input: "0",
expected: 0,
err: false,

},
{

name: "positive number",
input: "5",
expected: 25,
err: false,

},
{

name: "negative number",
input: "-4",
expected: 16,
err: false,

},
{

name: "max int64",
input: "9223372036854775808",
expected: 0,

27

err: true,
},

}

for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {

n, err := strconv.ParseInt(tt.input, 10, 64)
if tt.err {

if err == nil {
t.Errorf("expected error for input %q, got none",

tt.input)
}
return

}
if err != nil {

t.Errorf("unexpected error for input %q: %v",
tt.input, err)

return
}
result := square(n)
if result != tt.expected {

t.Errorf("square(%d) = %d; want %d", n, result,
tt.expected)

}
})

}
}

As the code evolves, we aim to run tests frequently, potentially after
every minor change. A software regression is a bug where a previously
functioning feature stops working. In some cases, we may need to execute
all tests, including unit and integration tests. This process is commonly
referred to as regression testing.

28 CHAPTER 1

Finally, we review the benefits of testing: tests help us organize our work,
they are a measure of quality, they help us document the code, they avoid
regression, they help debugging and they can produce more efficient code.

Organization
Designing sophisticated software can take weeks or months of work. Most
often, the work will be broken down into separate units. It can be difficult,
until you have the final product, to judge the outcome. Writing tests
as we develop the software helps to organize the work. For example,
a given component can be considered complete when it is written and
tested. Without the test writing process, it is more difficult to estimate
the progress of a project since an untested component may still be far
from being completed.

Quality
Tests are also used to show the care that the programmer has put into his
work. They also make it possible to quickly evaluate the care taken with
the various functions and components of a software program: the presence
of carefully composed tests can be an indication that the corresponding
code is reliable. The absence of tests for certain functions can serve as a
warning.

Some programming languages are quite strict and have a compilation
phase that validates the code. Other programming languages (Python,
JavaScript) leave more freedom to the programmer. Some programmers
consider that tests can help to overcome the limitations of less strict
programming languages by imposing on the programmer a rigour that
the language does not require.

A related approach is the use of linters. These are tools that review code
for potential errors. While they are not a form of testing per se, they can
help us find errors. The Go language has a builtin linter that you can
invoke with the command go vet.

QUALITY 29

Consider the following Go code.
package main

import (
"fmt"

)

func main() {
num := 42
str := string(num) //strconv.Itoa
fmt.Print(str)

name := "Alice"
fmt.Printf("%s %d\n", name)

}

There are two likely errors in this code. The first likely error is that, to
convert a number into a string, the proper function is strconv.Itoa and
not string. The expression string(42) returns the ASCII character
corresponding to the codepoint value 42 which is *. The second error is
that the expression fmt.Printf("%s %d\n", name) is missing a third
parameter of a integer type. Running go vet in a directory with a the
code in question results in the following warnings.

./bad.go:13:2: fmt.Printf format %d
reads arg #2, but call has 1 arg
./bad.go:9:9: conversion from int
to string yields a string of one rune,
not a string of digits

It is common practice to automatically execute linters like go vet as a
form of quality control. However, we must be careful since these tools
tend to produce false positives (report errors that are not errors).

30 CHAPTER 1

Documentation
Software programming should generally be accompanied by clear and
complete documentation. In practice, the documentation is often partial,
imprecise, erroneous or even non-existent. Tests are therefore often the
only technical specification available. Reading tests allows programmers
to adjust their expectations of software components and functions. Unlike
documentation, tests are usually up-to-date, if they are run regularly, and
they are accurate to the extent that they are written in a programming
language. Tests can therefore provide good examples of how the code is
used. Even if we want to write high-quality documentation, tests can
also play an important role. To illustrate computer code, examples are
often used. Each example can be turned into a test. So we can make
sure that the examples included in the documentation are reliable. When
the code changes, and the examples need to be modified, a procedure to
test our examples will remind us to update our documentation. In this
way, we avoid the frustrating experience of readers of our documentation
finding examples that are no longer functional.

Go supports examples as test. In a file containing tests, you can add
a function that begins with the string Example and includes the name
of a function we want document. The example function should take
no parameter. The function should end with a comment starting with
Output:. It automatically becomes a test. At testing time, function is
executed and the result printed out by the function is compared with
the comment starting with Output:. The following code illustrates
the concept with a function called Sum and an example function called
ExampleSum. At testing time, the ExampleSum() function is called, it
prints 3 which matches the comment (// Output: 3) and, thus, the test
passes.
package main

import (
"fmt"

)

REGRESSION 31

func Sum(x, y int) int {
return x + y

}

func ExampleSum() {
fmt.Println(Sum(1, 2))
// Output: 3

}

Regression
Programmers regularly fix flaws in their software. It often happens that
the same problem occurs again. The same problem may come back for
various reasons: sometimes the original problem has not been completely
fixed. Sometimes another change elsewhere in the code causes the error to
return. Sometimes the addition of a new feature or software optimization
causes a bug to return, or a new bug to be added. When software acquires
a new flaw, it is called a regression. To prevent such regressions, it is
important to accompany every bug fix or new feature with a corresponding
test. In this way, we can quickly become aware of regressions by running
the tests. Ideally, the regression can be identified while the code is being
modified, so we avoid regression. In order to convert a bug into a simple
and effective test, it is useful to reduce it to its simplest form. For
example, in our previous example with Average(40000,40000), we can
add the detected error in additional test13:
package main

import (
"testing"

)

13https://play.golang.org/p/PH9y3ZqV2c9

https://play.golang.org/p/PH9y3ZqV2c9
https://play.golang.org/p/PH9y3ZqV2c9

32 CHAPTER 1

func Average(x, y uint16) uint16 {
if y > x {

return (y - x)/2 + x
} else {

return (x - y)/2 + y
}

}

func TestAverage(t *testing.T) {
if Average(2,4) != 3 {

t.Error("error 1")
}
if Average(40000,40000) != 40000 {

t.Error("error 2")
}

}

Bug fixing

In practice, the presence of an extensive test suite makes it possible to
identify and correct bugs more quickly. This is because testing reduces
the extent of errors and provides the programmer with several guarantees.
To some extent, the time spent writing tests saves time when errors are
found while reducing the number of errors. Furthermore, an effective
strategy to identify and correct a bug involves writing new tests. It can
be more efficient on the long run than other debugging strategies such
as stepping through the code. Indeed, after your debugging session is
completed, you are left with new unit tests in addition to a corrected
bug.

PERFORMANCE 33

Performance

The primary function of tests is to verify that functions and components
produce the expected results. However, programmers are increasingly
using tests to measure the performance of components. For example, the
execution speed of a function, the size of the executable or the memory
usage can be measured. It is then possible to detect a loss of performance
following a modification of the code. You can compare the performance
of your code against a reference code and check for differences using
statistical tests.

Conclusion

All computer systems have flaws. Hardware can fail at any time. And even
when the hardware is reliable, it is almost impossible for a programmer
to predict all the conditions under which the software will be used. No
matter who you are, and no matter how hard you work, your software
will not be perfect. Nevertheless, you should at least try to write code
that is generally correct: it most often meets the expectations of users.
It is possible to write correct code without writing tests. Nevertheless,
the benefits of a test suite are tangible in difficult or large-scale projects.
Many experienced programmers will refuse to use a software component
that has been built without tests. They might say: “If it is not tested,
it does not work.” The habit of writing tests probably makes you a
better programmer. Psychologically, you are more aware of your human
limitations if you write tests. When you interact with other programmers
and with users, you may be better able to take their feedback into account
if you have a test suite. We have said little about integration tests. They
often depend more specifically on the application and the users. Your
foundation should be the unit tests.

34 CHAPTER 1

Suggested reading
• James Whittaker, Jason Arbon, Jeff Carollo, How Google Tests

Software, Addison-Wesley Professional; 1st edition (March 23 2012)
• Lisa Crispin, Janet Gregory, Agile Testing: A Practical Guide for

Testers and Agile Teams, Addison-Wesley Professional; 1st edition
(Dec 30 2008)

• Hoare, Charles Anthony Richard. “How did software get so reliable
without proof?.” International Symposium of Formal Methods
Europe. Springer, Berlin, Heidelberg, 1996.

Exercises for chapter 1

Problem 1.
Write a function that converts floating point numbers (float64 in Go)
to signed integers represented with 16 bits. Then write a test to check
that this function is correct: when the value is indeed an integer, it is
returned, otherwise an error is generated.

Problem 2.
Write a function that adds two unsigned integers (uint16), but produces
zero if the result cannot be represented in the same form (uint16). Then
write a corresponding test.

Chapter 2

In practice, computer code is constantly being transformed. At the
beginning of a project, the computer code often takes the form of sketches
that are gradually refined. Later, the code can be optimized or corrected,
sometimes for many years.

Soon enough, programmers realized that they needed to not only to
store files, but also to keep track of the different versions of a given file.
It is no accident that we are all familiar with the fact that software is
often associated with versions. It is necessary to distinguish the different
versions of the computer code in order to keep track of updates.

We might think that after developing a new version of a software, the
previous versions could be discarded. However, it is practical to keep a
copy of each version of the computer code for several reasons:

1. A change in the code that we thought was appropriate may cause
problems: we need to be able to go back quickly.

2. Sometimes different versions of the computer code are used at the
same time and it is not possible for all users to switch to the latest
version. If an error is found in a previous version of the computer
code, it may be necessary for the programmer to go back and
correct the error in an earlier version of the computer code without
changing the current code. In this scenario, the evolution of the
software is not strictly linear. It is therefore possible to release
version 1.0, followed by version 2.0, and then release version 1.1.

35

36 CHAPTER 2

3. It is sometimes useful to be able to go back in time to study the
evolution of the code in order to understand the motivation behind a
section of code. For example, a section of code may have been added
without much comment to quickly fix a new bug. The attentive
programmer will be able to better understand the code by going
back and reading the changes in context.

4. Computer code is often modified by different programmers working
at the same time. In such a social context, it is often useful to be
able to quickly determine who made what change and when. For
example, if a problem is caused by a segment of code, we may want
to question the programmer who last worked on that segment.

Furthermore, when many people work on the same software code at the
same time, there are many different versions of the same code at the same
time. Maybe each programmer in a team has their local copy and they
are differ slightly. We need to regularly merge the work so that there is
only one definitive version of the code. Ideally, we would like the code
synchronization to be automated and safe. In particular, we do not want
to lose valuable work in the process.

Version control systems
Programmers quickly realized that they needed version control systems.
The basic functions that a version control system provides are rollback,
the addition of new changes, and a history of changes made. Over time,
the concept version control has spread. There are even several variants
intended for the general public such as DropBox where various files, not
only computer code, are stored.

The history of software version control tools dates back to the 1970s
(Rochkind, 197514). In 1972, Rochkind developed the SCCS (Source Code
Control System) at Bell Laboratories. This system made it possible to
create, update and track changes in a software project. SCCS remained a
reference from the end of the 1970s until the 1980s. One of the constraints

14http://doi.org/10.1109/TSE.1975.6312866

http://doi.org/10.1109/TSE.1975.6312866
http://doi.org/10.1109/TSE.1975.6312866

VERSION CONTROL SYSTEMS 37

of SCCS is that it does not allow collaborative work: only one person
can modify a given file at a given time.

In the early 1980s, Tichy proposed the RCS (Revision Control System),
which innovated with respect to SCCS by storing only the differences
between the different versions of a file in backward order, starting from
the latest file. In contrast, SCCS stored differences in forward order
starting from the first version. For typical use where we access the latest
version, RCS is faster.

In programming, we typically store computer code within text files. Text
files most often use ASCII or Unicode (UTF-8 or UTF-16) encoding.
Lines are separated by a sequence of special characters that identify
the end of a line and the beginning of a new line. Two characters are
often used for this purpose: “carriage return” (CR) and “line feed” (LF).
In ASCII and UTF-8, these characters are represented with the byte
having the value 13 and the byte having the value 10 respectively. In
Windows, the sequence is composed of the CR character followed by
the LF character, whereas in Linux and macOS, only the LF character
is used. In most programming languages, we can represent these two
characters with the escape sequences \r and \n respectively. So the string
"a\nb\nc" has three lines in most programming languages under Linux
or macOS: the lines “a”, “b” and “c”.

When a text file is edited by a programmer, usually only a small fraction
of all lines are changed. Some lines may also be inserted or deleted.
It is convenient to describe the differences as succinctly as possible by
identifying the new lines, the deleted lines and the modified lines.

The calculation of differences between two text files is often done first
by breaking the text files into lines. We then treat a text file as a list of
lines. Given two versions of the same file, we want to associate as many
lines in the first version as possible with an identical line in the second
version. We also assume that the order of the lines is not reversed.

We can formalize this problem by looking for the longest common sub-
sequence. Given a list, a subsequence simply takes a part of the list,

38 CHAPTER 2

excluding some elements. For example, (a,b,d) is a subsequence of the
list (a,b,c,d,e). Given two lists, we can find a common subsequence,
e.g. (a,b,d) is a subsequence of the list (a,b,c,d,e) and the list (z,a,b,d).
The longest common subsequence between two lists of text lines represents
the list of lines that have not been changed between the two versions
of a text file. It might be difficult to solve this program using brute
force. Fortunately, we can compute the longest common subsequence by
dynamic programming. Indeed, we can make the following observations.

1. If we have two strings with a longest subsequence of length k, and
we add at the end of each of the two strings the same character,
the new strings will have a longer subsequence of length k+1.

2. If we have two strings of lengths m and n, ending in distinct charac-
ters (for example, “abc” and “abd”), then the longest subsequence
of the two strings is the longest subsequence of the two strings
after removing the last character from one of the two strings. In
other words, to determine the length of the longest subsequence
between two strings, we can take the maximum of the length of the
subsequence after amputating one character from the first string
while keeping the second unchanged, and the length of the subse-
quence after amputating one character from the second string while
keeping the first unchanged.

These two observations are sufficient to allow an efficient calculation of
the length of the longest common subsequence. It is sufficient to start
with strings comprising only the first character and to add progressively
the following characters. In this way, one can calculate all the longest
common subsequences between the truncated strings. It is then possible
to reverse this process to build the longest subsequence starting from the
end. If two strings end with the same character, we know that the last
character will be part of the longest subsequence. Otherwise, one of the
two strings is cut off from its last character, making our choice in such a
way as to maximize the length of the longest common subsequence.

The following function illustrates a possible solution to this problem.
Given two arrays of strings, the function returns the longest common

VERSION CONTROL SYSTEMS 39

subsequence. If the first string has length m and the second n, then the
algorithm runs in O(m*n) time.
func longest_subsequence(file1, file2 []string) []string {

m, n := len(file1), len(file2)
P := make([]uint, (m+1)*(n+1))
for i := 1; i <= m; i++ {

for j := 1; j <= n; j++ {
if file1[i-1] == file2[j-1] {

P[i*(n+1)+j] = 1 + P[(i-1)*(n+1)+(j-1)]
} else {

P[i*(n+1)+j] = max(P[i*(n+1)+(j-1)],
P[(i-1)*(n+1)+j])

}
}

}
longest := P[m*(n+1)+n]
i, j := m, n
subsequence := make([]string, longest)
for k := longest; k > 0; {

if P[i*(n+1)+j] == P[i*(n+1)+(j-1)] {
j-- // the two strings end with the same char

} else if P[i*(n+1)+j] == P[(i-1)*(n+1)+j] {
i--

} else if P[i*(n+1)+j] == 1+P[(i-1)*(n+1)+(j-1)] {
subsequence[k-1] = file1[i-1]
k--; i--; j--

}
}
return subsequence

}

Once the subsequence has been calculated, we can quickly calculate a
description of the difference between the two text files. Simply move
forward in each of the text files, line by line, stopping as soon as you

40 CHAPTER 2

reach a position corresponding to an element of the longest sub-sequence.
The lines that do not correspond to the subsequence in the first file are
considered as having been deleted, while the lines that do not correspond
to the subsequence in the second file are considered as having been added.
The following function illustrates a possible solution.
func difference(file1, file2 []string) []string {

subsequence := longest_subsequence(file1, file2)
i, j, k := 0, 0, 0
answer := make([]string, 0)
for i < len(file1) && k < len(file2) {

if file2[k] == subsequence[j] &&
file1[i] == subsequence[j] {

answer = append(answer, "'"+file2[k]+"'\n")
i++; j++; k++

} else {
if file1[i] != subsequence[j] {

answer = append(answer, "deleted: '"+file1[i]+"'\n")
i++

}
if file2[k] != subsequence[j] {

answer = append(answer, "added: '"+file2[k]+"'\n")
k++

}
}

}
for ; i < len(file1); i++ {

answer = append(answer, "deleted: '"+file1[i]+"'\n")
}
for ; k < len(file2); k++ {

answer = append(answer, "added: '"+file2[k]+" \n")
}
return answer

}

VERSION CONTROL SYSTEMS 41

The function we propose as an illustration for computing the longest
subsequence uses O(m*n) memory elements. It is possible to reduce
the memory usage of this function and simplify it (Hirschberg, 197515).
Several other improvements are possible in practice (Miller and Myers,
198516). We can then represent the changes between the two files in a
concise way.

Suggested reading: article Diff (wikipedia)17

Like SCCS, RCS does not allow multiple programmers to work on the
same file at the same time. The need to own a file to the exclusion of all
other programmers while working on it may have seemed a reasonable
constraint at the time, but it can make the work of a team of programmers
much more cumbersome.

In 1986, Grune developed the Concurrent Versions System (CVS). Unlike
previous systems, CVS allows multiple programmers to work on the
same file simultaneously. It also adopts a client-server model that allows
a single directory to be present on a network, accessible by multiple
programmers simultaneously. The programmer can work on a file locally,
but as long as he has not transmitted his version to the server, it remains
invisible to the other developers.

The remote server also serves as a de facto backup for the programmers.
Even if all the programmers’ computers are destroyed, it is possible to
start over with the code on the remote server.

In a version control system, there is usually always a single latest version.
All programmers make changes to this latest version. However, such
a linear approach has its limits. An important innovation that CVS
has updated is the concept of a branch. A branch allows to organize
sets of versions that can evolve in parallel. In this model, the same
file is virtually duplicated. There are then two versions of the file (or
more than two) capable of evolving in parallel. By convention, there is

15https://doi.org/10.1145/360825.360861
16https://doi.org/10.1002/spe.4380151102
17https://en.wikipedia.org/wiki/Diff

https://doi.org/10.1145/360825.360861
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1002/spe.4380151102
https://en.wikipedia.org/wiki/Diff
https://doi.org/10.1145/360825.360861
https://doi.org/10.1002/spe.4380151102
https://en.wikipedia.org/wiki/Diff

42 CHAPTER 2

usually one main branch that is used by default, accompanied by several
secondary branches. Programmers can create new branches whenever
they want. Branches can then be merged: if a branch A is divided into
two branches (A and B) which are modified, it is then possible to bring
all the modifications into a single branch (merging A and B). The branch
concept is useful in several contexts:

1. Some software development is speculative. For example, a pro-
grammer may explore a new approach without being sure that it
is viable. In such a case, it may be better to work in a separate
branch and merge with the main branch only if successful.

2. The main branch may be restricted to certain programmers for
security reasons. In such a case, programmers with reduced access
may be restricted to separate branches. A programmer with priv-
ileged access may then merge the secondary branch after a code
inspection.

3. A branch can be used to explore a particular bug and its fix.
4. A branch can be used to update a previous version of the code.

Such a version may be kept up to date because some users depend
on that earlier version and want to receive certain fixes. In such a
case, the secondary branch may never be integrated with the main
branch.

While it is relatively easy to define algorithmically which lines changed be-
tween successive revisions of the same file, different simultaneous changes
on the same file make the problem more difficult. In practice, these
simultaneous changes may lead to conflicts which require users to make
decisions. For example, suppose that we start with a file containing a
single function:
func f1() int {

return 1
}

User A adds a function fa. . .

VERSION CONTROL SYSTEMS 43

func f1() int {
return 1

}

func fa() int {
return 2

}

User B adds a function fb in a different branch. . .
func f1() int {

return 1
}

func fb() int {
return 2

}

How we merge these changes is a suggestive choice. Should there be
three functions (f1, fa and fb)? Or are the two users adding the same
function, albeit using different names? In that case, we should have only
two functions in the file file.

Thus, in practice, doing much work using different branches modifying
the same files might become increasingly challenging, as merging the
results could require more and more human intervention.

One of the drawbacks of CVS is poor performance when projects include
multiple files and multiple versions. In 2000, Subversion (SVN) was
proposed as an alternative to CVS that meets the same needs, but with
better performance.

CVS and Subversion benefit from a client-server approach, which allows
multiple programmers to work simultaneously with the same version
directory. Yet programmers often want to be able to use several separate
remote directories.

44 CHAPTER 2

Distributed version control systems
To meet these needs, various “distributed version control systems” (DVCS)
have been developed. The most popular one is probably the Git system
developed by Torvalds (2005). Torvalds was trying to solve a problem
of managing Linux source code. Git became the dominant version man-
agement tool. It has been adopted by Google, Microsoft, etc. It is free
software.

In a distributed model, a programmer who has a local copy of the code can
synchronize it with either one directory or another. They can easily create
a new copy of the remote directory on a new server. Such flexibility is
considered essential in many complex projects such as the Linux operating
system kernel.

Several companies offer Git-based services including GitHub. Founded in
2008, GitHub has tens of millions of users. In 2018, Microsoft acquired
GitHub for $7.5 billion.

For CVS and Subversion, there is only one set of software versions. With
a distributed approach, multiple sets can coexist on separate servers.
The net result is that a software project can evolve differently, under the
responsibility of different teams, with possible future reconciliation.

In this sense, Git is distributed. Although many users rely on GitHub
(for example), your local copy can be attached to any remote directory,
and it can even be attached to multiple remote directories. The verb
“clone” is sometimes used to describe the recovery of a Git project locally,
since it is a complete copy of all files, changes, and branches.

If a copy of the project is attached to another remote directory, it is
called a fork. We often distinguish between branches and forks. A branch
always belongs to the main project. A fork is originally a complete copy
of the project, including all branches. It is possible for a fork to rejoin
the main project, but it is not essential.

Given a publicly available Git directory, anyone can clone it and start
working on it and contributing to it. We can create a new fork. From

DISTRIBUTED VERSION CONTROL SYSTEMS 45

a fork, we can submit a pull request that invites people to integrate
our changes. This allows a form of permissionless innovation. Indeed,
it becomes possible to retrieve the code, modify it and propose a new
version without ever having to interact directly with the authors.

Systems like CVS and subversion could become inefficient and take several
minutes to perform certain operations. Git, in contrast, is generally
efficient and fast, even for huge projects. Git is robust and does not get
“corrupted” easily. However, it is not recommended to use Git for huge
files such as multimedia content: Git’s strength lies in text files. It should
be noted that the implementation of Git has improved over time and
includes sophisticated indexing techniques.

Git is often used on the command line. It is possible to use graphical
clients. Services like GitHub make Git a little easier.

The basic logical unit of Git is the commit, which is a set of changes
to multiple files. A commit contains a message, a time and an author.
A commit includes a reference to at least one parent, except for the
first commit which has no parent. A single commit can be the parent of
several children: several branches can be created from a commit and each
subsequent commit becomes a child of the initial commit. Furthermore,
when several branches are merged, the resulting commit will have several
parents. In this sense, the commits form an “acyclic directed graph”.

With Git, we want to be able to refer to a commit in an easy way, using
a unique identifier. That is, we want to have a short numeric value that
corresponds to one commit and one commit only. We could assign each
commit a version number (1.0, 2.0, etc.). Unfortunately, such an approach
is difficult to reconcile with the fact that commits do not form a linear
chain where a commit has one and only one parent. As an alternative,
we use a hash function to compute the unique identifier. A hash function
takes elements as parameters and calculates a numerical value (hash
value). There are several simple hash functions. For example, we can
iterate over the bytes contained in a message from a starting value h, by
computing h = 31 * h + b where b is the byte value. For example, a
message containing bytes 3 and 4 might have a hash value of 31 * (31

46 CHAPTER 2

* 3) + 4 if we start h = 0. Such a simple approach is effective in some
cases, but it allows malicious users to create collisions: it would be possible
to create a fake commit that has the same hash value and thus create
security holes. For this reason, Git uses more sophisticated hashing
techniques (SHA-1, SHA-256) developed by cryptographic specialists.
Commits are identified using a hash value (for example, the hexadecimal
numeric value 921103db8259eb9de72f42db8b939895f5651489) which is
calculated from the date and time, the comment left by the programmer,
the user’s name, the parents and the nature of the change. In theory, two
commits could have the same hash value, but this is an unlikely event
given the hash functions used by Git.

It may seem like Git relies on ‘chance’ by assuming that no two commits
within the same project may have the hash value. In some sense, it
does, but the probability of collision is so low that it can be neglected.
Indeed, computer systems are never perfect in any case. We are constantly
bombarded by cosmic rays that may flip bits in our memory systems. We
are subject to random hardware failures. We accept algorithmic failure
probabilities that are astronomically lower than hardware-related failure
probabilities.

It’s not always practical to reference a hexadecimal code. To make things
easier, Git allows you to identify a commit with a label (e.g., v1.0.0). The
following command will do: git tag -a v1.0.0 -m "version 1.0.0".
The command creates an annotated tag named v1.0.0 in a git repository,
marking the current commit with a version label. The flag -m "version
1.0.0" provides a descriptive message for the tag, here indicating the
version.

Though tags can be any string, tags often contain sequences of numbers
indicating a version. There is no general agreement among program-
mers on how to attribute version numbers to a version. However, tags
sometimes take the form of three numbers separated by dots: MA-
JOR.MINOR.PATCH (for example, 1.2.3). With each new version, 1 is
added to at least one of the three numbers. The first number often starts
at 1 while the next two start at 0. - The first number (MAJOR) must

DISTRIBUTED VERSION CONTROL SYSTEMS 47

be increased when you make major changes to the code. The other two
numbers (MINOR and PATCH) are often reset to zero. For example, you
can go from version 1.2.3 to version 2.0.0. - The second number (MINOR)
is increased for minor changes (for example, adding a function). When
increasing the second number, the first number (MAJOR) is usually
kept unchanged and the last number (PATCH) is reset to zero. - The
last number (PATCH) is increased when fixing bugs. The other two
numbers are not increased. There are finer versions of this convention
like “semantic versioning18”.

With Git, the programmer can have a local copy of the commit graph.
They can add new commits. In a subsequent step, the programmer must
“push” his changes to a remote directory so that the changes become
visible to other programmers. The other programmers can fetch the
changes using a ‘pull’.

Git offers a set of advanced features that facilitate collaborative work
within development teams by enabling precise traceability and efficient
coordination of code changes. The git blame command is one of the
most iconic tools in this regard. It allows for a line-by-line analysis of
a file to identify the author of the last modification to each line, the
date of that modification, and the associated commit. For example,
running git blame file_name displays each line of the file alongside
details such as the commit identifier (hash), the author’s name, and
the date, providing a detailed view of the contribution history. This
feature is particularly useful in several contexts. First, it helps trace
the origin of a bug or unexpected behavior in the code. If an error is
detected, a developer can use git blame to identify who last modified
the problematic line, enabling targeted questions to that person or an
examination of the modification’s context through the commit message.
Additionally, git blame promotes accountability and transparency in
collaborative projects, as each change is linked to a contributor. This can
also be valuable during code reviews to assess individual contributions or
to document a project’s evolution. Beyond git blame, Git provides other

18https://semver.org

https://semver.org
https://semver.org

48 CHAPTER 2

powerful collaborative tools. For instance, the git log command allows
users to view the complete commit history, with options like --author
to filter contributions by a specific developer or --grep to search for
commits based on keywords in their messages.

Atomic commits
A commit should encapsulate a single, cohesive change or purpose in the
codebase, making it easier to understand, track, and manage changes
over time. The idea is to keep each commit focused on one specific aspect
of the code, avoiding the bundling of unrelated changes. This approach
enhances clarity, simplifies debugging, and facilitates collaboration by
ensuring that each commit represents a logical, self-contained unit of
work. We sometimes call these commits atomic.

An atomic commit should address one specific task, feature, or fix. It
should include all relevant changes to complete that task (e.g., code, tests,
and documentation). It should avoid mixing unrelated changes, such as
combining a bug fix with a code style update or a new feature.

By keeping commits atomic, developers can more easily review the history
of changes to understand why and how specific modifications were made.
They can better revert or cherry-pick individual changes without affecting
unrelated parts of the codebase. They can identify the source of bugs or
issues by isolating changes to specific commits.

Suppose you are working on a project and need to add a new feature to
calculate the square of a number in a Go program, reformat some code
for consistency, and update the documentation. Instead of bundling all
these changes into a single commit, you would create separate commits
for each task. Consider the following starting point.
func add(a, b int) int {
return a + b
}

ATOMIC COMMITS 49

You notice the code lacks consistent indentation and formatting. You
run a formatter (e.g., gofmt) to standardize the style. You commit this
change separately.

Commit Message: Reformat code for consistent style
func add(a, b int) int {

return a + b
}

This commit only addresses code formatting and does not include func-
tional changes.

You add a new function square to calculate the square of a number. This
is a distinct feature, so it gets its own commit.

Commit Message: Implement square function
func add(a, b int) int {

return a + b
}

func square(n int) int {
return n * n

}

This commit focuses solely on adding the new function and its implemen-
tation.

You update the project’s documentation (e.g., a README or code
comments) to explain the new square function. This is a separate task,
so it is committed independently.

Commit Message: Document square function in code comments
func add(a, b int) int {

return a + b
}

50 CHAPTER 2

func square(n int) int {
return n * n

}

This commit only adds documentation, keeping it distinct from the
implementation.

If all these changes were bundled into one commit with a vague message
like “Update code,” it would be harder to understand the purpose of each
change when reviewing the commit history. By contrast, atomic commits
make the history clear:
$ git log --oneline
c3f2e1d Document square function

in code comments
a7b9c4f Implement square function
f1a2b3c Reformat code for consistent style

Each commit has a specific purpose, and the messages clearly describe
what was done. If a bug is found in the square function, you can use git
blame or git bisect to pinpoint the commit a7b9c4f and investigate
or revert it without affecting the formatting or documentation changes.

A poor commit might look like the following example.

Commit Message: Add square function and fix stuff
// add returns the sum of two integers
func add(a, b int) int {

return a + b
}
// square returns the square of an integer
func square(n int) int {

return n * n
}

This commit combines formatting, feature implementation, and doc-
umentation into one. If you need to revert the feature but keep the

BRANCHES IN GIT 51

documentation, it becomes difficult because the changes are entangled.
Additionally, the vague message doesn’t clearly explain what fix stuff
entails, reducing traceability. By using atomic commits, you create a
more maintainable and transparent version history, making collaboration
and debugging more efficient.

Branches in Git
In Git, a major innovation compared to previous version control systems
like CVS or Subversion is the concept of branches. A branch in Git
represents an independent line of development, allowing multiple versions
of the same project to evolve in parallel. Unlike a linear model where all
changes are applied to a single main version, branches enable developers
to work on separate copies of the code without affecting the main branch,
often called main or master.

A branch can be created with the command git branch <branch-name>
to define a new branch, followed by git switch <branch-name> to
switch to it. Once on a branch, changes made are isolated from other
branches, allowing experimentation or fixes without risking the main
codebase. A developer can work on an experimental feature with no
guarantee of success. By using a dedicated branch, they can test new
ideas and merge with the main branch only if the result is satisfactory. In
some projects, access to the main branch may be restricted to a specific
group of developers. Other contributors work on secondary branches,
and their changes are merged after a code review by a maintainer. A
branch can be created to isolate and fix a specific bug, particularly in
an older version of the software still used by some users. A branch can
be dedicated to maintaining a previous version of the code, receiving
updates or fixes without being merged into the main branch.

Merging branches, done with the command git merge <branch-name>,
integrates changes from one branch into another. For example, if a
feature branch contains a new functionality, it can be merged into the
main branch once completed. However, conflicts may arise if competing

52 CHAPTER 2

changes have been made to the same file in different branches. For
instance, if two developers modify the same line of code differently, Git
will report a conflict that must be resolved manually by editing the file
to choose or combine the changes.

Consider a simple example to illustrate a potential conflict. Suppose an
initial file contains the following code.
func f1() int {

return 1
}

Developer A, on a branch branch-a, adds a function fa.
func f1() int {

return 1
}
func fa() int {

return 2
}

Developer B, on a branch branch-b, adds a function fb.
func f1() int {

return 1
}
func fb() int {

return 2
}

When merging branch-a and branch-b into main, Git can usually com-
bine the changes automatically since they affect different parts of the file.
The result would be:
func f1() int {

return 1
}
func fa() int {

CONCLUSION 53

return 2
}
func fb() int {

return 2
}

However, if both developers modify the same line, Git will report a
conflict, and the developer must intervene to resolve it by choosing which
version to keep or combining the changes.

Branches are often used in combination with services like GitHub, where
developers can submit pull requests to propose integrating their changes.
This facilitates large-scale collaboration, as anyone can clone a public
repository, create a branch, make changes, and propose their integration
without direct interaction with the project maintainers.

To list all branches in a repository, use git branch. To delete an un-
necessary branch, run git branch -d <branch-name>. Git also ensures
that branches deleted locally do not affect remote repositories, providing
additional safety.

Conclusion

Version control in computing is a sophisticated approach that has benefited
from many years of work. It is possible to store multiple versions of the
same file at low cost and navigate from one version to another quickly.

If you develop code without using a version control tool like Git or the
equivalent, you are bypassing proven practices. It’s likely that if you
want to work on complex projects with multiple programmers, your
productivity will be much lower without version control.

54 CHAPTER 2

Exercises for Chapter 2

Problem 1.
Design a function that represents the difference between two files in a
concise way. For example, if only two lines are changed within a large
file, it should be possible to store approximately only two lines of text.

Problem 2.
Given your solution to the first problem. Then write a function that can
take the original file and your concise description and rebuild the second
file.

Problem 3.
Read the Git tutorial19. Install Git on your machine, create a new
directory, make changes to it, create a new branch, make changes to it,
and merge the two branches.

19https://git-scm.com/docs/gittutorial

https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial

Chapter 3

Computer programming starts with the organization of the data into
data structures. In almost all cases, we work with strings or numbers.
It is critical to understand these building blocks to become an expert
programmer.

Words

We often organize data using fixed blocks of memory. When these blocks
are relatively small (e.g., 8 bits, 16 bits, 32 bits, 64 bits), we commonly
call them ‘words’.

The notion of ‘word’ is important because processors do not operate over
arbitrary data types. For practical reasons, processors expect data to
fit in hardware registers having some fixed size (usually 64-bit registers).
Most modern processors accommodate 8-bit, 16-bit, 32-bit and 64-bit
words with fast instructions. It is typical to have the granularity of the
memory accesses to be no smaller than the ‘byte’ (8 bits) so bytes are, in
a sense, the smallest practical words.

Variable-length data structures like strings might be made of a variable
number of words. Historically, strings have been made of lists of bytes,
but other alternatives are common (e.g., 16-bit or 32-bit words).

55

56 CHAPTER 3

Boolean values

The simplest type is probably the Boolean type. A Boolean value can
take either the false or the true value. Though a single bit suffices to
represent a Boolean value, it is common to use a whole byte (or more).
We can negate a Boolean value: the true value becomes the false value,
and conversely. There are also binary operations: - The result of the OR
operation between two Boolean values is false if and only if both inputs
are false. The OR operation is often noted |. E.g., 1 | 0 == 1 where we
use the convention that the symbol == states the equality between two
values. - The result of the AND operation between two Boolean values
is true if and only if both inputs are true. The AND operation is often
noted &. E.g., 1 & 1 == 1. - The result of the XOR operation is true
if and only the two inputs differ in value. The XOR operation is often
noted ˆ. E.g., 1 ˆ 1 == 0. - The result of the AND NOT operation
between two Boolean values is true if and only if the first Boolean value
is true and the second one is false.

Integers

Integer data types are probably the most widely supported in software
and hardware, after the Boolean types. We often represent integers using
digits. E.g., the integer 1234 has 4 decimal digits. By extension, we use
‘binary’ digits, called bits, within computers. We often write an integer
using the binary notation using the 0b prefix. E.g., the integer 0b10
is two, the integer 0b10110 is equal to 2ˆ1+2ˆ2+2ˆ4 or 22. After the
prefix 0b, we enumerate the bit values, starting with the most significant
bit. We may also use the hexadecimal (base 16) notation with the 0x
prefix: in that case, we use 16 different digits in the list 0, 1, 2, 3,...,
9, A, B, C, D, E, F. These digits have values 0, 1, 2, 3,..., 9,
10, 11, 12, 13, 14, 15. For digits represented as letters, we may use
either the lower or upper cases. Thus the number 0x5A is equal to 5 *
16 + 10 or 90 in decimal. The hexadecimal notation is convenient when

UNSIGNED INTEGERS 57

working with binary values: a single digit represents a 4-bit value, two
digits represent an 8-bit value, and so forth.

We might count the number of digits of an integer using the formula
ceil(log(x+1)) where the logarithm is the in the base you are interested
in (e.g., base 2) and where ceil is the ceiling function: ceil(x) returns
the smallest integer no smaller than x. The product between an integer
having d1 digits and an integer having d2 digits has either d1+d2-1 digits
or d1+d2 digits. To illustrate, let us consider the product between two
integers having three digits. In base 10, the smallest product is 100 times
100 is 10,000, so it requires 5 digits. The largest product is 999 times 999
or 998,001 so 6 digits.

For speed or convenience, we might use a fixed number of digits. Given
that we work with binary computers, we are likely to use binary digits.
We also need a way to represent the sign of a number (negative and
positive).

Unsigned integers
Possibly the simplest number type is the unsigned integer where we use
a fixed number of bits used to represent non-negative integers. Most
processors support arithmetic operations over unsigned integers. The term
‘unsigned’ in this instance is equivalent to ‘non-negative’: the integers
can be zero or positive.

We can operate on binary integers using bitwise logical operations. For
example, the bitwise AND (noted &) between 0b101 and 0b1100 is 0b100:
0b101 & 0b1100 == 0b100. The bitwise OR (noted |) is 0b1101. The
bitwise XOR (exclusive OR), noted ˆ, is 0b1001 : 0b101 ˆ 0b1100 ==
0b1001.

The powers of two (1, 2, 4, 8,. . .) are the only numbers having a single
1-bit in their binary representation (0b1, 0b10, 0b100, 0b1000, etc.). The
numbers preceding powers of two (1,3,7,. . .) are the numbers made of
consecutive 1-bits in the least significant positions (0b1, 0b11, 0b111,

58 CHAPTER 3

0b1111, etc.). A unique characteristic of powers of two is that their
bitwise AND with the preceding integer is zero: e.g., 4 AND 3 is zero, 8
AND 7 is zero, and so forth.

In the Go programming language, for example, we have 8-bit, 16-bit,
32-bit and 64-bit unsigned integer types: uint8, uint16, uint32, uint64.
They can represent all numbers from 0 up to (but not including) 2 to the
power of 8, 16, 32 and 64. For example, an 8-bit unsigned integer can
represent all integers from 0 up to 255 inclusively.

Because we choose to use a fixed number of bits, we therefore can only
represent a range of integers. The result of an arithmetic operation may
exceed the range (an overflow). For example, 255 plus 2 is 257: though
both inputs (255 and 2) can be represented using 8-bit unsigned integers,
the result exceeds the range.

Regarding multiplications, the product of two 8-bit unsigned integers is
at most 65025 which can be represented by a 16-bit unsigned integer. It is
always the case that the product of two n-bit integers can be represented
using 2n bits. The converse is untrue: a given 2n-bit integer is not the
product of two n-bit integers. As n becomes large, only a small fraction
of all 2n-bit integers can be written as the product of two n-bit integers,
a result first proved by Erdős.

Typically, arithmetic operations are “modulo” the power of two. That is,
everything is as if we did the computation using infinite-precision integers
and then we only kept the (positive) remainder of the division by the
power of two.

Let us elaborate. Given two integers a and b (b being non-zero), there
are unique integers d and r where r is in [0,b) such that a = d * b +
r. The integer r is the remainder and the integer d is the quotient. In
Go, the quotient is obtained with a/b whereas the remainder is given by
a%b.

Euclid’s division lemma tells us that the quotient and the remainder
exist and are unique. We can check uniqueness. Suppose that there is
another such pair of integers (d' and r'), a = d' * b + r'. We can

UNSIGNED INTEGERS 59

check that if d' is equal to d, then we must have that r' is equal to r, and
conversely, if r' is equal to r, then d' is equal to d. Suppose that r' is
greater than r (if not, just reverse the argument). Then, by subtraction,
we have that 0 = (d'-d)*b + (r'-r). We must have that r'-r is in
[0,b). If d'-d is negative, then we have that (d-d')*b = (r'-r), but
that is impossible because r'-r is in [0,b) whereas (d-d')*b is greater
or equal than b. A similar argument works when d'-d is positive.

In our case, the divisor (b) is a power of two. When the numerator (a) is
positive, then the remainder amounts to a selection of the least significant
bits. For example, the remainder of the division of 65 (or 0b1000001)
with 64 is 1.

When considering unsigned arithmetic, it often helps to think that we
keep only the least significant bits (8, 16, 32 or 64) of the final result.
Thus if we take 255 and we add 2, we get 257, but as an 8-bit unsigned
integer, we get the number 1. Thus, using integers of the type uint8, we
have that 255 + 2 is 1 (255 + 2 == 1). The power of two itself is zero:
256 is equal to zero as an uint8 integer. If we subtract two numbers
and the value would be negative, we effectively ‘wrap’ around: 10 - 20 in
uint8 arithmetic is the positive remainder of (-10) divided by 256 which
is 246. Another way to think of negative numbers is that we can add
the power of two (say 256) as many times as needed (size its value is
effectively zero) until we get a value that is between 0 and the power of
two. Thus if we must evaluate 1-5*250 as an 8-bit integer, we take the
result (-1249) and we add 256 as many times as needed: we have that
-1249+5*256 is 31, a number between 0 and 256. Thus 1-5*250 is 31 as
an unsigned 8-bit number.

We have that 0-1, as an 8-bit number, is 255 or 0b11111111. We have
that 0-2 is 254 and that 0-3 is 253, and so forth.

Consider the set of integers.

-1024, -1023, ..., -513, -512, -511, ..., -1, 0,
1, ..., 255, 256, 257, ...

As 8-bit integers, they are mapped to to the following.

60 CHAPTER 3

0, 255, ... , 255, 0, 1, ..., 255, 0, 1,..., 255, 0, 1,...

Multiplication by a power of two is equivalent to shifting the bits left,
possibly losing the leftmost bits. For example, 17 is 0b10001. Multiplying
it by 4, we get 0b1000100 or 68. If we were to multiply 68 by 4, we
would get 0b100010000 or, as an 8-bit integer, 0b10000. That is, as 8-bit
unsigned integers, we have that 17 * 16 is 16. Thus we have that 17 *
16 == 1 * 16.

The product of two non-zero integers may be zero. For example, 16*16 is
zero as an 8-bit integer. It happens only when both integers are divisible
by two. The product of two odd integers must always be odd.

We say that two numbers are ‘coprime’ if their largest common divisor is
1. Odd integers are coprime with powers of two. Even integers are never
coprime with a power of two.

When multiplying a non-zero integer by an odd integer using finite-bit
arithmetic, we never get zero. Thus, for example, 3 * x as an 8-bit
integer is zero if and only if x is zero when using fixed-bit unsigned
integers. It means that 3 * x is equal to 3 * y if and only if x and y
are equal. Thus we have that the following Go code will print out all
values from 0 to 255, without repetition:

for i:=uint8(1); i != 0; i++ {
fmt.Println(3*i)

}

In mathematics, a permutation is a bijection from a set to itself, that
is, a function that rearranges the elements of that set without adding or
removing any. When you shuffle the cards in a deck, you permute them:
no new card is added and no card is lost. Multiplying integers by an odd
integer using finite-bit arithmetic permutes them.

If you consider powers of an odd integer, you similarly never get a zero
result. However, you may eventually get the power to be one. For
example, as an 8-bit unsigned integer, 3 to the power of 64 is 1. This
number (64) is sometimes called the ‘order’ of 3. Since this is the smallest

UNSIGNED INTEGERS 61

exponent so that the result is one, we have that all 63 preceding powers
give distinct results. We can show this result as follows. Suppose that 3
raised to the p is equal to 3 raised to the power q, and assume without
loss of generality that p>q, then we have that 3 to the power of p-q must
be 1, by inspection. And if both p and q are smaller than 64, then so
must b p-q, a contradiction. Further, we can check that the powers of
an odd integer repeat after the order is reached: we have that 3 to the
power 64 is 1, 3 to the power of 65 is 3, 3 to the power of 66 is 9, and so
forth. It follows that the order of any odd integer must divide the power
of two (e.g., 256).

How large can the order of an odd integer be? We can check that all
powers of an odd integer must be odd integers and there are only 128
distinct 8-bit integers. Thus the order of an 8-bit odd integer can be at
most 128. Conversely, Euler’s theorem tells us that any odd integer to
the power of the number of odd integers (e.g., 3 to the power 128) must
be one. Because the values of the power of an odd integer repeat cyclicly
after the order is reached, we have that the order of any odd integer must
divide 128 for 8-bit unsigned integers. Generally, irrespective of the width
in bits of the words, the order of an odd integer must be a power of two.

Given two non-zero unsigned integers, a and b, we would expect that
a+b>max(a,b) but it is only true if there is no overflow. When and only
when there is an overflow, we have that a+b<min(a,b) using finite-bit
unsigned arithmetic. We can check for an overflow with either conditions:
a+b<a and a+b<b.

Typically, one of the most expensive operations a computer can do with
two integers is to divide them. A division can require several times more
cycles than a multiplication, and a multiplication is in turn often many
times more expensive than a simple addition or subtraction. However,
the division by a power of two and the multiplication by a power of two
are inexpensive: we can compute the integer quotient of the division of
an unsigned integer by shifting the bits right. For example, the integer 7
(0b111) divided by 2 is 0b011 or 3. We can further divide 7 (0b111) by 4
to get 0b001 or 1. The integer remainder is given by selecting the bits

62 CHAPTER 3

that would be shifted out: the remainder of 7 divided by 4 is 7 AND 0b11
or 0b11. The remainder of the division by two is just the least significant
bit. Even integers are characterized by having zero as the least significant
bit. Similarly, the multiplication by a power of two is just a left shift:
the integer 7 (0b111) multiplied by two is 14 (0b1110). More generally,
an optimizing compiler may produce efficient code for the computation
of the remainder and quotient when the divisor is fixed. Typically, it
involves at least a multiplication and a shift20.

Given an integer x, we say that y is its multiplicative inverse if x * y ==
1. We have that every odd integer has a multiplicative inverse because
multiplication by an integer creates a permutation of all integers. We
can compute this multiplicative inverse using Newton’s method. That
is, we start with a guess and from the guess, we get a better one, and so
forth, until we naturally converge to the right value. So we need some
formula f(y), so that we can repeatedly call y = f(y) until y converges.
A useful recurrence formula is f(y) = y * (2 - y * x). You can verify
that if y is the multiplicative inverse of x, then f(y) = y. Suppose that
y is not quite the inverse, suppose that x * y = 1 + z * p for some
odd integer z and some power of two p. If the power of two is (say)
8, then it tells you that y is the multiplicative inverse over the first
three bits. We get x * f(y) = x * y * (2 - y * x) = 2 + 2 * z *
p - (1 - 2 * z * p + z * z * p * p) = 1 - z * z * p * p. We
can see from this result that if y is the multiplicative inverse over the
first n bits, then f(y) is the multiplicative inverse over 2n bits. That is,
if y is the inverse “for the first n bits”, then f(y) is the inverse “for the
first 2n bits”. We double the precision each time we call the recurrence
formula. It means that we can quickly converge on the inverse.

What should our initial guess for y be? If we use 3-bit words, then every
number is its inverse. So starting with y = x would give us three bits
of accuracy, but we can do better: (3 * x) ˆ 2 provides 5 bits of
accuracy. The following Go program verifies the claim:

20https://arxiv.org/abs/1902.01961

https://arxiv.org/abs/1902.01961
https://arxiv.org/abs/1902.01961
https://arxiv.org/abs/1902.01961

UNSIGNED INTEGERS 63

package main

import "fmt"

func main() {
for x := 1; x < 32; x += 2 {

y := (3 * x) ˆ 2
if (x*y)&0b11111 != 1 {

fmt.Println("error")
}

}
fmt.Println("Done")

}

Observe how we capture the 5 least significant bits using the expression
&0b11111: it is a bitwise logical AND operation.

Starting from 5 bits, the first call to the recurrence formula gives 10
bits, then 20 bits for the second call, then 40 bits, then 80 bits. So, we
need to call our recurrence formula 2 times for 16-bit values, 3 times for
32-bit values and 4 times for 64-bit values. The function FindInverse64
computes the 64-bit multiplicative inverse of an odd integer:
func f64(x, y uint64) uint64 {

return y * (2 - y*x)
}

func FindInverse64(x uint64) uint64 {
y := (3 * x) ˆ 2 // 5 bits
y = f64(x, y) // 10 bits
y = f64(x, y) // 20 bits
y = f64(x, y) // 40 bits
y = f64(x, y) // 80 bits
return y

}

64 CHAPTER 3

We have that FindInverse64(271) * 271 == 1. Importantly, it fails if
the provided integer is even.

We can use multiplicative inverses to replace the division by an odd integer
with a multiplication. That is, if you precompute FindInverse64(3),
then you can compute the division by three for any multiple of three by
computing the product: e.g., FindInverse64(3) * 15 == 5.

When we store multi-byte values such as unsigned integers in arrays of
bytes, we may use one of two conventions: little- and big-endian. The
little- and big-endian variants only differ by the byte order: we either start
with the least significant bytes (little endian) or by the most significant
bytes (big endian). Let us consider the integer 12345. An an hexadecimal
value, it is 0x3039. If we store it as two bytes, we may either store it as
the byte value 0x30 followed by the byte value 0x39 (big endian), or by
the reverse (0x39 followed by 0x30). Most modern systems default on the
little-endian convention, and there are relatively few big-endian systems.
In practice, we rarely have to be concerned with the endianness of our
system.

Signed integers and two’s complement
Given unsigned integers, how do we add support for signed integers? At
first glance, it is tempting to reserve a bit for the sign. Thus if we have
32 bits, we might use one bit to indicate whether the value is positive or
negative, and then we can use 31 bits to store the absolute value of the
integer.

Though this sign-bit approach is workable, it has downsides. The first
obvious downside is that there are two possible zero values: +0 and
-0. The other downside is that it makes signed integers wholly distinct
values as compared to unsigned integers: ideally, we would like hardware
instructions that operate on unsigned integers to ‘just work’ on signed
integers.

SIGNED INTEGERS AND TWO’S COMPLEMENT 65

Thus modern computers use two’s complement notation to represent
signed integers. To simplify the exposition, we consider 8-bit integers.
We represent all positive integers up to half the range (127 for 8-bit words)
in the same manner, whether using signed or unsigned integers. Only
when the most significant bit is set, do we differ: for the signed integers,
it is as if the unsigned value derived from all but the most significant bit
is subtracted by half the range (128). For example, as an 8-bit signed
value, 0b11111111 is -1. Indeed, ignoring the most significant bit, we
have 0b1111111 or 127, and subtracting 128, we get -1.

Binary unsigned signed
0b00000000 0 0
0b00000001 1 1
0b00000010 2 2
0b01111111 127 127
0b10000000 128 -128
0b10000001 129 -127
0b11111110 254 -2
0b11111111 255 -1

Observe how odd integers are mapped to odd integers and vice versa.
Indeed, 254 is interpreted as -2, 255 as -1.

In Go, you can ‘cast’ unsigned integers to signed integers, and vice versa:
Go leaves the binary values unchanged, but it simply reinterprets the
value as unsigned and signed integers. If we execute the following code,
we have that x==z:

x := uint16(52429)
y := int16(x)
z := uint16(y)

Conveniently, whether we compute the multiplication, the addition or
the subtraction between two values, the result is the same (in binary)

66 CHAPTER 3

whether we interpret the bits as a signed or unsigned value. Thus we can
use the same hardware circuits.

A downside of the two’s complement notation is that the smallest negative
value (-128 in the 8-bit case) cannot be safely negated. Indeed, the number
128 cannot be represented using 8-bit signed integers. This asymmetry
is unavoidable because we have three types of numbers: zero, negative
values and positive values. Yet we have an even number of binary values.

Like with unsigned integers, we can shift (right and left) signed integers.
The left shift works like for unsigned integers at the bit level. We have
that
x := int8(1)
(x << 1) == 2
(x << 7) == -128

However, right shift works differently for signed and unsigned integers.
For unsigned integers, we shift in zeroes from the left; for signed integers,
we either shift in zeroes (if the integer is positive or zero) or ones (if the
integer and negatives). We illustrate this behaviour with an example:

x := int8(-1)
(x >> 1) == -1
y := uint8(x)
y == 255
(y >> 1) == 127

When a signed integer is positive, then dividing by a power of two or
shifting right has the same result (10/4 == (10>>2)). However, when the
integer is negative, it is only true when the negative integer is divisible by
the power of two. When the negative integer is not divisible by the power
of two, then the shift is smaller by one than the division, as illustrated
by the following code:

x := int8(-10)
(x / 4) == -2
(x >> 2) == -3

SIGNED INTEGERS AND TWO’S COMPLEMENT 67

In Go, the remainder of the division between a negative integer and a
positive integer is zero or negative. In effect, we have that (-a)/b ==
- (a/b) and (-a)%b == - (a%b). For example, we have (-5)//2 == -
(5//2) and -1%2 == -(1%2) == -1. For a positive integer, we can check
if it is odd with the expression x%2 == 1, but this expression does not
work anymore with negative integers since the remainder of the division
will be negative: -3%2 == -1%. We can check if an integer is odd by
checking the value of the least significant bit: x&1==1 for odd numbers,
whether they are negative or positive.

For positive or unsigned integers, we have that (2*x + 1)/2==x. How-
ever, for negative integers, it is false: (2*-1 + 1)/2 == (-1)/2 == 0.
We have instead that (2*x + 1)/2 == x+1. More generally, we have that
(2*x - 1)/2 == x when x is negative, and (2*x + 1)/2 == x when x
is positive. The following program illustrates the observation:
package main

import "fmt"

func Sign(a int) int {
switch {
case a < 0:

return -1
case a > 0:

return +1
}
return 0

}

func main() {
for x := -10; x < 10; x++ {

fmt.Println(x, (2*x+Sign(x))/2)
}

}

68 CHAPTER 3

However, we have the identity 2*(x>>1)+(x&1) whether x is positive or
negative.

Floating-point numbers
On computers, real numbers are typically approximated by binary floating-
point numbers: a fixed-width integer m (the significand) multiplied by
2 raised to an integer exponent p: m * 2**p where 2**p represents the
number two raised to the power p. A sign bit is added so that both
a positive and negative zero are available. Most systems today follow
the IEEE 754 standard which means that you can get consistent results
across programming languages and operating systems. Hence, it does not
matter very much if you implement your software in C++ under Linux
whereas someone else implements it in C# under Windows: if you both
have recent systems, you can expect identical numerical outcomes when
doing basic arithmetic and square-root operations.

A positive normal double-precision floating-point number is a binary
floating-point number where the 53-bit integer m is in the interval
[2**52,2**53) while being interpreted as a number in [1,2) by virtually
dividing it by 2**52, and where the 11-bit exponent p ranges from -1022
to +1023. Thus we can represent all values between 2**-1022 and up to
but not including 2**1024. Some values smaller than 2**-1022 can be
represented as subnormal values: they use a special exponent code which
has the value 2**-1022 and the significand is then interpreted as a value
in the interval [0, 1).

In Go, a float64 number can represent all decimal numbers made of a 15-
digit significand from approximately -1.8 * 10**308 to 1.8 *10**308.
The reverse is not true: it is not sufficient to have 15 digits of precision to
distinguish any two floating-point numbers: we may need up to 17 digits.

The float32 type is similar. It can represent all numbers between
2**-126 up to, but not including, 2**128; with special handling for
some numbers smaller than 2**-126 (subnormals). The float32 type
can represent exactly all decimal numbers made of a 6-digit decimal

FLOATING-POINT NUMBERS 69

significand but 9 digits are needed in general to identify uniquely a
number.

Floating-point numbers also include the positive and negative infinity, as
well as a special not-a-number value. They are identified by a reserved
exponent value.

Numbers are typically serialized as decimal numbers in strings and then
parsed back by the receiver. However, it is generally impossible to
convert decimal numbers into binary floating-point numbers: the num-
ber 0.2 has no exact representation as a binary floating-point number.
However, you should expect the system to choose the best possible ap-
proximation: 7205759403792794 * 2**-55 as a float64 number (or
about 0.20000000000000001110). If the initial number was a float64
(for example), you should expect the exact value to be preserved: it will
work as expected in Go.

The positive and negative zeroes can be difficult to distinguish because
they are considered to be equal values. Thankfully, the math.Signbit
function returns true only when the value is negative. Consider the
following program:
package main

import (
"fmt"
"math"

)

func main() {
var zero float64 = 0.0
var negzero float64 = -zero
fmt.Println(zero == negzero)
fmt.Println(math.Signbit(zero))
fmt.Println(math.Signbit(negzero))
fmt.Println(1 / zero)

70 CHAPTER 3

fmt.Println(1 / negzero)
}

It will output:

true
false
true
+Inf
-Inf

One might expect that multiplying any value by zero would result in the
value zero, and that adding zero would never change the sign of a value.
Unfortunately, we have that 0 * Inf is NaN(not-a-number), a special
value that can be consider as an error code. We have that -0.0 + 0.0 is
0.0 so that adding 0.0 to -0.0 changes its sign. The following program
illustrates these identities:
package main

import (
"fmt"
"math"

)

func main() {
var zero float64 = 0.0
var negzero float64 = -zero

fmt.Println(math.Signbit(negzero + zero))
fmt.Println((1 / zero) * zero)

}

It can be inconvenient to represent binary floating-point numbers as
decimal values since there is no exact conversion in general. For this
purpose, Go and other programming languages allow us to print out

FLOATING-POINT NUMBERS 71

number in hexadecimal floating-point format. The hexadecimal floating-
point notation is supported in the C (C99), C++ (C++17), Swift, Java,
Julia and Go programming languages. As in the usual hexadecimal
notation for integers, we start the string with 0x followed by the sig-
nificand in hexadecimal form. Each hexadecimal character (0–9, A–F)
represents 4 bits (a nibble). We append the suffix p followed by the
exponent (e.g., p4 or p-4). Optionally, we can add an hexadecimal point
in the significand. With a decimal point, we interpret the decimal frac-
tion by dividing it by the appropriate power of ten. E.g, we write 1.45
= 145/100. The hexadecimal point works similarly. Thus 0x1.FCp17
means 0x1FC/256 times two to the power 17 or 260096 where we divide
0x1FC by 256 because there are two nibbles (16 * 16) after the binary
point. Each nibble after the point requires a division by 16. When
the value is a normal 64-bit floating-point number, the significand can
be expressed as a most significant 1 followed by up to 52 bits, or 13
hexadecimal character. Thus 9 000 000 000 000 000 can be written as
0x1.ff973cafa8p+52. Unsurprisingly, the number 1 can be written as
0x1p0. The number 0.2 requires more care. We can approximate it most
closely as a 64-bit floating-point number as 7205759403792794 divided
by 2 to the power 55. The result is then slightly larger than 0.2: it is ex-
actly .2000000000000000388578058618804789148271083831787109375. It
is not possible to exactly match 0.2 using binary floating-point numbers.
The number 7205759403792794 is 0x1999999999999a in hexadecimal,
so that 0.2 is approximated by 0x1.999999999999ap-03. The follow-
ing program prints 0x1.999999999999ap-03 and 0x1p+00. Indeed, the
function strconv.FormatFloat can translate any number into an hex-
adecimal floating-point number: in this case, we pass the parameters
‘x’ for hexadecimal, -1 to indicate that we want full accuracy and 64 to
indicate that we are using a 64-bit representation. Importantly, the value
0x1.999999999999ap-03 is an exact representation of what is stored in
your software when you input 0.2 and represent it as a standard binary
floating-point number.
package main

72 CHAPTER 3

import (
"fmt"
"strconv"

)

func main() {
fmt.Println(strconv.FormatFloat(0.2, 'x', -1, 64))
fmt.Println(strconv.FormatFloat(1, 'x', -1, 64))

}

Arrays
In Go, as in most programming languages, you can organize data in an
array. For example, you can create an array of 3 integers, like this:

y := [3]int{1, 2, 3}

In this case, we provide Go with the contents of the array with a list of
integers. If we omit this list of integers, the elements are initialized with
the value zero. Arrays can be created with different types. As long as
the array is relatively small and its size is known when writing the code,
one can easily use the declaration syntax containing a fixed size.

In Go, passing values to a function is usually done by value which means
that Go makes a copy. The following function makes a copy of the three
integer values on each call:
func g(z [3]int) int {

return z[1]
}

In Go, we prefer to use the notion of slice: an slice is used as an array,
but its size is not fixed. In memory, it is only a reference to a section of
an array which can be implicit. You can create an array with a size fixed
at runtime with the make function:

STRINGS 73

func f2(n int) int {
y := make([]int, n)
return y[0]

}

The make function initializes the values with a zero. A hidden array is
created. When passing an slice to a function, the data itself is not copied,
just the reference:
func g2(z []int) int {

return z[1]
}

The append function allows to add elements to a slice. This function adds
the value ‘1’ and returns the new slice including the additional value:
func g3(z []int) []int {

return append(z, 1)
}

Calling the function g3 does not change the initial slice. So we can have
several slice sharing the same data. For example, the following array
creates a slice z containing a single element (the value 3):

y := make([]int, 3)
y[2] = 3
z := y[2:3]

Strings
One of the earliest string standards is ASCII: it was first specified in
the early 1960s. The ASCII standard is still popular. Each character
is a byte, with the most significant bit set to zero. There are therefore
only 128 distinct ASCII characters. It is often sufficient for simple tasks
like programming. Unfortunately, the ASCII standard could only ever
represent up to 128 characters: far less than needed.

74 CHAPTER 3

The following program prints all printable ASCII characters.
package main

import (
"fmt"

)

func main() {
for i := 32; i < 127; i++ {

var buffer []byte = make([]byte, 1)
buffer[0] = byte(i)
fmt.Println(i, "'"+string(buffer)+"'")

}
}

The program contains a for loop, which iterates from 32 to 126 (inclusive).
We declare a variable buffer, which is a slice of bytes. A slice is a
dynamically sized sequence of elements of the same type. A byte is an
alias for uint8, which is an unsigned 8-bit integer. The make function
creates a slice with a given length and capacity. In this case, the length
and capacity are both 1, which means the slice has only one element.
We assigns the value of i converted to a byte to the first element of the
buffer slice. The byte function converts an integer to a byte, truncating
if necessary. The eighth line prints the value of i, followed by a single
quote, followed by the string representation of the buffer slice, followed
by another single quote, followed by a newline. The fmt.Println function
prints its arguments to the standard output, separated by spaces and
ending with a newline. The string function converts a slice of bytes to
a string, interpreting each byte as a UTF-8 encoded character. The
output of the program is a table of ASCII codes and their corresponding
characters, from 32 (space) to 126 (tilde). There are characters from 0 to
32 but they are control characters used for line endings and other special
purposes. The last ASCII character (127) is also a control character
(DEL).

STRINGS 75

Many diverging standards emerged for representing characters in software.
The existence of multiple incompatible formats made the production of
interoperable localized software challenging.

Engineers developed Unicode in the late 1980s as an attempt to provide
a universal standard. Initially, it was believed that using 16 bits per
character would be sufficient, but this belief was wrong. The Unicode
standard was extended to include up to 1,114,112 characters. Only a
small fraction of all possible characters have been assigned, but more are
assigned over time with each Unicode revision. The Unicode standard
is an extension of the ASCII standard: the first 128 Unicode characters
match the ASCII characters.

Due to the original expectation that Unicode would fit in 16-bit space, a
format based on 16-bit words (UTF-16) format was published in 1996. It
may use either 16-bit or 32-bit per character. The UTF-16 format was
adopted by programming languages such as Java, and became a default
under Windows. Unfortunately, UTF-16 is not backward compatible with
ASCII at a byte level. An ASCII-compatible format was proposed and
formalized in 2003: UTF-8. Over time, UTF-8 became widely used for
text interchange formats such as JSON, HTML or XML. Programming
languages such as Go, Rust and Swift use UTF-8 by default. Both formats
(UTF-8 and UTF-16) require validation: not all arrays of bytes are valid.
The UTF-8 format is more expensive to validate.

ASCII characters require one byte with UTF-8 and two bytes with UTF-
16. The UTF-16 format can represent all characters, except for the
supplemental characters such as emojis, using two bytes. The UTF-8
format uses two bytes for Latin, Hebrew and Arabic alphabets, three
bytes for Asiatic characters and 4 bytes for the supplemental characters.

UTF-8 encodes values in sequences of one to four bytes. We refer to the
first byte of a sequence as a leading byte; the most significant bits of the
leading byte indicates the length of the sequence: - If the most significant
bit is zero, we have a sequence of one byte (ASCII). - If the three most
significant bits are 0b110, we have a two-byte sequence. - If the four most
significant bits are 0b1110, we have a three-byte sequence. - Finally, if the

76 CHAPTER 3

five most significant bits are 0b11110, we have a four-byte sequence. All
bytes following the leading byte in a sequence are continuation bytes, and
they must have 0b10 as their most significant bits. Except for the required
most significant bits, the numerical value of the character (between 0
to 1,114,112) is stored by starting with the most significant bits (in the
leading byte) followed by the less significant bits in the other continuation
bytes.

The following Go program will print all Unicode characters that use two
bytes in UTF-8:
package main

import (
"fmt"

)

func main() {
for i := 0b00010; i <= 0b11111; i++ {

for j := 0; j <= 0b111111; j++ {
var buffer []byte = make([]byte, 2)
buffer[0] = byte(i | 0b11000000)
buffer[1] = byte(j | 0b10000000)
fmt.Println((i<<6)+j, "'"+string(buffer)+"'")

}
}

}

This Go program generates and displays all Unicode characters encoded
in UTF-8 using two bytes, corresponding to codepoints from U+0080
to U+07FF. It employs two nested loops: the outer loop (i) iterates
over binary values from 0b00010 to 0b11111 (2 to 31), representing the 5
significant bits of the first byte, and the inner loop (j) iterates from 0 to
0b111111 (0 to 63), representing the 6 bits of the second byte. For each
combination, a two-byte buffer is created. The first byte is formed by
combining i with the prefix 0b11000000 (following the UTF-8 two-byte

STRINGS 77

format, 110xxxxx), and the second byte combines j with 0b10000000 (the
continuation prefix, 10xxxxxx). The program then displays the Unicode
codepoint calculated as (i<<6)+j (shifting i by 6 bits and adding j) and
the corresponding character obtained by converting the buffer to a string.
This allows it to display all 1,920 two-byte UTF-8 characters.

The following program illustrates how within the same UTF-8 string,
some characters may need one byte (‘L’) while others need two bytes
(‘é’):
package main

import (
"fmt"

)

func main() {
var str string
str = "L'été est arrivé"
fmt.Println([]byte(str))
str2 := string(str[0:1])
fmt.Println(str2)
str3 := string(str[1:2])
fmt.Println(str3)
str4 := string(str[2:4])
fmt.Println(str4)

}

In the UTF-16 format, characters in 0x0000-0xD7FF and 0xE000-0xFFFF
are stored as single 16-bit words. Characters in the range 0x010000 to
0x10FFFF require two 16-bit words called a surrogate pair. The first
word in the pair is in the range 0xd800 to 0xdbff whereas the second
word is in the range from 0xdc00 to 0xdfff. The character value is made
of the 10 least significant bits of the two words, using the second word as
least significant, and adding 0x10000 to the result. There are two types
of UTF-16 format. In the little-endian variant, each 16-bit word is stored

78 CHAPTER 3

using the least significant bits in the first byte. The reverse is true in the
big-endian variant.

When using ASCII, it is relatively easy to access the characters in ran-
dom order. For UTF-16, it is possible if we assume that there are no
supplemental characters, but since some characters might require 4 bytes
while other 2 bytes, it is not possible to go directly to a character by its
index without accessing the previous content. The UTF-8 is similarly
not randomly accessible in general.

Software often depends on the chosen locale: e.g., US English, French
Canadian, and so forth. Sorting strings is locale-dependent. It is not
generally possible to sort strings without knowing the locale. However,
it is possible to sort strings lexicographically as byte sequences (UTF-8)
or as 16-bit word sequences (UTF-16). When using UTF-8, the result is
then a string sort based on the characters’ numerical value.

Pointers
At least conceptually, data in software is stored at a location in memory.
Thus, each variable, each array element, is associated with a memory
address. This abstraction is useful but not entirely accurate in practice.
For example, a pointer can hold an invalid address. Nevertheless, a
pointer is a useful concept in software programming when used with
caution. The general syntax involves placing the ampersand character
before a value (&) to obtain a pointer, and the resulting pointer type is
created using the asterisk prefix *. Conversely, the asterisk prefix allows
access to the pointed value. The following program outputs 1:
package main
import (

"fmt"
)
func f(v *int) {

// f receives a pointer to an integer value
*v = 1 // sets the pointed value to 1

POINTERS 79

}
func main() {

x := make([]int, 10)
f(&x[0]) // passes a pointer to the first element
fmt.Println(x[0])

}

In the program, the function f modifies the value of x[0] using a pointer,
avoiding passing a copy of the value. This is particularly useful for large
data structures, such as a struct containing many fields, where copying
the entire data would be costly in terms of performance. For example, in
Go, a struct like type Person struct { Name string; Age int } can
be passed by pointer to a function to modify its fields without duplicating
the entire struct. However, pointers introduce risks, notably null pointers.
In Go, an uninitialized pointer has the value nil, meaning it does not
point to any valid memory address. If a function attempts to dereference
a nil pointer, as in *ptr = 5 where ptr is nil, the program will crash
with a runtime error (panic). To avoid this, it is common to check if a
pointer is nil before using it. For example, a function handling a pointer
might include a check like if v == nil { return } to handle cases
where no valid pointer is provided. For example, the following program
will terminate with a fatal error.
package main
import "fmt"
func main() {

var i *int
fmt.Println(*i)

}

To illustrate another difficulty, we will create a situation where a pointer
references a value that is no longer accessible due to variable scope and
memory management in Go.
package main
import "fmt"

80 CHAPTER 3

func createPointer() *int {
x := 42
return &x

}
func main() {

ptr := createPointer()
fmt.Println(ptr)
fmt.Println(*ptr)

}

In this program, the function createPointer declares a local variable x
and returns its address as a pointer. However, since x is a local variable,
it is allocated on the stack, and its scope is limited to the createPointer
function. Once the function ends, the memory associated with x may be
reused or considered invalid by Go’s garbage collector. The pointer ptr
in main becomes a dangling pointer, as it references a memory address
that is no longer guaranteed to be valid. In Go, attempting to dereference
ptr with *ptr in main may cause undefined behavior or, in some cases, a
runtime error (panic), as the pointed memory is no longer accessible. You
may notice that, although the program is incorrect, it may run without
an apparent error. This is why errors caused by improper use of pointers
are so challenging. A crash can occur randomly. To illustrate a more
practical scenario, consider a case where a function returns a pointer to
a locally allocated struct.
package main
import "fmt"
type Person struct {

Name string
Age int

}
func createPerson() *Person {

p := Person{Name: "Alice", Age: 30}
return &p

}

POINTERS 81

func main() {
ptr := createPerson()
fmt.Println(ptr)
fmt.Println(ptr.Name) // Undefined behavior or panic

}

Here, createPerson creates a Person struct locally and returns a pointer
to it. Since p is a local variable, its memory may be freed or reused after
the function ends. When main attempts to access ptr.Name, the program
risks crashing or displaying corrupted data, as the address pointed to by
ptr is no longer guaranteed to be valid. To avoid dangling pointers, a
good practice in Go is to allocate memory on the heap using new or create
objects that persist beyond the function’s scope. Here is a corrected
version of the second example.
package main
import "fmt"
type Person struct {

Name string
Age int

}
func createPerson() *Person {

p := new(Person)
p.Name = "Alice"
p.Age = 30
return p

}
func main() {

ptr := createPerson()
fmt.Println(ptr)
fmt.Println(ptr.Name)

}

In this version, new(Person) allocates the struct on the heap, and Go’s
garbage collector ensures the memory remains valid as long as ptr refer-

82 CHAPTER 3

ences it. This eliminates the risk of a dangling pointer, as the memory
is not freed prematurely. ## Structs, interfaces, and methods In Go,
complex data structures are often built using structs, interfaces, and
methods, which provide a flexible and modular approach to organizing
and manipulating data. A struct allows grouping multiple fields of dif-
ferent types into a single entity. For example, to represent a node in a
linked list, one could define:
package main
import "fmt"
type Node struct {

Value int
Next *Node

}
func main() {

n := Node{Value: 10, Next: nil}
fmt.Println(n.Value)

}

Here, Node is a struct representing a node with an integer value and a
pointer to the next node. Structs are particularly useful for data structures
like linked lists, trees, or graphs, where relationships between elements
are defined by pointers. Methods in Go allow associating behavior with
a struct. A method is a function with a special receiver, which can be a
struct or a pointer to a struct. For example, to add a method to Node
that modifies its value:
package main
import "fmt"
type Node struct {

Value int
Next *Node

}
func (n *Node) UpdateValue(newValue int) {

n.Value = newValue
}

POINTERS 83

func main() {
n := Node{Value: 10, Next: nil}
n.UpdateValue(20)
fmt.Println(n.Value) // Outputs 20

}

In this example, UpdateValue uses a pointer receiver (*Node) to directly
modify the struct. If the receiver were n Node, the method would receive
a copy of the struct, and changes would not affect the original. Pointer
receivers are common in data structures to avoid costly copies and allow
in-place modifications, such as in a linked list where a node needs to be
updated. Interfaces in Go play a key role in creating generic and reusable
data structures. An interface defines a set of methods a type must
implement without specifying how. This allows working with different
data structures uniformly. For example, for a data structure like a stack,
one could define the following interface.
package main
import "fmt"
type Stack interface {

Push(value int)
Pop() (int, bool)

}
type ArrayStack struct {

elements []int
}
func (s *ArrayStack) Push(value int) {

s.elements = append(s.elements, value)
}
func (s *ArrayStack) Pop() (int, bool) {

if len(s.elements) == 0 {
return 0, false

}
value := s.elements[len(s.elements)-1]
s.elements = s.elements[:len(s.elements)-1]

84 CHAPTER 3

return value, true
}
func main() {

var stack Stack = &ArrayStack{}
stack.Push(5)
stack.Push(10)
if value, ok := stack.Pop(); ok {

fmt.Println("Popped value:", value) // Outputs 10
}

}

In this example, the Stack interface defines the Push and Pop methods,
and ArrayStack implements this interface using an array as the under-
lying structure. Another implementation could use a linked list, but as
long as it implements Push and Pop, it would be compatible with the
Stack interface. This allows manipulating different stack implementa-
tions interchangeably, a key concept for data structures like queues, trees,
or hash tables. Interfaces also promote composition. For example, a data
structure like a binary search tree could implement multiple interfaces,
such as one for searching and one for insertion, enabling modular code
reuse. Additionally, interfaces combined with pointers allow efficient
modifications to data structures, as they avoid copies while providing a
clear abstraction.

Exercises for Chapter 3

Problem 1

Write a Go function that computes the multiplicative inverse of a 16-bit
unsigned integer. Verify that your function is correct by testing it over
all 16-bit integers.

EXERCISES FOR CHAPTER 3 85

Problem 2
Given the 16-bit multiplicative inverse of 5, write a program that computes
inverse(5) * x for all 16-bit unsigned integers x. By examining the
result, find a way to test whether x is a multiple of 5 using a single
multiplication and a single comparison.

Problem 3
Cast the 16-bit unsigned multiplicative inverse of 5 to a signed 16-bit
integer and call the result z. Write a program that computes z * x for
all 16-bit signed integers x. Explain the result.

Problem 4
Given a potentially truncated utf-8 string as an array of bytes ([]byte),
write a function which finds the location of last valid character.

86 CHAPTER 3

Chapter 4

At a fundamental level, a programmer needs to manipulate bits. Modern
processors operate over data by loading in ‘registers’ and not individual
bits. Thus a programmer must know how to manipulate the bits within
a register. Generally, we can do so while programming with 8-bit, 16-bit,
32-bit and 64-bit integers. For example, suppose that I want to set an
individual bit to value 1. Let us pick the bit an index 12 in a 64-bit
words. The word with just the bit at index 12 set is 1<<12: the number
1 shifted to the left 12 times, or 4096. In Go, we format numbers using
the fmt.Printf function: we use a string with formatting instructions
followed by the values we want to print. We begin a formatting sequence
with the letter % which has a special meaning (if one wants to print %, one
most use the string %%). It can be followed by the letter b which stands
for binary, the letter d (for decimal) or x (for hexadecimal). Sometimes
we want to specify the minimal length (in characters) of the output, and
we do so by a leading number: e.g, fmt.Printf("%100d", 4096) prints
a 100-character string that ends with 4096 and begins with spaces. We
can specify zero as a padding character rather than the space by adding
it as a prefix (e.g., "%0100d"). In Go, we may print thus the individual
bits in a word as in the following example:
package main

import "fmt"

func main() {

87

88 CHAPTER 4

var x uint64 = 1 << 12
fmt.Printf("%064b", x)

}

Running this program we get a binary string representing 1<<12:

00000000000000000000000000000000
00000000000000000001000000000000

The general convention when printing numbers is that the most significant
digits are printed first followed by the least significant digits: e.g., we
write 1234 when we mean 1000 + 200 + 30 + 4. Similarly, Go prints
the most significant bits first, and so the number 1<<12 has 64-13=51
leading zeros followed by a 1 with 12 trailing zeros.

We might find it interesting to revisit how Go represents negative integers.
Let us take the 64-bit integer -2. Using two’s complement notation,
the number should be represented as the unsigned number (1<<64)-2
which should be a word made entirely one ones, except for the second last
bit. We can use the fact that a cast operation in Go (e.g., uint64(x))
preserves the binary representation:
package main

import "fmt"

func main() {
var x int64 = -2
fmt.Printf("%064b", uint64(x))

}

This program will print 11...10 as expected.

Go has some relevant binary operators that we often use to manipulate
bits:

& bitwise AND
| bitwise OR

SETTING, CLEARING AND FLIPPING BITS 89

^ bitwise XOR
&^ bitwise AND NOT

Furthermore, the symbol ˆ is also used to flip all bits a word when used
as an unary operation: a ˆ b computes the bitwise XOR of a and b
whereas ˆa flips all bits of a. We can verify that we have a|b == (aˆb)
| (a&b) == (aˆb) + (a&b).

We have other useful identities. For example, given two integers a
and b, we have that a+b = (aˆb) + 2*(a&b). In the identity 2*(a&b)
represents the carries whereas aˆb represents the addition without the
carries. Consider for example 0b1001 + 0b10001. We have that 0b1
+ 0b1 == 0b10 and this is the 2*(a&b) component, whereas 0b1000
+ 0b10000 == 0b11000 is captured by (aˆb). We have that 2*(a|b)
= 2*(a&b) + 2*(aˆb), thus a+b = (aˆb) + 2*(a&b) becomes a+b =
2*(a|b) - (aˆb). These relationships are valid whether we consider
unsigned or signed integers, since the operations (bitwise logical, addition
and subtraction) are identical at the bits level.

You may want to verify the following identities:

• ((a & b) + (a | b)) == (a + b)
• ((a & b) + (a ˆ b)) == (a | b)
• ((a | b) - (a ˆ b)) == (a & b)
• ((a + b) - (a | b)) == (a & b)
• ((a + b) - (a & b)) == (a | b)
• a + b == 2(a & b) + (a ˆ b)
• (a - (a | b)) == ((a & b) - b)

Setting, clearing and flipping bits
We know how to create a 64-bit word with just one bit set to 1 (e.g.,
1<<12). Conversely, we can also create a word that is made of 1s except
for a 0 at bit index 12 by flipping all bits: ˆuint64(1<<12). Before
flipping all bits of an expression, it is sometimes useful to specify its type
(taking uint64 or uint32) so that the result is unambiguous.

90 CHAPTER 4

We can then use these words to affect an existing word:

1. If we want to set the 12th bit of word w to one: w |= 1<<12.
2. If we want to clear (set to zero) the 12th bit of word w: w &ˆ=

1<<12 (which is equivalent to w = w & ˆuint64(1<<12)).
3. If we just want to flip (send zeros to ones and ones to zeros) the

12th bit: w ˆ= 1<<12.

We may also affect a range of bits. For example, we know that the word
(1<<12)-1 has all but the 11 least significant bits set to zeros, and the
11 least significant bits set to ones.

1. If we want to set the 11 least significant bits of the word w to ones:
w |= (1<<12)-1.

2. If we want to clear (set to zero) the 11 least signficant bits of word
w: w &ˆ= (1<<12)-1.

3. If we want to flip the 11 least signficant bits: w ˆ= (1<<12)-1.
The expression (1<<12)-1 is general in the sense that if we want
to select the 60 least significant bits, we might do (1<<60)-1. It
even works with 64 bits: (1<<64)-1 has all bits set to 1.

We can also generate a word that has an arbitrary range of bits set: the
word ((1<<13)-1) ˆ ((1<<2)-1) has the bits from index 2 to index 12
(inclusively) set to 1, other bits are set to 0. With such a construction, we
can set, clear or flip an arbitrary range of bits within a word, efficiently.

We can set any bit we like in a word. But what about querying the bit
sets? We can check the 12th bit is set in the word u by checking whether
w & (1<<12) is non-zero. Indeed, the expression w & (1<<12) has value
1<<12 if the 12th bit is set in w and, otherwise, it has value zero. We can
extend such a check: we can verify whether any of the bits from index
2 to index 12 (inclusively) set to 1 by computing w & ((1<<13)-1) ˆ
((1<<2)-1). The result is zero if and only if no bit in the specified range
is set to one.

EFFICIENT AND SAFE OPERATIONS OVER INTEGERS 91

Efficient and safe operations over integers

By thinking about values in terms of their bit representation, we can
write more efficient code or, equivalent, have a better appreciation for
what optimized binary code might look like. Consider the problem of
checking if two numbers have the same sign: we want to know whether
they are both smaller than zero, or both greater than or equal to zero. A
naive implementation might look as follows:
func SlowSameSign(x, y int64) bool {

return ((x < 0) && (y < 0)) || ((x >= 0) && (y >= 0))
}

However, let us think about what distinguishes negative integers from
other integers: they have their last bit set. That is, their most significant
bit as an unsigned value is one. If we take the exclusive or (xor) of two
integers, then the result will have its last bit set to zero if their sign is
the same. That is, the result is positive (or zero) if and only if the signs
agree. We may therefore prefer the following function to determine if two
integers have the same sign:
func SameSign(x, y int64) bool {

return (x ˆ y) >= 0
}

Suppose that we want to check whether x and y differ by at most 1.
Maybe x is smaller than y, but it could be larger.

Let us consider the problem of computing the average of two integers.
We have the following correct function:
func Average(x, y uint16) uint16 {

if y > x {
return (y-x)/2 + x

} else {
return (x-y)/2 + y

92 CHAPTER 4

}
}

With a better knowledge of the integer representation, we can do better.

We have another relevant identity x == 2*(x>>1) + (x&1). It means
that x/2 is within [(x>>1), (x>>1)+1). That is, x>>1 is the greatest
integer no larger than x/2. Conversely, we have that (x+(x&1))>>1 is
the smallest integer no smaller than x/2.

We have that x+y = (xˆy) + 2*(x&y). Hence we have that
(x+y)>>1 == ((xˆy)>>1) + (x&y) (ignoring overflows in x+y).
Hence, ((xˆy)>>1) + (x&y) is the greatest integer no larger than
(x+y)/2. We also have that x+y = 2*(x|y) - (xˆy) or x+y +
(xˆy)&1= 2*(x|y) - (xˆy) + (xˆy)&1 and so (x+y+(xˆy)&1)>>1 ==
(x|y) - ((xˆy)>>1) (ignoring overflows in x+y+(xˆy)&1). It follows
that (x|y) - ((xˆy)>>1) is the smallest integer no smaller than
(x+y)/2. The difference between (x|y) - ((xˆy)>>1) and ((xˆy)>>1)
+ (x&y) is (xˆy)&1. Hence, we have the following two fast functions:
func FastAverage1(x, y uint16) uint16 {

return (x|y) - ((xˆy)>>1)
}

func FastAverage2(x, y uint16) uint16 {
return ((xˆy)>>1) + (x&y)

}

Though we use the type uint16, it works irrespective of the integer size
(uint8, uint16, uint32, uint64) and it also applies to signed integers
(int8, int16, int32, int64).

Efficient Unicode processing
In UTF-16, we may have surrogate pairs: the first word in the pair is
in the range 0xd800 to 0xdbff whereas the second word is in the range

BASIC SWAR 93

from 0xdc00 to 0xdfff. How may we detect efficiency surrogate pairs?
If the values are stored using an uint16 type, then it would seem that
we could detect a value part of a surrogate pair with two comparisons:
(x>=0xd800) && (x<=0xdfff). However, it may prove more efficient to
use the fact that subtractions naturally wrap-around: 0-0xd800==0x2800.
Thus x-0xd800 will range between 0 and 0xdfff-0xd800 inclusively
whenever we have a value that is part of a surrogate pair. However, any
other value will be larger than 0xdfff-0xd800=0x7ff. Thus, a single
comparison is needed: (x-0xd800)<=0x7ff. Once we have determined
that we have a value that might correspond to a surrogate pair, we may
check that the first value x1 is valid (in the range 0xd800 to 0xdbff) with
the condition (x1-0xd800)<=0x3ff, and similarly for the second value x2:
(x2-0xdc00)<=0x3ff. Both checks may be combined in one expression:
((x1-0xd800)|(x2-0xdc00)) <=0x3ff. We may then reconstruct the
code point as (1<<20) + ((x-0xd800)<<10) + x-0xdc00. In practice,
you may not need to concern yourself with such an optimization since
your compiler might do it for you. Nevertheless, it is important to keep
in mind that what might seem like multiple comparisons could actually
be implemented as a single one.

Basic SWAR
Modern processors have specialized instructions capable of operating over
multiple units of data with a single instruction (called SIMD for Single
Instruction Multiple Data). We can do several operations using a single
instruction (or few) instructions with a technique called SWAR (SIMD
within a register) (Lamport, 197521). Typically, we are given a 64-bit
word w (uint64) and we want to treat it as a vector of eight 8-bit words
(uint8).

Given a byte value (uint8), we can replicate it over all bytes of a
word with a single multiplication: x * uint64(0x0101010101010101).
For example, we have 0x12 * uint64(0x0101010101010101) ==

21https://doi.org/10.1145/360933.360994

https://doi.org/10.1145/360933.360994
https://doi.org/10.1145/360933.360994

94 CHAPTER 4

0x1212121212121212. This approach can be generalized in various ways.
For example, we have that 0x7 * uint64(0x1101011101110101) ==
0x7707077707770707.

For convenience, let us define b80 to be the uint64 equal
to 0x8080808080808080 and b01 be the uint64 equal to
0x0101010101010101. We can check whether all bytes are smaller than
128. We first replicate the byte value with all but the most significant bit
set to zero (0x80 * b01 or b80) and then we compute the bitwise AND
with our 64-bit word and check whether the result is zero: (w & b80))
== 0. It might compile to two or three instructions on a processor.

Thus we can verify whether a byte slice is made of ASCII characters
by loading 8-byte words. The function IsAscii in the following program
takes a byte slice as an argument and returns a boolean value indicating
whether the byte slice contains only ASCII characters. It declares a
variable x of type uint64 and initializes it to zero. This variable will store
the bitwise OR of all the bytes in the slice. The variable is index to iterate
over the byte slice. It uses a for loop to process the byte slice in chunks of
8 bytes at a time. For each chunk, it calls the binary.LittleEndian.Uint64
function to convert the 8 bytes into a uint64 value, and then performs
a bitwise OR operation with x. This way, x will have a bit set to 1 if
any of the bytes in the slice has that bit set to 1. It uses another for
loop to process the remaining bytes in the slice, if any. For each byte,
it converts it to a uint64 value and performs a bitwise OR operation
with x. It performs a bitwise AND operation between x and the constant
0x8080808080808080. This constant has the most significant bit of each
byte set to 1, and the rest to 0. The result of this operation will be zero
if and only if none of the bytes in the slice has the most significant bit
set to 1, which means they are all ASCII characters. It returns the result
of comparing the bitwise AND operation with zero.
package main

import (
"encoding/binary"

BASIC SWAR 95

"fmt"
)

func IsAscii(b []byte) bool {
var x uint64
i := 0
for ; i+8 < len(b); i += 8 {

x |= binary.LittleEndian.Uint64(b[i : i+8])
}
for ; i < len(b); i++ {

x |= uint64(b[i])
}
x &= 0x8080808080808080
return x == 0

}

func main() {
var str string
str = " My name is Bond, James Bond."
fmt.Println(IsAscii([]byte(str)))
str = " My name is Bondé, James Bond."
fmt.Println(IsAscii([]byte(str)))

}

We can check whether any byte is zero, assuming that we have checked
that they are smaller than 128, with an expression such as ((w - b01)
& b80) == 0. If this expression is false, then w contains at least one null
byte. If we are not sure that they are smaller than 128, we can simply
add an operation: (((w - b01)|w) & b80) == 0. Checking that a byte
is zero allows us to check whether two words, w1 and w2, have a matching
byte value since, when this happens, w1ˆw2 has a zero byte value.

We can also design more complicated operations if we assume that all
byte values are no larger than 128. For example, we may check that all
byte values are no larger than a 7-bit value (t) by the following routine:

96 CHAPTER 4

((w + (0x80 - t) * b01) & b80) == 0. If the value t is a constant,
then the multiplication would be evaluated at compile time and it should
be barely more expensive than checking whether all bytes are smaller than
128. In Go, we check that no byte value is larger than 77, assuming that all
byte values are smaller than 128 by verifying thaat b80 & (w+(128-77)
* b01) is zero. Similarly, we can check that all byte values are at least as
large a 7-bit t, assuming that they are also all smaller than 128: ((b80 -
w) + t * b01) & b80) == 0. We can generalize further. Suppose we
want to check that all bytes are at least as large at the 7-bit value a and
no larger than the 7-bit value b. It suffices to check that ((w + b80 - a
* b01) ˆ (w + b80 - b * b01)) & b80 == 0.

Rotating and reversing bits
Given a word, we say that we rotate the bits if we shift left or right the
bits, while moving back the leftover bits at the beginning. To illustrate
the concept, suppose that we are given the 8-bit integer 0b1111000 and
we want to rotate it left by 3 bits. The Go language provides a function for
this purpose (bits.RotateLeft8 from the math/bits package): we get
0b10000111. In Go, there is no rotate right operation. However, rotating
left by 3 bits is the same as rotating right by 5 bits when processing 8-bit
integers. Go provide rotation functions for 8-bit, 16-bit, 32-bit and 64-bit
integers.

Suppose that you would like to know if two 64-bit words (w1 and w2)
have matching byte values, irrespective of the ordering. We know how
to check that they have matching ordered byte values efficiently (e.g.,
(((w1ˆw2 - b01)|(w1ˆw2)) & b80) == 0). To compare all bytes with
all other bytes, we can repeat the same operation as many times as they
are bytes in a word (eight times for 64-bit integers), each time, we rotate
one of the words by 8 bits:
(((w1ˆw2 - b01)|(w1ˆw2)) & b80) == 0
w1 = bits.RotateLeft64(w1,8)
(((w1ˆw2 - b01)|(w1ˆw2)) & b80) == 0

FAST BIT COUNTING 97

w1 = bits.RotateLeft64(w1,8)
...

We recall that words can be interpreted as little-endian or big-endian
depending on whether the first bytes are the least significant or the most
significant. Go allows you to reverse the order of the bytes in a 64-bit word
with the function bits.ReverseBytes64 from the math/bits package.
There are similar functions for 16-bit and 32-bit words. We have that
bits.ReverseBytes16(0xcc00) == 0x00cc. Reversing the bytes in a
16-bit word, and rotating by 8 bits, are equivalent operations.

We can also reverse bits. We have that
bits.Reverse16(0b1111001101010101) == 0b1010101011001111`.

Go has functions to reverse bits for 8-bit, 16-bit, 32-bit and 64-bit words.
Many processors have fast instructions to reverse the bit orders, and it
can be a fast operation.

Fast bit counting
It can be useful to count the number of bits set to 1 in a word.
This operation is sometimes called population counting. Go has
fast functions for this purpose in the math/bits package for words
having 8 bits, 16 bits, 32 bits and 64 bits. Thus we have that
bits.OnesCount16(0b1111001101010101) == 10.

Similarly, we sometimes want to count the number of trailing or leading
zeros. The number of trailing zeros is the number of consecutive zero
bits appearing in the least significant positions.For example, the word
0b1 has no trailing zero, whereas the word 0b100 has two trailing zeros.
When the input is a power of two, the number of trailing zeros is the log-
arithm in base two. We can use the Go functions bits.TrailingZeros8,
bits.TrailingZeros16 and so forth to compute the number of trailing
zeros. The number of leading zeros is similar, but we start from the
most significant positions. Thus the 8-bit integer 0b10000000 has zero

98 CHAPTER 4

leading zeros, while the integer 0b00100000 has two leading zeros. We
can use the functions bits.LeadingZeros8, bits.LeadingZeros16 and
so forth.

Given only the number a population-count function, we can count the
number of trailing zeros efficiently by observing that ˆx & (x-1) is the
word where all trailing zeros become ones, and other bits are set to zero.
Hence a population count on ˆx & (x-1) is equivalent to the number of
trailing zeros.

While the number of trailing zeros gives directly the logarithm of powers
of two, we can use the number of leading zeros to compute the logarithm
of any integer, rounded up to the nearest integer. For 32-bit integers, the
following function provides the correct result:
func Log2Up(x uint32) int {

return 31 - bits.LeadingZeros32(x|1)
}

We can also compute other logarithms. Intuitively, this ought to be
possible because if logb is the logarithm in base b, then logb(x) =
log2(x)/ log2(b). In other words, all logarithms are within a constant
factor (e.g., 1/ log2(b)).

For example, we might be interested in the number of decimal digits
necessary to represent an integer (e.g., the integer 100 requires three
digits). The general formula is ceil(log(x+1)) where the logarithm
should be taken in base 10. We can show that the following function
(designed by an engineer called Kendall Willets) computes the desired
number of digits for 32-bit integers:
func DigitCount(x uint32) uint32 {

var table = []uint64{
4294967296, 8589934582, 8589934582,
8589934582, 12884901788, 12884901788,
12884901788, 17179868184, 17179868184,
17179868184, 21474826480, 21474826480,

INDEXING BITS 99

21474826480, 21474826480, 25769703776,
25769703776, 25769703776, 30063771072,
30063771072, 30063771072, 34349738368,
34349738368, 34349738368, 34349738368,
38554705664, 38554705664, 38554705664,
41949672960, 41949672960, 41949672960,
42949672960, 42949672960}

return uint32((uint64(x) + table[Log2Up(x)]) >> 32)
}

Though the function is a bit mysterious, its computation mostly involves
computing the number of trailing zeros, and using the result to lookup
a value in a table. It translates in only a few CPU instructions and is
efficient.

Indexing Bits
Given a word, it is sometimes useful to compute the position of the set bits
(bits set to 1). For example, given the word 0b11000111, we would like to
have the indexes 0, 1, 2, 6, 7 corresponding to the 5 bits with value 1. We
can determine efficiently how many indexes we need to produce thanks
to the bits.OnesCount functions. The bits.TrailingZeros functions
can serve to identify the position of a bit. We may also use the fact that
x & (x-1) set to zero the least significant 1-bit of x. The following Go
function generates an array of indexes:
func Indexes(x uint64) []int {

var ind = make([]int, bits.OnesCount64(x))
pos := 0
for x != 0 {

ind[pos] = bits.TrailingZeros64(x)
x &= x - 1
pos += 1

}

100 CHAPTER 4

return ind
}

Given 0b11000111, it produces the array 0, 1, 2, 6, 7:
var x = uint64(0b11000111)
for _, v := range Indexes(x) {

fmt.Println(v)
}

If we want to compute the bits in reverse order (7, 6, 2, 1, 0), we can
do so with a bit-reversal function, like so:
for _, v := range Indexes(bits.Reverse64(x)) {

fmt.Println(63 - v)
}

Conclusion
As a programmer, you may access, set, copy, or move individual bit values
efficiently. With some care, you can avoid arithmetic overflows without
much of a performance penalty. With SWAR, you can use a single word
as if it was made of several subwords. Though most of these operations
are only rarely needed, it is important to know that they are available.

Exercises for Chapter 4

Question 1
Write an efficient Go expression that flips the bits from index 3 to index 15
inclusively in a 64-bit word. That is, it should leave the 3 least significant
unchanged, flip the next 13 bits, and leave the 48 most significant bits
unchanged.

EXERCISES FOR CHAPTER 4 101

Question 2
Write an efficient Go function that computes the average of two integers,
rounding the result up. E.g., the average of an odd integer x and an even
integer y is x/2 + y/2 + 1.

Question 3
Given an array of 16-bit integers (uint16), check that it is a valid UTF-16
sequence.

Question 4
Write a function that checks whether two 64-bit integers have a matching
byte value, without assuming that the byte values are smaller than 128.
Your solution should not require more than a handful of operations and
no branching (if or for) should be required.

Question 5
Write a SWAR procedure that adds individual bytes from two 64-bit
words. Use wrap-around arithmetic (255 + 255 = 254).

102 CHAPTER 4

Chapter 5

Computer software is typically deterministic on paper: if you run twice
the same program with the same inputs, you should get the same outputs.
In practice, the complexity of modern computing makes it unlikely that
you could ever run twice the same program and get exactly the same result,
down to the exact same execution time. For example, modern operating
systems randomize the memory addresses as a security precaution: a
technique called Address space layout randomization. Thus if you run
a program twice, you cannot be guaranteed that the memory is stored
at the same memory addresses. In Go, you can print the address of a
pointer with the %p directive. The following program will allocate a small
array of integers, and print the corresponding address, using a pointer
to the first value. If you run this program multiple times, you may get
different addresses.
package main

import (
"fmt"

)

func main() {
x := make([]int, 3)

fmt.Printf("Hello %p", &x[0])
}

103

104 CHAPTER 5

Thus, in some sense, software programs are already randomized whether
we like it or not. Randomization can make programming more challenging.
For example, a bad program might behave correctly most of the time and
only fail intermittently. Such unpredictable behavior is a challenge for a
programmer.

Nevertheless, we can use randomization to produce better software: for ex-
ample by testing our code with random inputs. Furthermore, randomness
is a key element of security routines.

Though randomness is an intuitive notion, defining it requires more care.
Randomness is usually tied to a lack of information. For example, it
may be measured by our inability to predict an outcome. Maybe you are
generating numbers, one every second, and after looking at the last few
numbers you generated, I still cannot predict the next number you will
generate. It does not imply that the approach you are using to generate
numbers is magical. Maybe you are applying a perfectly predictable
mathematical routine. Thus randomness is relative to the observer and
their knowledge.

In software, we distinguish between pseudo-randomness and randomness.
If I run a mathematical routine that generates random-looking numbers,
but these numbers are perfectly determined, I will say that they are
‘pseudo-random’. What random looking means is subjective and the
concept of pseudo-randomness is likewise subjective.

It is possible, on a computer, to produce numbers that cannot be predicted
by the programmer. For example, you might use a temperature sensor
in your processor to capture physical ‘noise’ that can serve as a random-
looking input. You might use the time of day when a program was started
as a random input. We often refer to such values are random (as opposed
to pseudo-random). We consider them random in the sense that, even
in principle, it is not possible for the software to predict them: they are
produced by a process from outside of the software system.

HASHING 105

Hashing

Hashing is the process by which we design a function that takes various
inputs (for example variable-length strings) and outputs a convenient
value, often an integer value. Because hashing involves a function, given
the same input, we always get the same output. Typically, hash functions
produce a fixed number of bits: e.g., 32 bits, 64 bits, and so forth.

One application of hashing has to do with security: given a file recovered
from the network, you may compute a hash value from it. You may then
compare it with the hash value that the server provides. If the two hash
values match, then it is likely that the file you recovered is a match for
the file on the server. Systems such as git rely on this strategy.

Hashing can also be used to construct useful data structures. For example,
you can create a hash table: given a set of key values, you compute a
hash value representing an index in an array. You can then store the key
and a corresponding value at the given index, or nearby. When a key
is provided, you can hash it, seek the address in the array, and find the
matching value. If the hashing is random-looking, then you should be
able to hash N objects into an array of M elements for M slightly larger
than N so that a few objects are hashed to the same location in the
array. It is difficult to ensure that no two objects are ever mapped to
the same array element: it requires that M be much, much larger than
N. For M much larger than N, the probability of a collision is about 1 -
exp(-N*N/(2*M)). Though this probability falls to zero as M grows large,
it requires M to be much larger than N for it to be practically zero. Solving
for p in 1 - exp(-N*N/(2*M)) = p, we get M = -1/2 N*N / ln(1-p).
That is, to maintain a probability p, then M must grow quadratically
(proportionally to N*N) concerning N. Thus we should expect that there
will be collisions in a hash table even if the hash function appears random.
We can handle collisions in various ways. For example, you may use
chaining: each element in the array stores a reference to a dynamic
container that may contain several keys.

106 CHAPTER 5

You can also use linear probing. When a collision occurs, that is, when
two keys produce the same index after applying the hash function, linear
probing involves examining the subsequent locations in the array until
finding an empty position to store the key or locating the desired key.
Suppose a hash table of size 10, with a simple hash function: h(key) =
key % 10.
There are several variations of linear probing to optimize performance
or handle collisions differently. Instead of advancing one step at a time
(as in linear probing), quadratic probing uses a jump that increases
quadratically. For example, if a collision occurs at index h(key), it
tries the locations h(key) + 12, h(key) + 22, h(key) + 32, and so
on. Quadratic probing can help distribute keys more evenly. Another
approach is to use a second hash function to determine the jump step in
case of a collision. If h1(key) gives the initial index and it is occupied,
a step is calculated with a second function h2(key), and it tries the
locations h1(key) + h2(key), h1(key) + 2 * h2(key), and so forth.

A hash function might take each possible input and assign it to a purely
random value given by an Oracle. Unfortunately, such hash functions
are often impractical. They require the storage of large tables of input
values and matching random values. In practice, we aim to produce hash
functions that behave as if they were purely random while still being easy
to implement efficiently.

A reasonable example to hash non-zero integer values is the murmur
function. The murmur function consists of two multiplications and
and three shift/xor operations. The following Go program will display
random-looking 64-bit integers, using the murmur function:
package main

import (
"fmt"
"math/bits"

)

HASHING 107

func murmur64(h uint64) uint64 {
h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33
h *= 0xc4ceb9fe1a85ec53
h ˆ= h >> 33
return h

}

func main() {

for i := 0; i < 10; i++ {
fmt.Println(i, murmur64(uint64(i)))

}
}

It is a reasonably fast function. One downside of the murmur64 function
is that zero is mapped to zero, so some care is needed.

In practice, your values might not be integers. If you want to hash a string,
you might use a recursive function. You process the string character
by character. At each character, you combine the character value with
the hash value computed so far, generating a new hash value. Once the
function is completed, you may then apply murmur to the result:
package main

import (
"fmt"

)

func murmur64(h uint64) uint64 {
h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33

108 CHAPTER 5

h *= 0xc4ceb9fe1a85ec53
h ˆ= h >> 33
return h

}

func hash(s string) (v uint64) {
v = uint64(0)
for _, c := range s {

v = uint64(c) + 31*v
}
return murmur64(v)

}

func main() {
fmt.Print(hash("la vie"), hash("Daniel"))

}

There are better and faster hash functions, but the result from recursive
hashing with a murmur finalizer is reasonable.

Importantly, it is reasonably easy to generate two strings that hash to the
same values, i.e., to create a collision. For example, you can verify that
the strings "Ace", "BDe", "AdF", "BEF" all have the same hash value:
fmt.Print(hash("Ace"), hash("BDe"),
hash("AdF"), hash("BEF"))

When hashing arbitrarily long strings, collisions are always possible.
However, we can use more sophisticated (and more computationally
expensive) hash functions to reduce the probability that we encounter a
problem.

Given a long strings, you may want to hash all sequences of N characters.
A naive approach might be as follows:
for(size_t i = 0; i < len-N; i++) {

uint32_t hash = 0;

HASHING 109

for(size_t j = 0; j < N; j++) {
hash = hash * B + data[i+j];

}
//...

}

You are visiting most character values N times. If N is large, it is
inefficient.

You can do better using a rolling hash function: instead of recomputing
the hash function anew each time, you just update it. It is possible to
only access each character twice (instead of N times).
func rollinghash(s string, N int) {

rev := uint64(1)
for i := 0; i < N; i++ {

rev *= 31
}
v := uint64(0)
for i := 0; i < N; i++ {

v = uint64(s[i]) + 31*v
}
fmt.Println(v)
for i := N; i < len(s); i++ {

v = uint64(s[i]) + 31*v - rev*uint64(s[i-N])
fmt.Println(v)

}
}

An interesting characteristic of the provided murmur64 function is that it
is invertible. If you consider the steps, you have two multiplication by
odd integers. A multiplication by an odd integer is always invertible: the
multiplicative inverse of 0xff51afd7ed558ccd is 0x4f74430c22a54005 and
the multiplicative inverse of 0xc4ceb9fe1a85ec53 is 0x9cb4b2f8129337db,
as 64-bit unsigned integers. It may be slightly less obvious that h ˆ= h
>> 33 is invertible. But if h is a 64-bit integer, we have that h and h ˆ

110 CHAPTER 5

(h >> 33) are identical in their most significant 33 bits, by inspection.
Thus if we are given z = h ˆ (h >> 33), we have that z >> (64-33)
== h >> (64-33). That is, we have identified the most significant 33
bits of h from h ˆ (h >> 33). Extending this reasoning, we have that g
is the inverse of f in the following code, in the sense that g(f(i)) == i.
func f(h uint64) uint64 {

return h ˆ (h >> 33)
}

func g(z uint64) uint64 {
h := z & 0xffffffff80000000
h = (h >> 33) ˆ z
return h

}

We often need hash values to fit within an interval starting at zero.
E.g., you might want to get a hash value in [0,max), you might use the
following function:
func toIntervalBias(random uint64, max uint64) uint64 {

hi,_ := bits.Mul64(random, max)
return hi

}

This function outputs a value in [0,max) using a single multiplication.
There are alternatives such as random % max, but an integer remainder
operation may compile to a division instruction, and a division is typically
more expensive than a multiplication. Whenever possible, you should
avoid division instructions when performance is a factor.

Importantly, the toIntervalBias function introduces a slight bias: we
start with 264 distinct values and we map them to N distinct values. This
means that out of 264 original values, about 264/N values correspond to
each output value. Let ⌈x⌉ be the smallest integer no smaller than x and
⌊x⌋ be the larger integer no larger than x. When 264/N is not an integer,
then some output values match ⌈264/N⌉ original values, whereas others

HASHING 111

match ⌊264/N⌋ original values. When N is small, it may be negligible,
but as N grows, the bias is relatively more important. In some sense, it
is the smallest possible bias if we are starting from original values that
are uniformly distributed over a set of 264 possible values.

Putting it all together, the following program will hash a string into a
value in the interval [0,10).
package main

import (
"fmt"
"math/bits"

)

func murmur64(h uint64) uint64 {
h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33
h *= 0xc4ceb9fe1a85ec53
h ˆ= h >> 33
return h

}

func hash(s string) (v uint64) {
v = uint64(0)
for _, c := range s {

v = uint64(c) + 31*v
}
return murmur64(v)

}

func toIntervalBias(random uint64, max uint64) uint64 {
hi,_ := bits.Mul64(random, max)
return hi

}

112 CHAPTER 5

func main() {
fmt.Print(toIntervalBias(hash("la vie"),10))

}

Though the toIntervalBias function is generally efficient, it is unneces-
sarily expensive when the range is a power of two. If max is a power of two
(e.g., 32), then random % max == random & (max-1). A bitwise AND
with the decremented maximum is faster than even just a multiplication,
typically. Thus the following function is preferable.
func toIntervalPowerOfTwo(random uint64,

max uint64) uint64 {
return random & (max-1)

}

Estimating cardinality
One use case for hashing is to estimate the cardinality of the values in an
array or stream of values. Suppose that your software receives billions
of identifiers, how many distinct identifiers are there? You could build
a database of all identifiers, but it could use a lot of memory and be
relatively expensive. Sometimes, you only want a crude approximation,
but you want to compute it quickly.

There are many techniques to estimate cardinalities using hashing: Prob-
abilistic Counting (Flajolet-Martin), LOGLOG Probabilistic Counting,
and so forth. We can explain the core idea and even produce a useful
function without any advanced mathematics.

Suppose there are m distinct values. If you apply a hash function to these
m distinct values, and the hash values fall within the range of integers
[0, n), it is as if you randomly selected m values from the range [0, n).
If you randomly choose m locations in an array of size n, the expected
density (the fraction of the array elements selected) is (1− (1−1/n)m). If
we measure this density D, we can calculate m from (1−(1−1/n)m) = D:

ESTIMATING CARDINALITY 113

m = log(1 − D)/ log(1 − 1/n). If n is chosen to be sufficiently large,
log(1 − D)/ log(1 − 1/n) should provide a good estimate for the number
of distinct values. The following function applies this formula to estimate
cardinality:
func estimateCardinality(values []uint64) int {

words := 32768
volume := words * 64
b := make([]uint64, words) // 256 kB
for i := 0; i < len(values); i++ {

num := murmur64(values[i])
num = num & uint64(volume-1)
b[num/64] |= 1 << (num % 64)

}
x := 0
for i := 0; i < words; i++ {

x += bits.OnesCount64(b[i])
}
if x == volume {

return -1
}
m := math.Log(1-float64(x)/float64(volume))
/ math.Log((float64(volume)-1)/float64(volume))
return int(m)

}

We can apply our function in the following program. The approximation
is rather crude, but it can be good enough in some practical cases as long
as the number of distinct elements is smaller than 20 million. We use
about 0.1 bits per distinct value. If you expect larger sets, you should
use more advanced techniques, or increase the memory allocated in the
estimateCardinality function. It is able to estimate the number of
distinct elements (19.5 million) in a set of a billion elements in maybe
just one or two seconds.

114 CHAPTER 5

package main

import (
"fmt"
"math"
"math/bits"

)

func murmur64(h uint64) uint64 {
h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33
h *= 0xc4ceb9fe1a85ec53
h ˆ= h >> 33
return h

}

func fillArray(arr []uint64, howmany int) {
for i := 0; i < len(arr); i++ {

arr[i] = 1 + uint64(i%howmany)
}

}

func estimateCardinality(values []uint64) int {
words := 32768
volume := words * 64
b := make([]uint64, words) // 256 kB
for i := 0; i < len(values); i++ {

num := murmur64(values[i])
num = num & uint64(volume-1)
b[num/64] |= 1 << (num % 64)

}
x := 0
for i := 0; i < words; i++ {

ESTIMATING CARDINALITY 115

x += bits.OnesCount64(b[i])
}
if x == volume {

return -1
}
m := math.Log(1-float64(x)/float64(volume))
/ math.Log((float64(volume)-1)/float64(volume))
return int(m)

}

func main() {
values := make([]uint64, 1_000_000_000) // 1 B
distinct := 19_500_000 // 19.5 M
fillArray(values, distinct)
c := estimateCardinality(values)
fmt.Println("estimated: ", c, "actual: ",
distinct, " margin : ", float64(c)/float64(distinct))

}

The Flajolet-Martin algorithm (Flajolet and Martin, 198522) is a proba-
bilistic method for estimating the number of distinct elements in a data
stream. It uses a hash function to transform each element into a binary
value, then observes the position of the rightmost 1 bit (r). The estima-
tion is based on the maximum value of r; the number of distinct elements
is approximately 2max(r). More precisely, the cardinality estimate is given
by 2max(r)/ϕ, where ϕ ≈ 0.77351 is a correction constant to improve
accuracy. This algorithm is particularly suitable for massive data streams,
as it requires only a small amount of memory to store the maximum value
of r. The following algorithm illustrates the Flajolet-Martin algorithm.
package main
import (
"fmt"

22https://doi.org/10.1016/0022-0000(85)90041-8

https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8

116 CHAPTER 5

"math"
"math/bits"
)
func murmur64(h uint64) uint64 {
h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33
h *= 0xc4ceb9fe1a85ec53
h ˆ= h >> 33
return h
}
func fillArray(arr []uint64, howmany int) {
for i := 0; i < len(arr); i++ {
arr[i] = 1 + uint64(i%howmany)

}
}
func flajoletMartin(values []uint64) int {
maxR := 0
for _, val := range values {
hash := murmur64(val)
r := bits.LeadingZeros64(hash)
if r > maxR {
maxR = r

}
}

phi := 0.77351
return int(math.Pow(2, float64(maxR)) / phi)
}
func main() {
values := make([]uint64, 1_000_000_000)
distinct := 19_500_000
fillArray(values, distinct)
fm := flajoletMartin(values)
fmt.Println("estimated: ", fm, "actual: ",

INTEGERS 117

distinct, " margin : ", float64(fm)/float64(distinct))
}

Integers
There are many ways to generate random integers, but a particularly
simple approach is to rely on hashing. For example, we could start
from an integer (e.g., 10) and return the random integer murmur64(10)
and then increment the integer (e.g, to 11) and next return the integer
murmur64(10).

Steele et al. (2014)23 propose a similar strategy which they call SplitMix:
it is part of the Java standard library. It works much like what we just
described but instead of incrementing the counter by one, they increment
it by a large odd integer. They also use a slightly different version of
the murmur64 version. The following function prints 10 different random
values, following the SplitMix formula:
package main

import "fmt"

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

func main() {

23https://doi.org/10.1145/2714064.2660195

https://doi.org/10.1145/2714064.2660195
https://doi.org/10.1145/2714064.2660195

118 CHAPTER 5

seed := uint64(1234)
for z := 0; z < 10; z++ {

r := splitmix64(&seed)
fmt.Println(r)

}
}

Each time the splitmix64 function is called, the hidden seed variable
is advanced by a constant (0x9E3779B97F4A7C15). If you start from the
same seed, you always get the same random values.

The function then performs a series of bitwise operations on z. First, it
performs an XOR operation between z and z shifted right by 30 bits. It
then multiplies the result by the constant value 0xBF58476D1CE4E5B9.
Next, it performs another XOR operation between the result and the
result shifted right by 27 bits. Finally, it multiplies the result by the
constant value 0x94D049BB133111EB and returns the result XORed
with the result shifted right by 31 bits.

It produces integers using the full 64-bit range. If one needs a random
integer in an interval (e.g., [0,N)), then more work is needed. If the size
of the interval is a power of two (e.g., [0,32)), then we may simply use
the same technique as for hashing:
// randomInPowerOfTwo -> [0,max)
func randomInPowerOfTwo(seed *uint64, max uint64) uint64 {

r := splitmix64(seed)
return r & (max-1)

}

However, when the bound is arbitrary (not a power of two) and we want
to avoid biases, a slightly more complicated algorithm is needed. Indeed,
if we assume that the 64-bit integers are truly random, then all values
are equally likely. However, if we are not careful, we can introduce a bias
when converting the 64-bit integers to values in [0,N). It is not a concern

INTEGERS 119

when N is a power of two, but it becomes a concern when N is arbitrary.
A fast routine was described by Lemire (2019)24 to solve this problem:
func toIntervalUnbiased(seed *uint64, max uint64) uint64 {

x := splitmix64(seed)
hi, lo := bits.Mul64(x, max)
if lo < max {

t := (-max) % max // division!!!
for lo < t {

x := splitmix64(seed)
hi, lo = bits.Mul64(x, max)

}
}
return hi

}

The toIntervalUnbiased function takes two arguments: a pointer to
a 64-bit unsigned integer seed and a 64-bit unsigned integer max. It
returns a 64-bit unsigned integer. The function first calls the splitmix64
function with the seed pointer as an argument to generate a random 64-bit
unsigned integer x. It then multiplies x with max using the bits.Mul64
function, which returns the product of two 64-bit unsigned integers as
two 64-bit unsigned integers. The higher 64 bits of the product are stored
in the variable hi, and the lower 64 bits are stored in the variable lo. If
lo is less than max, the function enters a loop that generates new random
numbers using splitmix64 and recalculates the product of x and max
until lo is greater than or equal to -max % max. This algorithm ensures
that the distribution of random numbers is unbiased.

The general strategy used by this function is called the rejection method:
we repeatedly try to generate a random integer until we can produce an
unbiased result. However, when the interval is much smaller than 264 (a
common case), then we are very unlikely to use the rejection method or

24https://arxiv.org/abs/1805.10941

https://arxiv.org/abs/1805.10941
https://arxiv.org/abs/1805.10941

120 CHAPTER 5

to even have to compute an integer remainder. Most of the time, the
function never enters in the rejection loop.

Testing that a random generator appears random is challenging. We
can use many testing strategies, and each testing strategy can be more
or less extensive. Thankfully, it is not difficult to think of some tests
we can apply. For example, we want the distribution of values to be
uniform: the probability that any one value is generated should be 1 over
the number of possible values. When generating 2 to the 64 possible
values, it is technically challenging to test for uniformity. However, we
can conveniently restrict the size of the output with a function such as
toInterval.

The following program computes the relative standard deviation of a
frequency histogram based on 100 million values. The relative standard
deviation is far smaller than 1% (0.05655%) which suggests that the
distribution is uniform.
package main

import (
"fmt"
"math"
"math/bits"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

INTEGERS 121

func toIntervalUnbiased(seed *uint64, max uint64) uint64 {
x := splitmix64(seed)
hi, lo := bits.Mul64(x, max)
if lo < max {

t := (-max) % max // division!!!
for lo < t {

x := splitmix64(seed)
hi, lo = bits.Mul64(x, max)

}
}
return hi

}

func meanAndStdDev(arr []int) (float64, float64) {
var sum, sumSq float64
for _, val := range arr {

sum += float64(val)
sumSq += math.Pow(float64(val), 2)

}
n := float64(len(arr))
mean := sum / n
stdDev := math.Sqrt((sumSq / n) - math.Pow(mean, 2))
return mean, stdDev

}

func main() {
seed := uint64(1234)
const window = 30
var counter [window]int

for z := 0; z < 100000000; z++ {
counter[toIntervalUnbiased(&seed, window)] += 1

}
moyenne, ecart := meanAndStdDev(counter[:])

122 CHAPTER 5

fmt.Println("relative std ", ecart/moyenne*100, "%")
}

Random shuffle
Sometimes, you are given an array that you want to randomly shuffle.
An elegant algorithm described by Knuth is the standard approach. The
algorithm works by iterating over the array from the last element to the
first element. At each iteration, it selects a random index between 0 and
the current index (inclusive) and swaps the element at the current index
with the element at the randomly generated index.

We can prove that it provides a fair random shuffle by an induction
argument. There are N ! possible permutation of an array of size N and
we want an algorithm that produces one out of these N ! permutations at
random. When the array is of length 2, we can verify that it either keeps
the default order, or it permutes the two values: each possibility has a
50% probability. Suppose that you want to randomly shuffle an array of
size N , but you know how to randomly shuffle an array of size N − 1.
You begin by shuffling either the first or last N − 1 elements of the array
of size N . There are (N − 1)! such permutations, and you assume that
they are equally likely by your induction argument. Then you permute
the lone unshuffled element with any other element chosen (including
itself) at random (uniformly). This creates N ! permutations, all equally
likely. Thus the algorithm is correct. You may think that designing other
random shuffling algorithms is easy, but we know of few such algorithms.

The following program shuffles randomly an array based on a seed. Chang-
ing the seed would change the order of the array. For large arrays, the
number of possible permutations is likely to exceed the number of possible
seeds: it implies that not all possible permutations are possible with such
an algorithm using a simple fixed-length seed.
package main

RANDOM SHUFFLE 123

import (
"fmt"
"math/bits"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

func toIntervalUnbiased(seed *uint64, max uint64) uint64 {
x := splitmix64(seed)
hi, lo := bits.Mul64(x, max)
if lo < max {

t := (-max) % max // division!!!
for lo < t {

x := splitmix64(seed)
hi, lo = bits.Mul64(x, max)

}
}
return hi

}

func shuffle(seed *uint64, arr []int) {
for i := len(arr)-1; i >= 1; i-- {

j := toIntervalUnbiased(seed, uint64(i+1))
arr[i], arr[j] = arr[j], arr[i]

}
}

124 CHAPTER 5

func main() {
seed := uint64(1234)
numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
shuffle(&seed, numbers)
fmt.Println(numbers)

}

Reservoir Sampling
We sometimes want to pick k distinct elements at random out of a set
of N elements. An obvious solution would be to randomly shuffle the N
elements and pick the first or last k elements. Unfortunately, such an
algorithm requires much storage (N elements). A more efficient approach
is to use a variation of the standard random shuffle that keeps only the
first k elements in memory. The result is called reservoir sampling.

The algorithm also works by iterating over the array. Like for the random
shuffle, at each iteration, we selects a random index between 0 and the
current index (inclusive) and we virtual swaps the element at the current
index with the element at the randomly generated index. However, we
only need to physically swap if the randomly generated index points
within the first k elements.

The code looks much like the random shuffle. An interesting feature of this
algorithm is that it requires as little memory as possible. Unfortunately,
if the input array is large, it may not be the best algorithm because it
requires scanning the entire array.
package main

import (
"fmt"
"math/bits"

)

RESERVOIR SAMPLING 125

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

func toIntervalUnbiased(seed *uint64, max uint64) uint64 {
x := splitmix64(seed)
hi, lo := bits.Mul64(x, max)
if lo < max {

t := (-max) % max // division!!!
for lo < t {

x := splitmix64(seed)
hi, lo = bits.Mul64(x, max)

}
}
return hi

}

func sample(seed *uint64, arr []int, k int) []int {
answer := arr[:k]
for i := k; i < len(arr); i++ {

j := int(toIntervalUnbiased(seed, uint64(i+1)))
if j < k {

answer[j] = arr[i]
}

}
return answer

}

126 CHAPTER 5

func main() {
seed := uint64(1234)
numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
for t := 0; t < 30; t++ {

s := sample(&seed, numbers, 3)
fmt.Println(s)

}
}

In the scenario where you want to pick few elements from a large elements,
you may simply keep on selecting an index at random, add it to a set of
indexes, until you have reached k distinct indexes. There are several ways
to implement a set data structure, but simplest one is an array which
may work well if you want to pick few elements. A hash table or other
such data structure might work better for larger sets. It is also possible
to solve this problem using a bitset data structure. Yet for many use
cases, the following simple code should prove useful:
package main

import (
"fmt"
"math/bits"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

RESERVOIR SAMPLING 127

func toIntervalUnbiased(seed *uint64, max uint64) uint64 {
x := splitmix64(seed)
hi, lo := bits.Mul64(x, max)
if lo < max {

t := (-max) % max // division!!!
for lo < t {

x := splitmix64(seed)
hi, lo = bits.Mul64(x, max)

}
}
return hi

}

func isInSlice(arr []int, x int) bool {
for _, y := range arr {

if x == y {
return true

}
}
return false

}

func sample(seed *uint64, arr []int, k int) []int {
idx := make([]int, 0, k)
for len(idx) < k {

j := int(toIntervalUnbiased(seed, uint64(len(arr))))
if !isInSlice(idx, j) {

idx = append(idx, j)
}

}
answer := make([]int, k)
for i, j := range idx {

answer[i] = arr[j]
}

128 CHAPTER 5

return answer
}

func main() {
seed := uint64(1234)
numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
for t := 0; t < 30; t++ {

s := sample(&seed, numbers, 3)
fmt.Println(s)

}
}

Floats
It is often necessary to generate random floating-point numbers. Software
systems typically use IEEE 754 floating-point numbers.

To generate 32-bit floating-point numbers in the interval [0, 1), it may
seem that we could generate a 32-bit integer (in [0, 232)) and divide it
by 232 to get a random floating-point value in [0, 1). That’s certainly
“approximately true”, but we are making an error when doing so. How
much of an error?

Floating-point (normal numbers) are represented as a sign bit, a mantissa,
and an exponent as follows:

• There is a single sign bit. Because we only care about positive
numbers, this bit is fixed and can be ignored.

• The mantissa of a 32-bit floating point number is 23 bits. It is
implicitly preceded by the number 1.

• There are eight bits dedicated to the exponent. For normal numbers,
the exponent ranges from -126 to 127. To represent zero, you need
an exponent value of -127 and zero mantissa.

So how many normal non-zero numbers are there between 0 and 1? The
negative exponents range from -1 to -126. In each case, we have 223

FLOATS 129

distinct floating-point numbers because the mantissa is made of 23 bits.
So we have 126 x 223 normal floating-point numbers in [0, 1). If you
don’t have a calculator handy, that’s 1,056,964,608. If we want to add
the numbers 0 and 1, that’s 126 × 223 + 2 slightly over a billion distinct
values. There are 232 32-bit words or slightly over 4 billion, so about a
quarter of them are in the interval [0,1]. Of all the float-pointing point
numbers your computer can represent, a quarter of them lie in [0,1]. By
extension, half of the floating-point numbers are in the interval [-1,1].

The number 232 is not divisible by 126 × 223 + 2, so we can’t take a 32-bit
non-negative integer, divide it by 232 and hope that this will generate a
number in [0,1] or [0, 1) in an unbiased way.

We can use the fact that the mantissa uses 23 bits. This means in
particular that you pick any integer in [0, 224), and divide it by 224, then
you can recover your original integer by multiplying the result again by
224. This works with 224 but not with 225 or any other larger number.
For 64-bit floating-point numbers, you have greater accuracy as you can
replace 24 with 53.

So you can pick a random integer in [0, 224), divide it by 224 and you will
get a random number in [0, 1) without bias, meaning that for every integer
in [0,2ˆ{24}), there is one and only one number in [0, 1). Moreover,
the distribution is uniform in the sense that the possible floating-point
numbers are evenly spaced (the distance between them is a flat 2−24).

So even though single-precision floating-point numbers use 32-bit words,
and even though your computer can represent about 230 distinct and
normal floating-point numbers in [0, 1), chances are good that your
random generator only produces 224 distinct 32-bit floating-point numbers
in the interval [0, 1), and only 253 distinct 64-bit floating-point numbers.

A common way to generate random integers in an interval [0,N) is to
first generate a random floating-point number [0, 1) and then multiply
the result by N. Should N exceeds 224 (or 253), then you are unable to
generate all integers in the interval [0,N). Similarly, to generate numbers
in [a,b), you would generate a random floating-point number [0, 1) and

130 CHAPTER 5

then multiply the result by b-a and add a. The result may not be ideal
in general but it is convenient.

The following program generates random floating-point numbers:
package main

import (
"fmt"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

// toFloat32 -> [0,1)
func toFloat32(seed *uint64) float32 {

x := splitmix64(seed)
x &= 0xffffff // %2**24
return float32(x)/float32(0xffffff)

}

// toFloat64 -> [0,1)
func toFloat64(seed *uint64) float64 {

x := splitmix64(seed)
x &= 0x1fffffffffffff // %2**53
return float64(x)/float64(0x1fffffffffffff)

}

func main() {

FLOATS 131

seed := uint64(1231114)
fmt.Println(toFloat32(&seed))
fmt.Println(toFloat64(&seed))

}

You may prefer to generate floating-point numbers in the interval (0,1].
You can modify the function accordingly, e.g.:
// toFloat64 -> (0,1]
func toFloat64Alt(seed *uint64) float64 {

x := splitmix64(seed)
x &= 0x1fffffffffffff
x += 1
return float64(x)/float64(0x1fffffffffffff)

}

In some instances, you may want to sacrifice the fact that numbers
are uniformly distributed, at fixed intervals, so you can generate more
floating-point values in the interval. Cawley (2023)25 provides a strategy.
The general idea is to generate numbers in the interval [0.5,1] with
probability 0.5 and a gap between the possible numbers of 2−54, and
then numbers in the interval [0.25,0.5] with probability 0.25 and a gap
between the possible numbers of 2−55, and so forth. Cawley proposes the
following function:
// toFloat64Cawley -> (0,1]
func toFloat64Cawley(seed *uint64) float64 {

x := splitmix64(seed)
e := bits.TrailingZeros64(x) - 11
if e >= 0 {

e = bits.TrailingZeros64(splitmix64(seed))
}
x = (((x >> 11) + 1) >> 1)

- ((uint64(int64(e)) - 1011) << 52)

25https://www.corsix.org/content/higher-quality-random-floats

https://www.corsix.org/content/higher-quality-random-floats
https://www.corsix.org/content/higher-quality-random-floats

132 CHAPTER 5

return math.Float64frombits(x)
}

An amusing application of floating-point is to estimate the value of π. If
we generate two floating-point numbers x, y in [0, 1), [0, 1), then out of
an area of 1 (the unit square), then the area was x*x+y*y <= 1 should
be π/4. The following program prints an estimate of the value of π.
package main

import (
"fmt"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

// toFloat64 -> [0,1)
func toFloat64(seed *uint64) float64 {

x := splitmix64(seed)
x &= 0x1fffffffffffff // %2**53
return float64(x) / float64(0x1fffffffffffff)

}

func main() {
seed := uint64(1231114)
N := 100000000
circle := 0

DISCRETE DISTRIBUTIONS 133

for i := 0; i < N; i++ {
x := toFloat64(&seed)
y := toFloat64(&seed)
if x*x+y*y <= 1 {

circle += 1
}

}
fmt.Println(4 * float64(circle)/float64(N))

}

Of course, practical algorithms might require other distributions such
as the normal distribution. We can generate high quality normally
distributed floating-point values at high speed using the The Ziggurat
Method (Marsaglia & Tsang, 200026). The implementation is not difficult,
but it is technical. In particular, it requires a precomputed table. Typi-
cally, we generate normally distributed values with a mean of zero and
a standard deviation of one: we often multiply the result by the square
root of the desired standard deviation, and we add the desired mean.

Discrete distributions
Sometimes we are given a collection of possible values and each value has
a corresponding probability. For example, we might pick at random one
of three colors (red, blue, green) with corresponding probabilities (20%,
40%, 40%). If there are few such values (for example three), a standard
approach is a roulette wheel selection. We divide the interval from 0 to
1 into three distinct components, one for each colour: from 0 to 0.2, we
pick red, from 0.2 to 0.6, we pick blue, from 0.6 to 1.0, we pick green.

The following program illustrates this algorithm:

26http://www.jstatsoft.org/v05/i08/paper

http://www.jstatsoft.org/v05/i08/paper
http://www.jstatsoft.org/v05/i08/paper

134 CHAPTER 5

package main

import (
"fmt"
"math/rand"
"time"

)

func splitmix64(seed *uint64) uint64 {
*seed += 0x9E3779B97F4A7C15
z := *seed
z = (z ˆ (z >> 30))
z *= (0xBF58476D1CE4E5B9)
z = (z ˆ (z >> 27))
z *= (0x94D049BB133111EB)
return z ˆ (z >> 31)

}

func toFloat64(seed *uint64) float64 {
x := splitmix64(seed)
x &= 0x1fffffffffffff // %2**53
return float64(x) / float64(0x1fffffffffffff)

}

func roulette(seed *uint64, colors []string,
probabilities []float64) string {

rand.Seed(time.Now().UnixNano())

// Create a slice of cumulative probabilities
cumulProb := make([]float64, len(probabilities))
cumulProb[0] = probabilities[0]
for i := 1; i < len(probabilities); i++ {

cumulProb[i] = cumulProb[i-1] + probabilities[i]
}

DISCRETE DISTRIBUTIONS 135

// Generate a random number between 0 and 1
randomNumber := toFloat64(seed)

if randomNumber < cumulProb[0] {
return colors[0]

}
for i := 1; i < len(cumulProb); i++ {

if randomNumber >= cumulProb[i-1]
&& randomNumber < cumulProb[i] {

return colors[i]
}

}

return colors[len(colors)-1]
}

func main() {
seed := uint64(1231114)

colors := []string{"red", "blue", "green"}
probabilities := []float64{0.2, 0.4, 0.4}

fmt.Println(roulette(&seed, colors, probabilities))
}

If you have to pick a value out of a large set, a roulette-wheel selection
approach can become inefficient. In such cases, we may use the alias
method27.

27https://en.wikipedia.org/wiki/Alias_method

https://en.wikipedia.org/wiki/Alias_method
https://en.wikipedia.org/wiki/Alias_method
https://en.wikipedia.org/wiki/Alias_method

136 CHAPTER 5

Cryptographic hashing and random numbers
We do not typically reimplement cryptographic functions. It is preferable
to use well-tested implementations. They are typically reserved for cases
where security is a concern because they often use more resources.

Cryptographic hashing of strings is designed so that it is difficult to find
two strings that collide (have the same hash value). Thus if you receive
a message, and you were given its hash value ahead of time, and you
check that the hash value sent and the hash value computed from the
sent message correspond, there are good chances that the message has
not been corrupted. It is difficult (but not impossible) for an attacker to
produce a message that matches the hash value you were given. To hash
a string in Go cryptographically, you may use the following code:
package main

import (
"crypto/sha256"
"fmt"

)

func main() {
message := "Hello, world!"
hash := sha256.Sum256([]byte(message))
fmt.Printf("Message: %s\nHash: %x\n", message, hash)

}

Similarly, you may want to generate random numbers in a cryptographical
manner: in such cases, the produced random numbers are difficult to
predict. Even if I were to give you the ten last numbers, it would be
difficult to predict the next one. If you were to implement software for an
online casino, you should probably use cryptographic random numbers.
package main

import (

EXERCISES FOR CHAPTER 5 137

"crypto/rand"
"fmt"
"math/big"

)

func main() {
nBig, err := rand.Int(rand.Reader, big.NewInt(100))
if err != nil {

panic(err)
}
n := nBig.Int64()
fmt.Printf("Here is a random %T between 0 and 99: %d\n",

n, n)
}

Exercises for Chapter 5

Question 1
I have 100 elements and I would like to hash them to 100 hash values,
and I want to be sure that the probability that two hash values collide is
low. Assuming that you have ideal (perfectly) random hash values, what
is the probability of a collision if I produce 32-bit hash values? What if I
use 128-bit hash values?

Question 2
Given the following function
func murmur64(h uint64) uint64 {

h ˆ= h >> 33
h *= 0xff51afd7ed558ccd
h ˆ= h >> 33
h *= 0xc4ceb9fe1a85ec53

138 CHAPTER 5

h ˆ= h >> 33
return h

}

Find its inverse.

Question 2
Write a program that tests the uniformity of the SplitMix random gener-
ator, for various seeds. You may generate values within an interval. Are
some seeds better than others? Are some intervals better or worse?

Question 3
The following function generates a single random 32-bit floating-point
number. Modify the function so that it generates two 32-bit floating-point
numbers from a single call to splitmix64.
func toFloat32(seed *uint64) float32 {

x := splitmix64(seed)
x &= 0xffffff // %2**24
return float32(x)/float32(0xffffff)

}

Question 4
Modify the estimateCardinality function so that when the density is
1.0, it reruns the analysis using twice as much memory, and so forth, until
it can measure a non-unitary density.

Chapter 6

When programming software, we are working over an abstraction over
a system. The computer hardware may not know about your functions,
your variables, and your data. It may only see bits and instructions.
Yet to write efficient software, the programmer needs to be aware of the
characteristics of the underlying system. Thankfully, we can also use the
software itself to observe the behavior of the system through experiments.

Between the software and the hardware, there are several layers such
as the compilers, the operating system, and the hardware. A good
programmer should take into account these layers when needed. A good
programmer must also understand the behavior of their software in terms
of these layers.

Benchmarks in Go
To measure the performance, we often measure the time required to
execute some function. Because most functions are fast, it can be difficult
to precisely measure the time that takes a function if we run it just once.
Instead, we can run the function many times, and record the total time.
We can then divide the total time by the number of executions. It can
be difficult to decide how many times we should execute the function: it
depends in part on how fast a function is. If a function takes 6 seconds
to run, we may not want or need to run it too often. An easier strategy

139

140 CHAPTER 6

is to specify a minimum duration and repeatedly call a function until we
reach or exceed the minimum duration.

When the function has a short execution time, we often call the bench-
mark a microbenchmark. We use microbenchmarks to compare different
implementations of the same functionality or to better understand the
system or the problem. We should always keep in mind that a microbench-
mark alone cannot be used to justify a software optimization. Real-world
performance depends on multiple factors that are difficult to represent in
a microbenchmark.

Importantly, all benchmarks are affected by measurement errors, and by
interference from the system. To make matters worse, the distribution of
timings may not follow a normal distribution.

All programming languages provide the ability to run benchmarks. In
Go, the tools make it easy to write benchmarks. You can import the
testing package and create a function with the prefix Benchmark and a
parameter of pointer type testing.B. For example, the following program
benchmarks the time required to compute the factorial of 10 as an integer:
package main

import (
"fmt"
"testing"

)

var fact int

func BenchmarkFactorial(b *testing.B) {
for n := 0; n < b.N; n++ {

fact = 1
for i := 1; i <= 10; i++ {

fact *= i
}

}

MEASURING MEMORY ALLOCATIONS 141

}

func main() {
res := testing.Benchmark(BenchmarkFactorial)
fmt.Println("BenchmarkFactorial", res)

}

If you put functions with such a signature (BenchmarkSomething(b
*testing.B)) as part of your tests in a project, you can run them
with the command go test -bench . where . refers to the current
package. To run just one of them, you can specify a pattern such as
go test -bench Factorial which would only run benchmark functions
containing the word Factorial.

The b.N field indicates how many times the benchmark function runs. The
testing package adjusts this value by increasing it until the benchmark
runs for at least one second.

Measuring memory allocations
In Go, each function has its own ‘stack memory’. As the name suggests,
stack memory is allocated and deallocated in a last-in, first-out (LIFO)
order. This memory is typically only usable within the function, and it
is often limited in size. The other type of memory that a Go program
may use is heap memory. Heap memory is allocated and deallocated in a
random order. There is only one heap shared by all functions.

With the stack memory, there is no risk that the memory may get lost
or misused since it belongs to a specific function and can be reclaimed
at the end of the function. Heap memory is more of a problem: it is
sometimes unclear when the memory should be reclaimed. Programming
languages like Go rely on a garbage collector to solve this problem. For
example, when we create a new slice with the make function, we do not
need to worry about reclaiming the memory. Go automatically reclaims it.
However, it may still be bad for performance to constantly allocate and

142 CHAPTER 6

deallocate memory. In many real-world systems, memory management
becomes a performance bottleneck.

Thus it is sometimes interesting to include the memory usage as part of the
benchmark. The Go testing package allows you to measure the number
of heap allocation made. Typically, in Go, it roughly corresponds to the
number of calls to make and to the number of objects that the garbage
collector must handle. The following extended program computers the
factorial by storing its computation in dynamically allocated slices:
package main

import (
"fmt"
"testing"

)

var fact int

func BenchmarkFactorial(b *testing.B) {
for n := 0; n < b.N; n++ {

fact = 1
for i := 1; i <= 10; i++ {

fact *= i
}

}
}
func BenchmarkFactorialBuffer(b *testing.B) {

for n := 0; n < b.N; n++ {
buffer := make([]int, 11)
buffer[0] = 1
for i := 1; i <= 10; i++ {

buffer[i] = i * buffer[i-1]
}

}
b.ReportAllocs()

MEASURING MEMORY ALLOCATIONS 143

}

func BenchmarkFactorialBufferLarge(b *testing.B) {
for n := 0; n < b.N; n++ {

buffer := make([]int, 100001)
buffer[0] = 1
for i := 1; i <= 100000; i++ {

buffer[i] = i * buffer[i-1]
}

}
b.ReportAllocs()

}

func main() {
res := testing.Benchmark(BenchmarkFactorial)
fmt.Println("BenchmarkFactorial", res)
resmem := testing.Benchmark(BenchmarkFactorialBuffer)
fmt.Println("BenchmarkFactorialBuffer",

resmem, resmem.MemString())
resmem

= testing.Benchmark(BenchmarkFactorialBufferLarge)
fmt.Println("BenchmarkFactorialBufferLarge",

resmem, resmem.MemString())
}

If you run such a Go program, you might get the following result:

BenchmarkFactorial 90887572 14.10 ns/op
BenchmarkFactorialBuffer 88609930 11.96 ns/op
0 B/op 0 allocs/op
BenchmarkFactorialBufferLarge 4408 249263 ns/op
802816 B/op 1 allocs/op

The last function allocates 802816 bytes per operation, unlike the first
two. In this instance, if Go determines that data is not referenced after

144 CHAPTER 6

the function returns (a process called ‘escape analysis’), and if the amount
of memory used is sufficiently small, it will avoid allocating the memory
to the heap, preferring instead stack memory. In the case of the last
function, the memory usage is too high, hence there is allocation on the
heap rather than the stack.

Measuring memory usage
Your operating system provides memory to a running process in units
of pages. The operating system cannot provide memory in smaller units
than a page. Thus if you allocate memory in a program, it may either
cost no additional memory if there are enough pages already; or it may
force the operating system to provide more pages.

The size of a page depends on the operating system and its configuration.
It can often vary between 4 kilobytes and 16 kilobytes although much
larger pages are also possible (e.g., 1 gigabyte).

A page is a contiguous array of virtual memory addresses. A page may
also represent actual physical memory. However, operating systems
tend to only map used pages to physical memory. An operating system
may provide a nearly endless supply of pages to a process, without ever
mapping it to physical memory. Thus it is not simple to ask how much
memory a program uses. A program may appear to use a lot of (virtual)
memory, while not using much physical memory, and inversely.

The page size impacts both the performance and the memory usage.
Allocating pages to a process is not free, it takes some effort. Among
other things, the operating system cannot just reuse a memory page
from another process as is. Doing so would be a security threat because
you could have indirect access to the data stored in memory by another
process. This other process could have held in memory your passwords
or other sensitive information. Typically an operating system has to
initialize (e.g., set to zero) a newly assigned page. As a general rule, an
operating system must initialize (e.g., set to zero) a newly allocated page.
Additionally, mapping virtual memory pages (used by programs) to actual

MEASURING MEMORY USAGE 145

physical memory (the hardware) is a complex process that takes time.
Each time a program accesses a virtual memory address, the system must
translate that address into a corresponding physical address. This process,
called page mapping, relies on page tables maintained by the operating
system. To speed up this mapping, modern processors use a mechanism
called the translation lookaside buffer (TLB), or address translation cache.
The TLB is a small cache integrated into the processor that stores recent
mappings between virtual and physical addresses. When a virtual address
needs to be translated, the processor first checks the TLB. If the mapping
is found, the translation is fast. However, if the address is not in the
TLB, the processor must access the page tables in memory, which is a
much slower process, as it typically involves RAM accesses and additional
computations. The TLB has limited capacity, meaning it can fill up
quickly, especially in systems running multiple processes or handling
large amounts of data. When there is no more space in the TLB, the
page mapping must be recalculated. This operation can involve multiple
memory accesses and complex computations, significantly slowing down
system performance. Larger pages can therefore improve the performance
of certain programs because they reduce the number of pages required.
However, large pages force the operating system to provide memory in
larger chunks to a process, potentially wasting precious memory. You
can write a Go program which prints out the page size of your system:
import (

"fmt"
"os"

)

func main() {
pageSize := os.Getpagesize()
fmt.Printf("Page size: %d bytes (%d KB)\n",

pageSize, pageSize/1024)
}

146 CHAPTER 6

Go makes it relatively easy to measure the number of pages allocated to
a program by the operating system. Nevertheless, some care is needed.
Because Go uses a garbage collector to free allocated memory, there might
be a delay between the moment you no longer need some memory, and
the actual freeing of the memory. You may force Go to call immediately
the garbage collector with the function call runtime.GC(). You should
rarely deliberately invoke the garbage collector in practice, but for our
purposes (measuring memory usage), it is useful.

There are several memory metrics. In Go, some of the most useful are
HeapSys and HeapAlloc. The first indicates how much memory (in bytes)
has been given to the program by the operating system. The second
value, which is typically lower indicates how much of that memory is
actively in used by the program.

The following program allocates ever larger slices, and then ever smaller
slices. In theory, the memory usage should first go up, and then go down:
package main

import (
"fmt"
"os"
"runtime"

)

func main() {
pageSize := os.Getpagesize()
var m runtime.MemStats
runtime.GC()
runtime.ReadMemStats(&m)
fmt.Printf(

"Sys = %.3f MiB, Alloc = %.3f MiB, %.3f pages\n",
float64(m.HeapSys)/1024.0/1024.0,
float64(m.HeapAlloc)/1024.0/1024.0,
float64(m.HeapSys)/float64(pageSize),

MEASURING MEMORY USAGE 147

)
i := 100
for ; i < 1000000000; i *= 10 {

runtime.GC()
s := make([]byte, i)
runtime.ReadMemStats(&m)
fmt.Printf(

"%.3f MiB, Sys = %.3f MiB, Alloc = %.3f MiB,"
+" %.3f pages\n",

float64(len(s))/1024.0/1024.0,
float64(m.HeapSys)/1024.0/1024.0,
float64(m.HeapAlloc)/1024.0/1024.0,
float64(m.HeapSys)/float64(pageSize),

)
}
for ; i >= 100; i /= 10 {

runtime.GC()
s := make([]byte, i)
runtime.ReadMemStats(&m)
fmt.Printf(

"%.3f MiB, Sys = %.3f MiB, Alloc = %.3f MiB,"
+" %.3f pages\n",

float64(len(s))/1024.0/1024.0,
float64(m.HeapSys)/1024.0/1024.0,
float64(m.HeapAlloc)/1024.0/1024.0,
float64(m.HeapSys)/float64(pageSize),

)
}
runtime.GC()
runtime.ReadMemStats(&m)
fmt.Printf(

"Sys = %.3f MiB, Alloc = %.3f MiB, %.3f pages\n",
float64(m.HeapSys)/1024.0/1024.0,
float64(m.HeapAlloc)/1024.0/1024.0,

148 CHAPTER 6

float64(m.HeapSys)/float64(pageSize),
)

}

The program calls os.Getpagesize() to get the underlying system’s
memory page size in bytes as an integer, and assigns it to a variable
pageSize. It declares a variable m of type runtime.MemStats, which is
a struct that holds various statistics about the memory allocator and
the garbage collector. The program repeatedly calls runtime.GC() to
trigger a garbage collection cycle manually, which may free some memory
and make it available for release. It calls runtime.ReadMemStats(&m) to
populate the m variable with the current memory statistics. We can reuse
the same variable m from call to call. The purpose of this program is to
demonstrate how the memory usage of a Go program changes depending
on the size and frequency of memory allocations and deallocations, and
how the garbage collector and the runtime affect the memory release. The
program prints the memory usage before and after each allocation, and
shows how the m.HeapSys, m.HeapAlloc, and m.HeapSys / pageSize
values grow and shrink accordingly.

If you run this program, you may observe that a program tends to hold
on to the memory you have allocated and later released. It is partly a
matter of optimization: acquiring memory takes time and we wish to
avoid giving back pages only to soon request them again. It illustrates
that it can be challenging to determine how much memory a program
uses.

The program may print something like the following:

$ go run mem.go
HeapSys = 3.719 MiB, HeapAlloc = 0.367 MiB,
238.000 pages
0.000 MiB, HeapSys = 3.719 MiB, HeapAlloc = 0.367 MiB,
238.000 pages
0.001 MiB, HeapSys = 3.719 MiB, HeapAlloc = 0.383 MiB,
238.000 pages

MEASURING MEMORY USAGE 149

0.010 MiB, HeapSys = 3.688 MiB, HeapAlloc = 0.414 MiB,
236.000 pages
0.095 MiB, HeapSys = 3.688 MiB, HeapAlloc = 0.477 MiB,
236.000 pages
0.954 MiB, HeapSys = 3.688 MiB, HeapAlloc = 1.336 MiB,
236.000 pages
9.537 MiB, HeapSys = 15.688 MiB, HeapAlloc = 9.914 MiB,
1004.000 pages
95.367 MiB, HeapSys = 111.688 MiB, HeapAlloc = 95.750 MiB,
7148.000 pages
953.674 MiB, HeapSys = 1067.688 MiB,
HeapAlloc = 954.055 MiB,
68332.000 pages
95.367 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 95.750 MiB,
68332.000 pages
9.537 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 9.914 MiB,
68332.000 pages
0.954 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 1.336 MiB,
68332.000 pages
0.095 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 0.477 MiB,
68332.000 pages
0.010 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 0.414 MiB,
68332.000 pages
0.001 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 0.383 MiB,
68332.000 pages
0.000 MiB, HeapSys = 1067.688 MiB, HeapAlloc = 0.375 MiB,
68332.000 pages
HeapSys = 1067.688 MiB, HeapAlloc = 0.375 MiB,
68332.000 pages

Observe how, at the very beginning and at the very end, over a third
of a megabyte of memory (238 pages) is repeated as being in used.
Furthermore, over 68,000 pages remain allocated to the program at the
very, even though no data structure remains in scope within the main
function.

150 CHAPTER 6

Inlining
One of the most powerful optimization technique that a compile may
do is function inlining: the compiler brings some of the called functions
directly into the calling functions.

Go makes it easy to tell which functions are inlined. We can also easily re-
quest that the compiles does not inline by adding the line //go:noinline
right before a function.

Let us consider this program which contains two benchmarks were we
sum all odd integers in a range.
package main

import (
"fmt"
"testing"

)

func IsOdd(i int) bool {
return i%2 == 1

}

//go:noinline
func IsOddNoInline(i int) bool {

return i%2 == 1
}

func BenchmarkCountOddInline(b *testing.B) {
for n := 0; n < b.N; n++ {

sum := 0
for i := 1; i < 1000; i++ {

if IsOdd(i) {
sum += i

}

INLINING 151

}
}

}

func BenchmarkCountOddNoinline(b *testing.B) {
for n := 0; n < b.N; n++ {

sum := 0
for i := 1; i < 1000; i++ {

if IsOddNoInline(i) {
sum += i

}
}

}
}

func main() {
res1 := testing.Benchmark(BenchmarkCountOddInline)
fmt.Println("BenchmarkCountOddInline", res1)
res2 := testing.Benchmark(BenchmarkCountOddNoinline)
fmt.Println("BenchmarkCountOddNoinline", res2)

}

In Go, the flag -gcflags=-m tells the compiler to report the main opti-
mizations it does. If you call this program simpleinline.go and compile
it with the command go build -gcflags=-m simpleinline.go, you
may see the following:

$ go build -gcflags=-m simpleinline.go
./simpleinline.go:8:6: can inline IsOdd
./simpleinline.go:21:12: inlining call to IsOdd
...

If you run the benchmark, you should see that the inlined version is much
faster:

$ go run simpleinline.go

152 CHAPTER 6

BenchmarkCountOddInline 3716786 294.6 ns/op
BenchmarkCountOddNoinline 1388792 864.8 ns/op

Inlining is not always beneficial: in some instances, it can generate large
binaries and it may even slow down the software. Modern CPU has usually
have a separate cache for code, but its size is limited and cache misses
might negate the benefits of inlining. However, when it is applicable,
inlining can have a large beneficial effect.

Go tries as hard as possible to inline functions, but it has limitations. For
example, compilers often find it difficult to inline recursive functions. Let
benchmark two factorial functions, one that is recursive, and one that is
not.
package main

import (
"fmt"
"testing"

)

var array = make([]int, 1000)

func Factorial(n int) int {
if n < 0 {

return 0
}
if n == 0 {

return 1
}
return n * Factorial(n-1)

}

func FactorialLoop(n int) int {
result := 1
for i := 1; i <= n; i++ {

INLINING 153

result *= i
}
return result

}

func BenchmarkFillNoinline(b *testing.B) {
for n := 0; n < b.N; n++ {

for i := 1; i < 1000; i++ {
array[i] = Factorial(i)

}
}

}

func BenchmarkFillInline(b *testing.B) {
for n := 0; n < b.N; n++ {

for i := 1; i < 1000; i++ {
array[i] = FactorialLoop(i)

}
}

}

func main() {
res1 := testing.Benchmark(BenchmarkFillNoinline)
fmt.Println("BenchmarkFillNoinline", res1)
res2 := testing.Benchmark(BenchmarkFillInline)
fmt.Println("BenchmarkFillInline", res2)
fmt.Println(float64(res1.NsPerOp())

/ float64(res2.NsPerOp()))
}

Though both FactorialLoop and Factorial are equivalent, run-
ning this program, you should find that the non-recursive function
(FactorialLoop) is much faster. A possible output of this program

154 CHAPTER 6

is as follows. In this instance, the non-recursive function is more than
three times faster.

BenchmarkFillNoinline 1165 1040019 ns/op
BenchmarkFillInline 3808 304275 ns/op

Hardware prefetchers
Loading data from memory often takes several nanoseconds. While the
processor waits for the data, it may be forced to wait without perform-
ing useful work. Hardware prefetchers in modern processors anticipate
memory accesses by loading data into the cache before it is requested,
thereby optimizing performance. Their effectiveness varies depending
on the access pattern: sequential reads benefit from efficient prefetching,
unlike random accesses.

To test the impact of prefetchers, we propose a Go program that uses
a single array access function, with an index array configured for either
sequential or random accesses. The execution time is measured to compare
performance. The following program initializes a large array and performs
accesses using an index array, either sequential or random, with repeated
measurements for greater reliability.
package main

import (
"fmt"
"math/rand"
"time"

)

const (
arraySize = 1 << 26
runs = 10

)

HARDWARE PREFETCHERS 155

func access(arr []int32, indices []int) int64 {
var sum int64
for _, i := range indices {

sum += int64(arr[indices[i]])
}
return sum

}

func main() {
arr := make([]int32, arraySize)
for i := range arr {

arr[i] = int32(i)
}

sequentialIndices := make([]int, arraySize)
for i := range sequentialIndices {

sequentialIndices[i] = i
}

randomIndices := make([]int, arraySize)
for i := range randomIndices {

randomIndices[i] = i
}
rand.Shuffle(len(randomIndices), func(i, j int) {

randomIndices[i], randomIndices[j]
= randomIndices[j], randomIndices[i]

})

sequentialTimes := make([]float64, runs)
for i := 0; i < runs; i++ {

start := time.Now()
_ = access(arr, sequentialIndices)
sequentialTimes[i] = time.Since(start).Seconds() * 1000

}

156 CHAPTER 6

randomTimes := make([]float64, runs)
for i := 0; i < runs; i++ {

start := time.Now()
_ = access(arr, randomIndices)
randomTimes[i] = time.Since(start).Seconds() * 1000

}

var seqMin, seqMax, seqAvg, randMin,
randMax, randAvg float64

for i := 0; i < runs; i++ {
if i == 0 || sequentialTimes[i] < seqMin {

seqMin = sequentialTimes[i]
}
if i == 0 || sequentialTimes[i] > seqMax {

seqMax = sequentialTimes[i]
}
seqAvg += sequentialTimes[i]
if i == 0 || randomTimes[i] < randMin {

randMin = randomTimes[i]
}
if i == 0 || randomTimes[i] > randMax {

randMax = randomTimes[i]
}
randAvg += randomTimes[i]

}
seqAvg /= runs
randAvg /= runs

fmt.Printf("Seq (ms) : min=%.2f, max=%.2f, mean=%.2f\n",
seqMin, seqMax, seqAvg)

fmt.Printf("Alea (ms) : min=%.2f, max=%.2f, mean=%.2f\n",
randMin, randMax, randAvg)

}

CACHE LINE 157

This program uses a single access function taking an array of indices,
configured to be either sequential or random. Sequential accesses should
be faster due to hardware prefetchers, while random accesses, being
less predictable, will be slower. Execution times are measured over 10
iterations, displaying the minimum, maximum, and average values in
milliseconds. Results depend on the processor architecture and cache
characteristics. Here is a possible result.

Seq (ms): min=15.80, max=41.84, mean=18.86
Random (ms): min=219.73, max=225.37, mean=222.56

In this case, we observe that the sequential access approach is approxi-
mately ten times faster than the random access approach.

Cache line
Our computers read and write memory using small blocks of memory
called “cache lines”. The cache line size is usually fixed and small (e.g.,
64 or 128 bytes). To attempt to measure the cache-line size, we may use
a strided copy. From a large array, we copy every N bytes to another
large array. We repeat this process N times. Thus if the original array
contains a 1000 bytes, we always copy 1024 bytes, whether r N = 1,
N = 2, N = 4, or N = 8.

When N is sufficiently large (say N = 16), the problem should be
essentially memory bound: the performance is not limited by the number
of instructions, but by the system’s ability to load and store cache lines.
If N is larger than twice the cache line, then we can effectively skip one
cache line out of two. You expect a large stride to be significant faster
because you skip many cache lines. If N is smaller than the cache line,
then every cache line must be accessed. Thus if N is smaller than the
cache line, then speed should not be sensitive to the exact value of N .

One limitation to this approach is that processors may fetch more cache
lines than needed so we may overestimate the size of the cache line.

158 CHAPTER 6

However, unless memory bandwidth is overly abundant, we should expect
processors to try to limit the number of cache lines fetched.

Let us run an experiment. For each stride size, we repeat 10 times
and record the maximum, the minimum and the average. Consider the
following program.
package main

import (
"fmt"
"time"

)

const size = 33554432 // 32 MB
func Cpy(arr1 []uint8, arr2 []uint8, slice int) {

for i := 0; i < len(arr1); i += slice {
arr2[i] = arr1[i]

}
}

func AverageMinMax(f func() float64) (float64, float64,
float64) {

var sum float64
var minimum float64
var maximum float64

for i := 0; i < 10; i++ {
arr1 = make([]uint8, size)
arr2 = make([]uint8, size)

v := f()
sum += v
if i == 0 || v < minimum {

minimum = v
}

CACHE LINE 159

if i == 0 || v > maximum {
maximum = v

}
}
return sum / 10, minimum, maximum

}

var arr1 []uint8
var arr2 []uint8

func run(size int, slice int) float64 {
start := time.Now()
times := 10
for i := 0; i < times*slice; i++ {

Cpy(arr1, arr2, slice)
}
end := time.Now()
dur := float64(end.Sub(start)) / float64(times*slice)
return dur

}

func main() {
for slice := 16; slice <= 4096; slice *= 2 {

a, m, M := AverageMinMax(
func() float64 { return run(size, slice-1) })

fmt.Printf("%10d: %10.1f GB/s [%4.1f - %4.1f]\n",
slice-1, float64(size)/a,

float64(size)/M, float64(size)/m)
}

}

We may get the following result:

$ go run cacheline.go 1
15: 23.6 GB/s [21.3 - 24.4]

160 CHAPTER 6

31: 24.3 GB/s [23.8 - 24.5]
63: 24.2 GB/s [23.6 - 24.6]
127: 26.9 GB/s [23.8 - 27.9]
255: 40.8 GB/s [37.8 - 43.6]
511: 162.0 GB/s [130.4 - 203.4]

1023: 710.0 GB/s [652.0 - 744.4]
2047: 976.1 GB/s [967.1 - 983.8]
4095: 1247.4 GB/s [1147.7 - 1267.0]

We see that the performance increases substantially when the stride goes
from 127 to 255. It suggests that the cache line has 128 bytes. If you run
this same benchmark on your own system, you may get a different result.

The results need to be interpreted with care: we are not measuring a
copy speed of 1247.4 GB/s. Rather, we can copy large arrays at such a
speed if we only copy one byte out of every 4095 bytes.

CPU cache
When programming, we often do not think directly about memory. When
we do consider that our data uses memory, we often think of it as
homogeneous: memory is like a large uniform canvas upon which the
computer writes and reads it data. However, your main memory (RAM)
is typically buffered using a small amount of memory that resides close
to the processor core (CPU cache). We often have several layers of cache
memory (e.g., L1, L2, L3): L1 is is typically small but very fast whereas,
for example, L3 is larger but slower.

You can empirically measure the effect of the cache. If you take a small
array and shuffle it randomly, will be moving data primarily in the CPU
cache, which is fast. If you take a larger array, you will move data in
memory without much help from the cache, a process that is much slower.
Thus shuffling ever larger arrays is a way to determine the size of your
cache. It may prove difficult to tell exactly how many layers of cache you
have and how large each layer is. However, you can usually tell when
your array is significantly larger than the CPU cache.

CPU CACHE 161

We are going to write a random shuffle function: Shuffle(arr
[]uint32). It uses an algorithm called Fisher-Yates shuffle, which in-
volves going through the array in reverse and swapping each element with
another randomly chosen from those preceding it. The function uses a
seed variable to generate random numbers from a mathematical formula.
For our purposes, we use a simplistic number generator: we multiply the
seed by the index. The function bits.Mul64 calculates the product of two
64-bit numbers and returns the result as two 32-bit numbers: the most
significant (hi) and the least significant. The most significant value is
necessarily between 0 and i (inclusively). We use this most significant
value as the random index. The function then exchanges the elements
using multiple assignment. We call this shuffle function several times, on
inputs of different sizes. We report the time normalized by the size of
the input.
package main

import (
"fmt"
"math/bits"
"time"

)

func Shuffle(arr []uint32) {
seed := uint64(1234)
for i := len(arr) - 1; i > 0; i-- {

seed += 0x9E3779B97F4A7C15
hi, _ := bits.Mul64(seed, uint64(i+1))
j := int(hi)
arr[i], arr[j] = arr[j], arr[i]

}
}

func AverageMinMax(f func() float64) (float64, float64,
float64) {

162 CHAPTER 6

var sum float64
var minimum float64
var maximum float64

for i := 0; i < 10; i++ {
v := f()
sum += v
if i == 0 || v < minimum {

minimum = v
}
if i == 0 || v > maximum {

maximum = v
}

}
return sum / 10, minimum, maximum

}

func run(size int) float64 {
arr := make([]uint32, size)

for i := range arr {
arr[i] = uint32(i + 1)

}
start := time.Now()
end := time.Now()
times := 0
for ; end.Sub(start) < 100_000_000; times++ {

Shuffle(arr)
end = time.Now()

}
dur := float64(end.Sub(start)) / float64(times)
return dur / float64(size)

}

CPU CACHE 163

func main() {
for size := 4096; size <= 33554432; size *= 2 {

fmt.Printf("%20d KB ", size/1024*4)
a, m, M :=

AverageMinMax(func() float64 { return run(size) })
fmt.Printf(" %.2f [%.2f, %.2f]\n", a, m, M)

}
}

A possible output of running this program might be:

$ go run cache.go
16 KB 0.70 [0.66, 0.93]
32 KB 0.65 [0.64, 0.66]
64 KB 0.64 [0.64, 0.66]

128 KB 0.64 [0.64, 0.67]
256 KB 0.65 [0.64, 0.66]
512 KB 0.70 [0.70, 0.71]

1024 KB 0.77 [0.76, 0.79]
2048 KB 0.83 [0.82, 0.84]
4096 KB 0.87 [0.86, 0.90]
8192 KB 0.92 [0.91, 0.95]
16384 KB 1.10 [1.06, 1.24]
32768 KB 2.34 [2.28, 2.52]
65536 KB 3.90 [3.70, 4.25]

131072 KB 5.66 [4.80, 9.78]

We see between 16 KB and 16384 KB, the time per element shuffle
does not increase much even though we repeatedly double the input size.
However, between 16384 KB and 32768 KB, the time per element doubles.
And then it consistently doubles each time the size of the array doubles.
It suggests that the size of the CPU cache is about 16384 KB in this
instance.

164 CHAPTER 6

Memory bandwidth
You can only read and write memory up to a maximal speed. It can
be difficult to measure such limits. In particular, you may need several
cores in a multi-core system to achieve the best possible memory. For
simplicity, let us consider maximal read memory.

Many large systems do not have a single bandwidth number. For example,
many large systems rely on NUMA: NUMA stands for Non-Uniform
Memory Access. In a NUMA system, each processor has its own local
memory, which it can access faster than the memory of other processors.

The bandwidth also depends to some extend on the amount of memory
requested. If the memory fits in CPU cache, only the first access may
be expensive. A very large memory region may not fit in RAM and may
require disk storage. Even if it fits in RAM, an overly large memory
region might require many memory pages, and accessing all of them may
cause page walking due to the limits of the translation lookaside buffer.

If the memory is accessed at random locations, it might be difficult for
the system to sustain a maximal bandwidth because the system cannot
predict easily where the next memory load occurs. To get the best
bandwidth, you may want to access the memory linearly or according to
some predictable pattern.

Let us consider the following code:
package main

import (
"fmt"
"time"

)

func run() float64 {
bestbandwidth := 0.0
arr := make([]uint8, 2*1024*1024*1024) // 4 GB

MEMORY BANDWIDTH 165

for i := 0; i < len(arr); i++ {
arr[i] = 1

}
for t := 0; t < 20; t++ {

start := time.Now()
acc := 0
for i := 0; i < len(arr); i += 64 {

acc += int(arr[i])
}
end := time.Now()
if acc != len(arr)/64 {

panic("!!!")
}
bandwidth := float64(len(arr))
/ end.Sub(start).Seconds() / 1024 / 1024 / 1024
if bandwidth > bestbandwidth {

bestbandwidth = bandwidth
}

}
return bestbandwidth

}

func main() {
for i := 0; i < 10; i++ {

fmt.Printf(" %.2f GB/s\n", run())
}

}

The code defines two functions: run and main. The main function is
the entry point for the program, and it calls the run function 10 times,
printing the result each time. The run function is a custom function
that measures the memory bandwidth of the system. It does this by
performing the following steps:

166 CHAPTER 6

It declares a variable called bestbandwidth and initializes it to 0.0. This
variable stores the highest bandwidth value obtained during the execution
of the function. It creates a slice of bytes (uint8) called arr, with a length
equivalent to 4 GB. The slice is initialized with 1s. The loop will only
access every 64th element of the slice, skipping the rest. Given that most
systems have a cache-line size of 64 bytes or more, it is enough to touch
each cache line. It calculates the bandwidth by dividing the size of the
slice (in bytes) by the difference between the end and start times (in
seconds), and then dividing by 1024 three times to convert the result
to gigabytes per second (GB/s). The code repeats the measurement 20
times and returns the best result, to account for possible variations in
the system performance. The code prints the result 10 times, to show
the consistency of the measurement.

Memory latency and parallelism
Latency is often described as the time delay between the beginning of
a request and the moment when you are served. Thus if you go to a
restaurant, the latency you might be interested in is the time it will take
before you can start eating. The latency is distinct from the throughput:
a restaurant might be able to serve hundreds of customers at once, but
still have high latency (long delays for each customer). If you put a lot of
data on a very large disk, you can put this disk in a truck and drive the
truck between two cites. It could represent a large bandwidth (much data
is moved per unit of time), but the latency could be quite poor (hours).
Similarly, you could shine a laser at your partner when supper is ready:
the information could arrive without much delay even if you are very far
away, but you are communicating little information (low throughput).
One way to express this trade-off between latency and throughput is with
Little’s Law: L = λW where L is the average number of elements in
the system, λ is the throughput (long-term average arrival rate of new
elements), and W is the latency, or the average amount of time that
elements spend waiting. Thus if you want to have L customers at all
times in your restaurant, and fewer customers arrive, you should serve the

MEMORY LATENCY AND PARALLELISM 167

customers with greater delays. And so forth. Little’s law work with our
memory subsystems as well: computers can sustain a maximum number
of memory requests, each memory request has a latency, and there is
an overall bandwidth. If latency does not improve, we can still improve
bandwidth or throughput by increasing the number of requests that can
be sustained concurrently. Unfortunately, system designers are often
forced to make this choice, and so it is not common to see stagnant or
worsening memory latencies despite fast improving memory bandwidths.
A common illustration of the concept of memory latency is the traversal
of a linked list. In computer science, a linked list is a data structure
made of nodes, and each node is linked (by a pointer) to the next node.
The nodes may not be laid out in memory consecutively, but even if
they are, accessing each successive node requires a at least a small delay.
On current processors, it can often take at least 3 cycles to load data
from memory, even if the memory is in cache. Thus determining the
length of the list by traversing the whole linked list can take time, and
most of this time is just made of the successive delays. The following
code benchmarks the time required to traverse a linked list made of a
million nodes. Though the time varies depending on your system, it may
represent a sizeable fraction of a millisecond.
package main

import (
"fmt"
"testing"

)

type Node struct {
data int
next *Node

}

func build(volume int) *Node {
var head *Node

168 CHAPTER 6

for i := 0; i < volume; i++ {
head = &Node{i, head}

}
return head

}

var list *Node
var N int

func BenchmarkLen(b *testing.B) {
for n := 0; n < b.N; n++ {

len := 0
for p := list; p != nil; p = p.next {

len++
}
if len != N {

b.Fatalf("invalid length: %d", len)
}

}
}

func main() {
N = 1000000
list = build(N)
res := testing.Benchmark(BenchmarkLen)
fmt.Println("milliseconds: ",

float64(res.NsPerOp())/1e6)

fmt.Println("nanoseconds per el.",
float64(res.NsPerOp())/float64(N))

}

In this code, a Node struct is defined with two fields: data is an integer
representing the value stored in the node, next is a pointer to the next

MEMORY LATENCY AND PARALLELISM 169

node in the linked list. We could also add a pointer to the previous
node, but that is not necessary in our case. The build function creates
a singly linked list of nodes from an integer volume as an argument. It
initializes an empty linked list (head is initially nil). It iterates from 0
to volume-1, creating a new node with value i and pointing its next to
the current head. The new node becomes the new head. The function
returns the final head of the linked list. The main function initializes
two global variables (list and N) storing respectively the head of the list
and the expected length. These values are used by the BenchmarkLen
function. This code demonstrates how to create a linked list, calculate its
length, and benchmark the performance of the length calculation. Our
length computation is almost entirely bounded (limited) by the memory
latency, the time it takes to access the memory. The computations
that we are doing (comparisons, increments) are unimportant to the
performance. To illustrate our observation, we can try traversing two
linked lists simultaneously, as in this example:
package main

import (
"fmt"
"testing"

)

type Node struct {
data int
next *Node

}

func build(volume int) *Node {
var head *Node
for i := 0; i < volume; i++ {

head = &Node{i, head}
}
return head

170 CHAPTER 6

}

var list1 *Node
var list2 *Node

var N int

func BenchmarkLen(b *testing.B) {
for n := 0; n < b.N; n++ {

len := 0
for p1, p2 := list1, list2;
p1 != nil && p2 != nil; p1, p2 = p1.next, p2.next {

len++
}
if len != N {

b.Fatalf("invalid length: %d", len)
}

}
}

func main() {
N = 1000000
list1 = build(N)
list2 = build(N)

res := testing.Benchmark(BenchmarkLen)
fmt.Println("milliseconds: ",

float64(res.NsPerOp())/1e6)

fmt.Println("nanoseconds per el.",
float64(res.NsPerOp())/float64(N))

}

MEMORY LATENCY AND PARALLELISM 171

If you run this new code, you might find that the benchmark results are
close to the single-list ones. It is not surprising: the processor is mostly
just waiting for the next node, and waiting for two nodes is not much
more expensive. For this reason, when programming, you should limit
memory accesses as much as possible. Use simple arrays when you can
instead of linked lists or node-based tree structures. We would would like
to work with arbitrarily large data structures, so that we can stress the
memory access outside of the cache. Sattolo’s algorithm is a variant of the
well-known random shuffle that generates a random cyclic permutation
of an array or list. Sattolo’s algorithm ensures that the data is permuted
using a single cycle. That is, starting with one element in a list of size
n, we find that this element is moved to another position, which is itself
moved to another position, and so forth, until after n moves, we end up
back at our initial position. To apply Sattolo’s algorithm, given an array
or list of elements, we start with an index i from 0 to n-1, where n is
the length of the array. For each index i, we choose a random index j
such that i < j < n. We swap the elements at indices i and j. E.g.,
suppose we have an array [0, 1, 2, 3, 4]. The algorithm might produce a
cyclic permutation like [2, 0, 3, 1, 4]. With this algorithm, we can visit all
values in an array exactly once in random order. From an array contain
indexes 0 to n-1 permuted with Sattolo’s algorithm, we first load the first
element, read its value, move to the corresponding index, and so forth.
After n operation, we should come back at the initial position. Because
each operation involves a memory load, it is limited by memory latency.
We can try to go faster with memory-level parallelism: we can pick k
positions spread out in the cycle and move from these k initial positions
n/k times through the cycle. Because computers can load many values in
parallel, this algorithm should be faster for larger values of k. However,
as k increases, we may see fewer and fewer gains because systems have
limited memory-level parallelism and bandwidth.The following program
implements this idea.
package main

import (

172 CHAPTER 6

"fmt"
"math/rand"
"time"

)

func makeCycle(length int) ([]uint64, []uint64) {
array := make([]uint64, length)
index := make([]uint64, length)
// Create a cycle of maximum length
// within the big array
for i := 0; i < length; i++ {

array[i] = uint64(i)
}

// Sattolo shuffle
for i := 0; i+1 < length; i++ {

swapIdx := rand.Intn(length-i-1) + i + 1
array[i], array[swapIdx] = array[swapIdx], array[i]

}

total := 0
cur := uint64(0)
for cur != 0 {

index[total] = cur
total++
cur = array[cur]

}
return array, index

}

// setupPointers sets up pointers
// based on the given index
func setupPointers(index []uint64, length,

mlp int) []uint64 {

MEMORY LATENCY AND PARALLELISM 173

sp := make([]uint64, mlp)
sp[0] = 0

totalInc := 0
for m := 1; m < mlp; m++ {

totalInc += length / mlp
sp[m] = index[totalInc]

}
return sp

}

func runBench(array []uint64,
index []uint64, mlp int) time.Duration {

length := len(array)
sp := setupPointers(index, length, mlp)
hits := length / mlp
before := time.Now()
for i := 0; i < hits; i++ {

for m := 0; m < mlp; m++ {
sp[m] = array[sp[m]]

}
}
after := time.Now()
return after.Sub(before)

}

func main() {
const length = 100000000
array, index := makeCycle(length)
fmt.Println("Length:", length*8/1024/1024, "MB")
base := runBench(array, index, 1)
fmt.Println("Lanes:", 1, "Time:", base)

for mlp := 2; mlp <= 40; mlp++ {

174 CHAPTER 6

t := runBench(array, index, mlp)
fmt.Println("Lanes:", mlp,
"Speedup:",

fmt.Sprintf("%.1f", float64(base)/float64(t)))
}

}

The function makeCycle creates a cycle of a specified length starting at
element 0. It initializes two slices: array and index, both of type []uint64.
The array slice represents the elements in the cycle. The index slice stores
the indices of the elements in the cycle, so that we can more easily access
a position in the cycle. The function performs the following steps. It
initializes array with values from 0 to length-1. It applies Sattolo’s shuffle
algorithm to the array to create a random permutation. The function
returns both array and index. The function setupPointers: the function
calculates the increment value (totalInc) based on the length and the
number of lanes (mlp). It assigns the indices from index to sp based
on the calculated increments. The function runBench benchmarks the
execution time for a given number of lanes (mlp). It initializes a slice
sp using setupPointers. The function iterates through the pointers in
sp and updates them by following the indices in array. It measures the
execution time and returns it as a time.Duration instance. The main
function first computes the running time for 1 lane, and then it reports
the gains when using multiple lanes. Overall, this code generates a cycle
of specified length, sets up pointers, and benchmarks the execution time
for different numbers of lanes. The primary purpose seems to be exploring
parallelization using multiple lanes. The runBench function simulates
parallel execution by updating pointers concurrently. The speedup is
calculated by comparing the execution time for different numbers of lanes.
The larger the speedup, the more efficient the memory-level parallel
execution. The general principle is that you can often improve the
performance of a system that faces high latencies by breaking the data
dependencies. Instead of putting all your data in a long chain, try to

SUPERSCALARITY AND DATA DEPENDENCY 175

break to have no chain at all or, if you must have chains, use several
smaller chains.

Superscalarity and data dependency
Most current processors are superscalar (as opposed to ‘scalar’), meaning
that they can execute and retire several instructions per CPU cycles.
That is, even if you have a single CPU core, there is much parallelism
involved. Some processors can retire 8 instructions per cycle or more.
Not all code routines benefit equally from superscalar execution. Several
factors can limit your processors to few instructions per cycle. Having to
wait on memory accesses is one such factor. Another common factor is
data dependency: when the next instruction depends on the result of a
preceding instruction, it may have to wait before it starts executing. To
illustrate consider functions that compute successive differences between
elements of an array (e.g., given 5,7,6, you might get the initial value
5 followed by 2 and -1), and the reverse operation which sums up all
the differences to recover the original value. You may implement these
functions as such:
func successiveDifferences(arr []int) {

base := arr[0]
for i := 1; i < len(arr); i++ {

base, arr[i] = arr[i], arr[i]-base
}

}

func prefixSum(arr []int) {
for i := 1; i < len(arr); i++ {

arr[i] = arr[i] + arr[i-1]
}

}

Assuming that the compiler does not optimize these functions in a non-
trivial manner (e.g., using SIMD instructions), we can reason relatively

176 CHAPTER 6

simply about the performance. For the successive differences, we need
approximately one subtraction per element in the array. For the prefix
sum, you need approximately one addition per element in the array. It
looks quite similar at a glance. However, the data dependency is different.
To compute the difference between any two values in the array, you do
not need to have computed the preceding differences. However, the prefix
sum, as we implemented it, requires us to have computed all preceding
sums before the next can be computed. Let us write a small benchmarking
program to test the performance difference:
package main

import (
"fmt"
"math/rand"
"testing"

)

func successiveDifferences(arr []int) {
base := arr[0]
for i := 1; i < len(arr); i++ {

base, arr[i] = arr[i], arr[i]-base
}

}

func prefixSum(arr []int) {
for i := 1; i < len(arr); i++ {

arr[i] = arr[i] + arr[i-1]
}

}

var array []int

func BenchmarkPrefixSum(b *testing.B) {
for n := 0; n < b.N; n++ {

SUPERSCALARITY AND DATA DEPENDENCY 177

prefixSum(array)
}

}

func BenchmarkSuccessiveDifferences(b *testing.B) {
for n := 0; n < b.N; n++ {

successiveDifferences(array)
}

}

func main() {
array = make([]int, 100)
for i := range array {

array[i] = rand.Int()
}
res2 :=

testing.Benchmark(BenchmarkSuccessiveDifferences)
fmt.Println("BenchmarkSuccessiveDifferences", res2)
res1 := testing.Benchmark(BenchmarkPrefixSum)
fmt.Println("BenchmarkPrefixSum", res1)

}

Your result will vary depending on your system. However, you should
not be surprised if the prefix sum takes more time. On an Apple system,
we go the following results:

BenchmarkSuccessiveDifferences 39742334 30.04 ns/op
BenchmarkPrefixSum 8307944 142.8 ns/op

The prefix sum can be several times slower, even though it appears at a
glance that it should use a comparable number of instructions.

Let us consider another example. We can compute the greatest common
divisor between two integers using the Euclidean algorithm. A reasonable
implementation in Go is as follows:

178 CHAPTER 6

func gcd(a, b uint) uint {
for b != 0 {

quotient := a / b
a, b = b, a-quotient*b

}
return a

}

There is an extension of this algorithm which computes not only the
greatest common divisor, but also the Bézout coefficients. That is, given
two integers a and b, we wish to find integers s and t such that a * s + b
* t = gcd(a,b): s and t are called Bézout coefficients. One application
of Bézout coefficients is in the computation of a multiplicative inverse:
suppose that a and b are such that gcd(a,b)=1 then we have that s is the
multiplicative inverse of a modulo b: (a * s) % b = 1. The extended
algorithm is quite similar to the regular Euclidean algorithm:
func extended_gcd(a, b uint) (uint, uint, uint) {

s1, s2 := uint(1), uint(0)
t1, t2 := uint(0), uint(1)
for b != 0 {

quotient := a / b
a, b = b, a-quotient*b
s1, s2 = s2, s1-quotient*s2
t1, t2 = t2, t1-quotient*t2

}
return a, s1, t1

}

This function returns the greatest common divisor as the first returned
value and then the two Bézout coefficients. It would at first glance that
the extended Euclidean algorithm is about three times slower than the
regular Euclidean algorithm. It does seem to do three times as much
computation. We can write a small benchmark to test this hypothesis:

SUPERSCALARITY AND DATA DEPENDENCY 179

package main

import (
"fmt"
"testing"

)

//go:noinline
func gcd(a, b uint) uint {

for b != 0 {
quotient := a / b
a, b = b, a-quotient*b

}
return a

}

//go:noinline
func extended_gcd(a, b uint) (uint, uint, uint) {

s1, s2 := uint(1), uint(0)
t1, t2 := uint(0), uint(1)
for b != 0 {

quotient := a / b
a, b = b, a-quotient*b
s1, s2 = s2, s1-quotient*s2
t1, t2 = t2, t1-quotient*t2

}
return a, s1, t1

}

var count uint

func BenchmarkGCD(b *testing.B) {
for n := 0; n < b.N; n++ {

for i := uint(0); i < 10000; i++ {

180 CHAPTER 6

count += gcd(i+3111, i+1777)
}

}
}

func BenchmarkEGCD(b *testing.B) {
for n := 0; n < b.N; n++ {

for i := uint(0); i < 10000; i++ {
g, _, _ := extended_gcd(i+3111, i+1777)
count += g

}
}

}

func main() {
res1 := testing.Benchmark(BenchmarkGCD)
fmt.Println("GCD", res1)
res2 := testing.Benchmark(BenchmarkEGCD)
fmt.Println("EGCD", res2)

}

Observe that we ask Go not to inline the functions: these are relatively
simple functions and inlining could trigger optimizations that make our
analysis complicated. If you run this benchmark, you are likely to find
though the extended Euclidean algorithm might be slower, the difference
can be small. When we ran this benchmark, we found that the extended
Euclidean algorithm was about 35% slower. It is quite a small difference
compared to one’s expectation that it might be three times slower.

GCD 12838 91481 ns/op
EGCD 8866 124004 ns/op

In general, you cannot trust a hasty analysis. Just because two functions
appear to do a similar amount of work, does not mean that they have the
same performance. Similarly, a function that appears to do more work

BRANCH PREDICTION 181

may not be much slower. Several factors must be taken into account,
including data dependencies.

Branch prediction
In part because the processors are multiscalar, they have been designed
to execute speculatively: when facing a branch, the processor tries to
guess the direction that will be taken, and it begins the computation
optimistically. When the processor makes the correct prediction, it usually
improves the performance, sometimes by a large amount. However, when
the processor is unable to predict accurately the branch, branch prediction
may become a net negative. Indeed, when the branch is mispredicted, the
processor may have to restart the computation from the point where it
made the wrong prediction, an expensive process that can waste several
CPU cycles. To illustrate, let us first consider a function that copies the
content of an slice into another slice of the same size:
func Copy(dest []uint, arr []uint) {

if len(dest) < len(arr) {
panic("dest is too small")

}
for i, v := range arr {

dest[i] = v
}

}

A more sophisticated function may copy only the odd elements:
func CopyOdd(dest []uint, arr []uint) {

if len(dest) < len(arr) {
panic("dest is too small")

}
for i, v := range arr {

if v&1 == 1 {
dest[i] = v

182 CHAPTER 6

}
}

}

We may try to copy an array that contains random integers (both odd and
even), only odd integers, or only even integers. The following program
illustrates:
package main

import (
"fmt"
"math/rand"
"testing"

)

func Copy(dest []uint, arr []uint) {
if len(dest) < len(arr) {

panic("dest is too small")
}
for i, v := range arr {

dest[i] = v
}

}

func CopyOdd(dest []uint, arr []uint) {
if len(dest) < len(arr) {

panic("dest is too small")
}
for i, v := range arr {

if v&1 == 1 {
dest[i] = v

}
}

}

BRANCH PREDICTION 183

var array []uint
var dest []uint

func BenchmarkCopyOdd(b *testing.B) {
for n := 0; n < b.N; n++ {

CopyOdd(dest, array)
}

}

func BenchmarkCopy(b *testing.B) {
for n := 0; n < b.N; n++ {

Copy(dest, array)
}

}

func main() {
array = make([]uint, 10000)
dest = make([]uint, len(array))

for i := range array {
array[i] = uint(rand.Uint32())

}
res0 := testing.Benchmark(BenchmarkCopy)
fmt.Println("BenchmarkCopy (random)", res0)
res1 := testing.Benchmark(BenchmarkCopyOdd)
fmt.Println("BenchmarkCopyOdd (random)", res1)
for i := range array {

array[i] = uint(rand.Uint32()) | 1
}
res2 := testing.Benchmark(BenchmarkCopyOdd)
fmt.Println("BenchmarkCopyOdd (odd data)", res2)
for i := range array {

array[i] = uint(rand.Uint32()) &ˆ 1
}

184 CHAPTER 6

res3 := testing.Benchmark(BenchmarkCopyOdd)
fmt.Println("BenchmarkCopyOdd (even data)", res3)

}

On an Apple system, we got the following results:

BenchmarkCopy (random) 414158 2936 ns/op
BenchmarkCopyOdd (random) 55408 19518 ns/op
BenchmarkCopyOdd (odd data) 402670 2975 ns/op
BenchmarkCopyOdd (even data) 402738 2896 ns/op

The last three timings involve the same function, only the input data
differs. We find that all timings are similar in this case, except for
benchmark that copies random data: it is several times slower in our tests.
The much longer running time is due to the presence of an unpredictable
branch in our inner loop. Observe that the same function, subject to the
same volume of data, can have vastly different performance characteristics,
even though the computational complexity of the function does not change:
in all instances, we have linear time complexity. If we expect our data to
lead to poor branch prediction, we may reduce the number of branches in
the code. The resulting code might be nearly branch free or branchless.
For example, we can use an arithmetic and logical expression to replace
a condition copy:
func CopyOddBranchless(dest []uint, arr []uint) {

if len(dest) < len(arr) {
panic("dest is too small")

}
for i, v := range arr {

dest[i] ˆ= uint(-(v & 1)) & (v ˆ dest[i])
}

}

Let us review the complicated expression:

• v & 1: This operation checks if the least significant bit of v is set
(i.e., if v is odd).

BRANCH PREDICTION 185

• -(v & 1): This negates the result of the previous operation. If v
is odd, this becomes -1; otherwise, it becomes 0. However, -1 as an
unsigned integer is becomes the maximal value, the one with all of
the bits set to 1.

• v ˆ dest[i]: This XORs the value of v with the corresponding
element in the dest slice.

• uint(-(v & 1)) & (v ˆ dest[i]): If v is odd, it returns the
XOR of v with dest[i]; otherwise, it returns 0.

• Finally, dest[i] ˆ= uint(-(v & 1)) & (v ˆ dest[i]) leaves
dest[i] unchanged if v is even, otherwise it replaces with v using
the fact that dest[i] ˆ (v ˆ dest[i]) == v.

We can put this function to good use in a benchmark:
package main

import (
"fmt"
"math/rand"
"testing"

)

func CopyOdd(dest []uint, arr []uint) {
if len(dest) < len(arr) {

panic("dest is too small")
}
for i, v := range arr {

if v&1 == 1 {
dest[i] = v

}
}

}

func CopyOddBranchless(dest []uint, arr []uint) {
if len(dest) < len(arr) {

panic("dest is too small")

186 CHAPTER 6

}
for i, v := range arr {

dest[i] ˆ= uint(-(v & 1)) & (v ˆ dest[i])
}

}

var array []uint
var dest []uint

func BenchmarkCopyOdd(b *testing.B) {
for n := 0; n < b.N; n++ {

CopyOdd(dest, array)
}

}

func BenchmarkCopyOddBranchless(b *testing.B) {
for n := 0; n < b.N; n++ {

CopyOddBranchless(dest, array)
}

}
func main() {

array = make([]uint, 10000)
dest = make([]uint, len(array))
for i := range array {

array[i] = uint(rand.Uint32())
}
res1 := testing.Benchmark(BenchmarkCopyOdd)
fmt.Println("BenchmarkCopyOdd (random)", res1)
res2 := testing.Benchmark(BenchmarkCopyOddBranchless)
fmt.Println("BenchmarkCopyOddBranchless (random)", res2)

}

On an Apple system, we got:

BenchmarkCopyOdd (random) 60782 19254 ns/op

EXERCISES FOR CHAPTER 6 187

BenchmarkCopyOddBranchless (random) 166863 7124 ns/op

In this test, the branchless approach is much faster. We should stress that
it is not always the case that branchless code is faster. In fact, we observe
that in our overall test results, the branchless function is significantly
slower than the original when the results are predictable (e.g., 2896 ns/op
vs 7124 ns/op). In actual software, you should try to recognize where
you have poorly predicted branches and act in these cases to see if a
branchless approach might be faster. Thankfully, most branches are well
predicted in practice in most projects.

Exercises for Chapter 6

Question 1
Write a program that allocates a slice containing b bytes, for b ranging
from 10,000,000 to 10,000,100. Your program should estimate the memory
usage of a newly allocated slice of b bytes.

Question 2
Modify your program from the previous question to try to determine the
size of a memory page using runtime.MemStats.HeapInuse.

Question 3
Write a program that computes the length of k different linked lists for
an arbitrary integer k > 0.

188 CHAPTER 6

Chapter 7

A data structure in programming is a specific way of organizing and
storing data in a computer so that it can be accessed and used efficiently.

In woodworking or metalworking, a jig holds a piece of work and guides
the tools operating on it. It helps to produce consistent results. The
simplest jig is probably a straight edge. For example, a straight metal
bar can help you cut wood following a straight line. Another simple jig
is the mitre box which helps us cut wood at fixed angles.

Data structures can be thought of as jigs for programmers. Much like
how a jig guides the tool to make precise cuts or shapes, data structures
in programming provide a framework for organizing and accessing data.
Just as a jig guides the tool, data structures guide how data should
be stored, accessed, and manipulated. Data structures help us ensure
that operations on the data are performed in a predictable and efficient
manner.

Conventional computer science courses often introduce a wide range of
data structures: linked lists, red-black trees, and so forth. Yet, in practice,
the overwhelming majority of programming problems can be solved using
little more than arrays, the standard composite type (struct), and the
occasional hash table. The analogy with the woodworking jig still holds:
the most popular woodworking jigs are so simple that we often even
forget that they are an actual tool.

189

190 CHAPTER 7

Arrays
Some data structures are particularly useful due to their simplicity and
efficiency. The simplest data structure is the array. Arrays are fixed-size
collections of elements. E.g., in Go you can declare an array of 5 integers
like so:
var myArray [5]int

Typically arrays are stored in a contiguous manner in memory. Thus
arrays are ideal if you need to traverse all of the elements as quickly
as possible: you access the memory in a predictable manner with little
overhead. Accessing any given element in an array typically just involves
taking the index and converting it to a memory address. It may require
only a few inexpensive operations.

Generally speaking, arrays generate fast code in part because compilers
find it easy to optimize the functions. For example, in Go, array accesses
are typically subject to a bound checker: Go would prevent access to an
array at index 10 if the array size is 5. However, the compiler can often
optimize away such checks. For example, consider the following function
where we sum the five elements in an array. It should compile to efficient
code with hardly any overhead (e.g., bound checking).
func Sum(x [5]int) int {

sum := 0
for i := 0; i < 5; i++ {

sum += x[i]
}
return sum

}

An array can contain different values (including arrays!). It is even
possible to store Boolean values (true/false) in an array although in such
cases, at least a byte per element is required. You may replace an array
with a bitset in such cases. You may implement a bitset over an array as
follows (using 128 bits as an example).

ARRAYS 191

// BitSet represents a fixed-size bitset
type BitSet struct {

bytes [16]byte
}

// Set sets the bit at 'index' to 1
func (bs *BitSet) Set(index int) {

bs.bytes[index/8] |= 1 << uint(7-(index%8))
}

// Clear sets the bit at 'index' to 0
func (bs *BitSet) Clear(index int) {

bs.bytes[index/8] &ˆ= 1 << uint(7-(index%8))
}

// Get returns the value of the bit at 'index'
func (bs *BitSet) Get(index int) bool {

return bs.bytes[index/8]&(1<<uint(7-(index%8))) != 0
}

A natural extension of the array is the multidimensional array. Even
though the Go language supports natively multidimensional arrays, we
can still implement them from scratch using a standard array. Typically,
we use a row-major implementation. For example, we can implement a
simple 3x3 matrix using a 9-element array. The first three elements of
the array represent the first row, the next three elements represent the
second row, and so forth.
// Matrix represents a 3x3 matrix
type Matrix struct {

data [9]float64
}

// Set sets the value
func (m *Matrix) Set(i, j int, val float64) {

192 CHAPTER 7

if i < 0 || i > 2 || j < 0 || j > 2 {
panic("Index out of bounds for a 3x3 matrix")

}
m.data[i*3+j] = val

}

// Get returns the value
func (m *Matrix) Get(i, j int) float64 {

if i < 0 || i > 2 || j < 0 || j > 2 {
panic("Index out of bounds for a 3x3 matrix")

}
return m.data[i*3+j]

}

func (m *Matrix) String() string {
var str string
for i := 0; i < 3; i++ {

for j := 0; j < 3; j++ {
str += fmt.Sprintf("%6.2f ", m.Get(i, j))

}
str += "\n"

}
return str

}

Go, like many programming languages, allows you to create efficient
composite data structures (struct). In particular, you can put arrays
inside these data structures. Suppose, for example, that we want to
represent points in space, we might do it as follows:
type Point struct {

x float64
y float64

}

DYNAMIC ARRAYS AND SLICES 193

We can put these points inside an array of ten elements:
var list [10]Point

This pattern is often called an array of structs. We can also represent
the same data using a struct of arrays:
type Points struct {

x [10]float64
y [10]float64

}

While both the array of structs and the struct of arrays can contain the
same information, they have different performance characteristics. For
example, if you needed to sum the x values, the struct of arrays might
lead to faster code.

Dynamic arrays and slices
A slightly more sophisticated data structure is the dynamic array. A
dynamic array is an array that can grow or shrink in size. In Go, they
are implemented as slices. They are one of the most fundamental data
structures in Go.
var mySlice []int
mySlice = append(mySlice, 1, 2, 3)

You access arrays by integer indexes. E.g., you access an array of size 3
with the indexes 0, 1, 2. Each index gives you access to a value. Thus
the array constitutes a key-value data structure where the keys are the
indexes.

Because the size of the slice is dynamic, Go provides a function to query
it: len (length). E.g., len(mySlice) might be 3.

In Go, you can have several slices share the same underlying array. We
use the operator [begin:end] to create a new slice from an existing slice.
Importantly, this operation does not copy the underlying data.

194 CHAPTER 7

In the following example, the second slice will be of length 1 and contain
the second element of the first slice.
var mySlice []int
mySlice = append(mySlice, 1, 2, 3)
secondSlice := mySlice[1:2]

Go provides some shorthand notations. Instead of writing
mySlice[2:len(mySlice)], you may write mySlice[2:] and in-
stead of writing mySlice[0:1], you may write mySlice[:1]. To create
a copy of the slice, you may simply write mySlice[:].

Slices share many of the same characteristics as arrays. For example,
we can write functions that take slices as parameters and compile into
similarly efficient code, such as this example where we sum the first 5
elements of the slice:
func Sum(x []int) int {

sum := 0
if len(x) < 5 {
return -1
}

for i := 0; i < 5; i++ {
sum += x[i]

}
return sum

}

In fact, dynamic arrays, that is, slices, are typically implemented as a thin
wrapper over an array. The slice points at a region inside an array. When
we shrink or extend the region pointed at by the slice, the underlying
array may remain the same.

Typically, the underlying array has more storage capacity than the length
of the slice. You may query the size of the underlying array with the cap
(capacity) function. It may seem wasteful to have more capacity than
needed. However, consider the case where we regularly add elements to a

DYNAMIC ARRAYS AND SLICES 195

given slice, and the size of the underlying array is set to match exactly
the length of the slice. In such a case, each addition (append) to the slice
might require allocating a new array and copying the elements. Counting
only the copies of elements, we get that we need 1+2+3+4+ ...+n−1 =
(n − 1)n/2 copies to populate a slice with n values. Instead, we typically
grow the size of the underlying array using exponential steps. For example,
whenever the capacity becomes insufficient, we could allocate memory to
the next power of two: we allocate 16 elements of capacity if we need 7
elements, we allocate 1024 elements if we need 600 elements, and so forth.
We can verify that with such a strategy, if we need to repeatedly add an
element to a slice, we will never need more than 2n copies to create a
slice with n values: 2n is much smaller than (n − 1)n/2 when n is large.
By default, Go does not recover excess capacity when making the slice
smaller (e.g., s = s[:newlength]). However, you can use the extended
syntax s[low:high:max] to tell Go to reduce the size of the underlying
array to max-low. E.g., s = s[::len(s)] would create a copy of the
slice while adjusting the underlying capacity to len(s).

The following program will add elements to a slice and prints the capacity
(size of the underlying array) and length of the slice at each increment.
At the end of the program, we show that we can shrink the slice with or
without adjusting the capacity.
package main

import "fmt"

func main() {
var mySlice []int
for i := 0; i < 100; i++ {

mySlice = append(mySlice, 1)
fmt.Println(cap(mySlice), " : ", len(mySlice))

}
mySlice = mySlice[:10]
fmt.Println(cap(mySlice), " : ", len(mySlice))
mySlice = mySlice[:10:10]

196 CHAPTER 7

fmt.Println(cap(mySlice), " : ", len(mySlice))
}

The following is a possible output:

1 : 1
2 : 2
4 : 3
4 : 4
8 : 5
8 : 6
8 : 7
8 : 8
16 : 9
...
128 : 99
128 : 100
128 : 10
10 : 10
9 : 2

Sometimes it is convenient to store the data in sorted order within an
array. We can then use the array as an efficient set data structure even
if the array is large. When searching for a value, we may use a binary
search. The algorithm is relatively straight-forward: given the value that
we are looking for, we first compare it against the value in the middle,
that is, the median value. If the value we are searching for is greater than
the median value, we search in the later half of the array, otherwise we
search in the early half of the array. We repeat the division recursively
until we either find the value that we are looking for, or we determine
that the value cannot be found. We need about log2(N) iterations to
complete the search over an array of size N , and the logarithmic function
grows very slowly (e.g., log2(106) ≈ 20).
func Search(n int, array []int) (int, bool) {

low, high := 0, len(array)-1

DYNAMIC ARRAYS AND SLICES 197

for low <= high {
mid := (low + high) / 2
if array[mid] == n {

return mid, true
} else if array[mid] < n {

low = mid + 1
} else {

high = mid - 1
}

}
return -1, false

}

Sometimes we only want to be able to access the smallest or largest value.
Suppose for example that you have a stream of requests that you need
to process, and you always want to pick next the request that has been
waiting the longest. You could repeatedly scan the array, or repeatedly
sort it. However, if you constantly append and remove data from the
array, it could become expensive. Instead, we can order the values in
the array according to a binary heap. The root of the heap is stored at
index 0, and it is either the smallest or the largest value depending on
the type of heap you need. So we either have a max-heap or a min-heap.
Within the array, the values are then organized as a tree. For any node
at index i, its left child is at 2 ∗ i + 1 and its right child is at 2 ∗ i + 2. At
the end of the array, some node may only have a left child, while others
may have no child. If we have a max-heap, each node must be no smaller
than its children. If we have a min-heap, each node must be no greater
than its children. Operations like insertion and deletion are performed by
manipulating elements in the array while maintaining the heap property.
To insert a new value, you place the new element at the array’s end. It
then becomes the child of an existing node if the array was not empty: if
you put it at index i, then you can compute the index of the parent as
the integer (i − 1)/2. You then permute it with its parent to preserve the
heap property (e.g., if we have a max-heap, each node must be no smaller

198 CHAPTER 7

than its children). You may then need to check against the parent once
more and so forth until you get to the top of the heap. The following
function modifies a slice according to this algorithm using the max-heap
property.
func Insert(heap *[]int, value int) {

// Append the new value to the end of the heap
*heap = append(*heap, value)
heapSize := len(*heap)

// Start with the last element's index
i := heapSize - 1

for i > 0 {
parent := (i - 1) / 2

if (*heap)[i] > (*heap)[parent] {
// Swap the elements
(*heap)[i], (*heap)[parent]

= (*heap)[parent], (*heap)[i]

// Move up to the parent's index
i = parent

} else {
break

}
}

}

When removing the top element, you replace it with the last element and
then propagate this element downward by swapping it with the larger
(or smaller) child if it violates the heap property. We may implement it
as follows for a max-heap:
func RemoveTop(heap *[]int) int {

if len(*heap) == 0 {

DYNAMIC ARRAYS AND SLICES 199

return 0
}

// Store the root value to return later
top := (*heap)[0]

// Replace the root with the last element
heapSize := len(*heap)
(*heap)[0] = (*heap)[heapSize-1]
*heap = (*heap)[:heapSize-1]

// Start heapifying down from the root
i := 0
for {

// Calculate indices of children
leftChild := 2*i + 1
rightChild := 2*i + 2
largest := i

// Check left child
if leftChild < len(*heap) && (*heap)[leftChild] >

(*heap)[largest] {
largest = leftChild

}

// Check right child
if rightChild < len(*heap) && (*heap)[rightChild] >

(*heap)[largest] {
largest = rightChild

}

if largest != i {
(*heap)[i],

(*heap)[largest] = (*heap)[largest],

200 CHAPTER 7

(*heap)[i]
i = largest

} else {
// If largest is the root, we are done
break

}
}

return top
}

Thus with only two relatively simple functions, we can maintain a binary
heap. These functions require at most ⌈log2 N⌉ comparisons where N is
the number of elements in the array. Interestingly, a binary heap provides
a sensible algorithm to sort an array sometimes called a heapsort: insert
all elements in a binary heap, and then repeatedly remove the top value.
The result is a O(N log N) algorithm.

Just like we can implement a bitset over an array, we can implement a
dynamic bitset over a dynamic array. The approach is much the same,
but the array is replaced by a slice. Importantly, we need to check for
the need to extend the bitset. When the need arises, we grow the bitset
by allocating a larger array and copying our existing data. Observe that
we choose to grow the slice by twice the amount needed: this prevents
degenerate cases where the user might access the bits one by one (0, 1,
. . .), leading to repeated copies and allocations.
type BitSet struct {

bytes []byte
}

func (bs *BitSet) ensureCapacity(index int) {
requiredBytes := (index + 1 + 7) / 8
if len(bs.bytes) < requiredBytes {

// Grow the slice if necessary

HASH TABLES AND MAPS 201

newBytes := make([]byte, requiredBytes*2)
copy(newBytes, bs.bytes)
bs.bytes = newBytes

}
}

// Set sets the bit at 'index' to 1
func (bs *BitSet) Set(index int) {

bs.ensureCapacity(index)
bs.bytes[index/8] |= 1 << uint(7-(index%8))

}

// Clear sets the bit at 'index' to 0
func (bs *BitSet) Clear(index int) {

bs.ensureCapacity(index)
bs.bytes[index/8] &ˆ= 1 << uint(7-(index%8))

}

// Get returns the value of the bit at 'index'
func (bs *BitSet) Get(index int) bool {

bs.ensureCapacity(index)
return bs.bytes[index/8]&(1<<uint(7-(index%8))) != 0

}

Hash tables and maps

It is common that you need a data structure where you can access values
using either non sequential integers (e.g., 10, 1000, 100000), or other types
of values such as a string. E.g., maybe you want a map from names to
phone numbers. In computer science, a map (also known as a dictionary
or associative array) is a function from keys to values, such that given a
key, you can efficiently get the value.

202 CHAPTER 7

One of the most useful data structures is the hash table. Hash tables
build on top of arrays, but instead of using consecutive integer values as
indexes, they can take nearly any type of values (e.g., string) as keys.

The essential trick of the hash table is to use a hash function which maps
arbitrary keys to integer values. The integer values are used as indexes
inside an array. The array is typically picked to be of a size comparable
to the number of distinct keys. Thus a hash table is a generalization
of the array, but one where you replace the simple accesses with a hash
function. A hash function takes a key and converts it into an index of
the hash table array.

We typically hope that the hash function distributes keys evenly across
the array to minimize collisions. When two keys are mapped to the
same index inside the array, we must resolve the issue. One possibility
is to create a larger array. But this would cause the arrays to grow too
quickly in practice. Thus we must handle collisions efficiently. There
are two broad strategies. One possibility is to have the ability to store
several key-value pairs in each element of the array. It is often called a
bucket approach. Another possibility is to store colliding key-value pairs
elsewhere: e.g., you can store it to the next available slot in the array.

Many hash table implementations exist with varying properties. Go
provides a built-in map type that implements a hash table. E.g., to create
a map from strings to integers, we might proceed as follows:
myMap := make(map[string]int)
myMap["key"] = 10

Go uses a bucket approach: each element in the array can store several
values. Each bucket in Go’s map implementation contains multiple key-
value pairs. The exact number of pairs per bucket can vary, but it’s
designed to handle a small number of entries efficiently. E.g., for example,
we could use this type of data structure with slices:
type bucket struct {

keys []string // Keys

HASH TABLES AND MAPS 203

values []int // Values
}

When two keys hash to the same index, they are placed in the same
bucket.

When looking up a key, we compute the hash of the key, use the hash to
find the correct bucket, check each entry in the bucket for a matching
key. As long as the buckets are small enough, the performance is going
to be acceptable.

We often compute the number of keys stored in the hash table and divide
it by the size of the array. The result is called the load factor. When
there are too many keys compared to the size of the underlying array, the
array is grown, and the hash table is reconstructed. This will typically
reduce the average size of the buckets. Similarly, we can reduce the size
of the array if there are too few keys left.

Let us consider a complete example:
package main

import (
"errors"
"fmt"

)

type Bucket struct {
keys []string
values []int

}

func (b *Bucket) Add(key string, value int) {
b.keys = append(b.keys, key)
b.values = append(b.values, value)

}

204 CHAPTER 7

func (b *Bucket) Find(key string) (int, error) {
for i := 0; i < len(b.keys); i++ {

if key == b.keys[i] {
return b.values[i], nil

}
}
return 0, errors.New("Not found")

}

type HashTable struct {
array []Bucket

}

func NewHashTable(size int) *HashTable {
return &HashTable{

make([]Bucket, size),
}

}

func (ht *HashTable) hash(key string) int {
// A very simple hash function
hash := 0
for i := 0; i < len(key); i++ {

hash += 31 * int(key[i])
}
return hash % len(ht.array)

}

func (ht *HashTable) Get(key string) (int, error) {
return ht.array[ht.hash(key)].Find(key)

}

func (ht *HashTable) Set(key string, value int) error {
_, e := ht.Get(key)

HASH TABLES AND MAPS 205

if e == nil {
return errors.New("Key already present")

}
ht.array[ht.hash(key)].Add(key, value)
return nil

}

func main() {
ht := NewHashTable(10)
ht.Set("apple", 1)
ht.Set("banana", 3)
fmt.Println(ht.Get("apple")) // Should print 1

}

Our example is simplified. However, it illustrates the basic principles of
how hash tables work.

The approach we described, with buckets, is relatively simple to imple-
ment, but it may not always offer the best performance because of the
overhead of maintaining buckets as separate dynamic arrays. Instead,
we may consider a variation where we have one key-value per slot in the
array. This alternative model is sometimes called open addressing. When
two keys hash to the same slot, we can move one of the key-value pairs
to another available slot, or increase the size of the underlying array. At
query time, we begin by searching for the key-value according to the hash
value of the key. If another key-value is found, we visit the next slot,
until either we find the value we are looking for, or an empty slot is found.
As long as we keep the underlying array large enough so that a sizeable
fraction of slots are empty, the performance will be acceptable.

The following code illustrates the main idea behind open addressing, with
the exception that the underlying array does not grow as more values
are added. To add this functionality, we should track the number of
keys added, and grow the array as needed. As a sentinel to indicate an
available slot, we use the empty key. In practice, we would need to add

206 CHAPTER 7

additional checks to make sure that the user does not try to add a key
with an empty string, and to handle the scenario appropriately.
type Item struct {

key string
value int

}

type HashTable struct {
items []Item
emptyValue Item

}

func NewHashTable(size int) *HashTable {
ht := &HashTable{

items: make([]Item, size),
emptyValue: Item{key: "", value: -1},

}
// Initialize all slots with emptyValue
for i := 0; i < size; i++ {

ht.items[i] = ht.emptyValue
}
return ht

}

func hash(key string) int {
// A very simple hash function
hash := 0
for i := 0; i < len(key); i++ {

hash += 31 * int(key[i])
}
return hash

}

// Put adds a key-value pair to the hash table

HASH TABLES AND MAPS 207

func (ht *HashTable) Put(key string, value int) {
hashValue := hash(key) % len(ht.items)
for {

if ht.items[hashValue] == ht.emptyValue {
ht.items[hashValue] = Item{key: key, value: value}
return

}
if ht.items[hashValue].key == key {

ht.items[hashValue].value = value
return

}
// Linear probing to find next available slot
hashValue = (hashValue + 1) % len(ht.items)

}
}

func (ht *HashTable) Get(key string) (int, bool) {
hashValue := hash(key) % len(ht.items)
for i := 0; i < len(ht.items); i++ {

if ht.items[hashValue].key == key {
return ht.items[hashValue].value, true

}
if ht.items[hashValue] == ht.emptyValue {

return -1, false // key not found
}
hashValue = (hashValue + 1) % len(ht.items)

}
return -1, false // key not found after full cycle

}

There are many alternatives that could be even faster than open addressing
in some instances, such as Cuckoo hashing. In practice, programmers
rarely implement their own hash tables, but they should be aware that
there are different implementations with various advantages.

208 CHAPTER 7

A hash table that only has keys can be used to implement a set data
structure. That is, we do not always need to have values. A straight-
forward variation worth considering is to allow keys to be mapped to
several different values. This variation is sometimes called a multimap.

Conclusion
Though there are countless data structures in computer science, much can
be achieved with arrays, and a few simple functions. When organizing
your data, you should first try to use arrays. In some cases, a hash table
might be needed if you have a set or a map. It should cover the vast
majority of your data structures.

To illustrate the idea, consider JSON. JSON (JavaScript Object Notation)
is a standard text-based data interchange format that is commonly used to
exchange data online. It has primitive values (strings, numbers, Booleans,
the null value) and composite types (arrays and objects). Objects are
maps from strings to primitive values or to other composite types (arrays
and objects). We represent objects as comma-separated key-value pairs
within curly braces {}, using the colon as a separator between the key and
the value. We use square brackets [] for arrays, separating values with
commas. Consider the following example representing a list of employees.
{

"employees":[
{
"name":"Richard",
"salary":56000,
"function":"CEO"

},
{
"name":"Lisa",
"salary":55000,
"function":"accountant"

}

EXERCISES FOR CHAPTER 7 209

]
}

Empirically, JSON is found to be sufficient to represent most data, despite
its simplicity. A key insight is that by combining arrays and maps, with a
few standard types for numbers and strings, you can solve most problems.

In some cases, specialized data structures can provide superior perfor-
mance. Yet you should be mindful that it is often easier to optimize code
when the underlying data structure is simpler.

Exercises for Chapter 7

Question 1
Implement from scratch an Insert and RemoveTop function for a min-
heap of strings.

Question 2
We know how to implement a binary search. It divides up the sorted arrays
in two at each iteration, after a single comparison. We can generalize
the binary search to a k-ary search where, at each iteration, we divide
the array into k sections. How many comparisons do we need to make at
each iteration?

Question 3
Write a function in Go which finds, given a positive integer n, the smallest
power of two that is at least as large as n.

210 CHAPTER 7

Chapter 8

In practice, the software we write runs on several processors. Unfortu-
nately, much of what we take for granted on a single processor becomes
false when there are more than one processor. For example, if two proces-
sors modify the same piece of memory, what is the state of the memory
after the modifications? It is difficult to tell in general. It is possible
that the modification of one processor could overwrite any modification
done by the other processor. The reverse could be true: the modification
done by the other processor could win out. Or, maybe both processors
will attempt the modification and the result will be a confused state that
corresponds to nothing we would like to see. We call such accesses a
‘data race’: a situation where two or more processors in a program access
the same memory location simultaneously, and at least one of those ac-
cesses is a write operation, without proper synchronization. It gets more
difficult when you want two or more processors to meaningfully modify
the same memory. For example, suppose that you have a variable that
counts the number of products sold. Maybe you have different processors
incrementing this one variable.

Threads and goroutines
A thread is the smallest unit of execution within a process that can
be scheduled and run independently by a computer’s operating system.
It represents a single sequence of instructions that the CPU executes,
allowing a program to perform multiple tasks concurrently within the

211

212 CHAPTER 8

same process. A thread exists within a larger entity called a process, which
is essentially a running program with its own memory space, resources,
and state. A process can contain one or more threads, all sharing the same
memory and resources (like open files or global variables) allocated to
that process. There is a limit to how many threads a program can manage
efficiently. To enable even more parallelism, the Go programming language
has its own concept of a thread called a goroutine. While a goroutine
is not a thread in the traditional sense, it maps to conventional threads
under the hood. The Go runtime uses a scheduler to map many goroutines
onto a smaller number of threads. These threads are the actual threads
recognized by the operating system—kernel-level entities with their own
stack and execution context, as described in general computing. A single
thread in Go can execute multiple goroutines by switching between
them efficiently. This makes goroutines much cheaper than OS threads—
creating thousands or even millions of goroutines is practical, whereas
spawning that many threads would exhaust system resources due to their
larger memory footprint. In some sense, Go blurs the distinction between
concurrency and parallelism. Concurrency is about managing multiple
tasks so they can make progress independently. Parallelism, however,
involves executing multiple tasks simultaneously across multiple resources.
While concurrency focuses on software design for task coordination and
can work with or without multiple cores, parallelism relies on hardware
to achieve true simultaneous execution, and the two can combine when a
concurrent system leverages parallel resources for efficiency.

To start a goroutine, you only need to type the keyword ‘go’ followed by
a function:
go func() {

fmt.Println("Canada")
}()

This spawns a goroutine, but the Go runtime decides which thread it runs
on, potentially sharing that thread with other goroutines. Unfortunately,
a program made of only this goroutine could be disappointing:

THREADS AND GOROUTINES 213

package main

import (
"fmt"

)

func main() {
go func() {

fmt.Println("Canada")
}()

}

The problem is that the main function might end before the goroutine can
terminate. In Go, goroutines run concurrently (at the same time), and
the main function (which is the main goroutine) does not automatically
wait for other goroutines to complete. If the main goroutine exits, the
program terminates, potentially before other goroutines finish. To ensure
a goroutine terminates before the program ends, the simplest approach is
to synchronize the main goroutine with the spawned goroutine using a
mechanism like a channel or a WaitGroup. In Go, a channel is a built-in
construct that provides a way for goroutines (concurrent functions) to
communicate with each other and synchronize their execution. A channel
has a type and it is created with the make function:
ch := make(chan int) // A channel that carries integers

The keyword chan is the keyword for declaring a channel. The type after
chan (e.g., int) defines what kind of data the channel can transport.

We use the <- operator to send a value into a channel.
ch <- 42 // Send the value 42 into the channel

We use the <- operator to receive a value from a channel.
value := <-ch // Receive a value from
// the channel and store it in 'value'

214 CHAPTER 8

We use the close function to indicate no more data will be sent: close(ch).
Sending to a closed channel causes a panic. The following program would
print ‘Canada’:
package main

import "fmt"

func main() {
ch := make(chan string) // Create a channel for strings

go func() {
ch <- "Canada" // Send a message to the channel
}()

msg := <-ch // Receive the message in the main goroutine
fmt.Println(msg)

}

The following program illustrates how we might use a channel to wait for
a goroutine to terminate:
package main

import (
"fmt"

)

func main() {
channel := make(chan bool)

go func() {
fmt.Println("Canada")
channel <- true // Signal that the goroutine is done

}()

THREADS AND GOROUTINES 215

<-channel // Wait for the goroutine
}

The goroutine sends a value (true) to the channel when it finishes. The
main function blocks at <-done, waiting to receive from the channel,
ensuring it does not exit until the goroutine completes. By default a
channel is unbuffered: it can contain at most one value. So if you try to
write to it more than one value, it will block until at least one value is
read.
ch := make(chan int, 2)
ch <- 1 // Does not block (buffer has space)
ch <- 2 // Does not block (buffer is now full)
ch <- 3 // Blocks until a value is received

In Go, you can pass multiple channels to a function just like any other
arguments. Channels are first-class values in Go, meaning they can be
passed as parameters, returned from functions, or stored in variables.
When passing several channels to a function, you simply include them in
the function’s parameter list, specifying their types. Let us consider an
example where we access two URLs:
package main

import (
"fmt"
"net/http"
"time"

)

type Response struct {
url string
status string
err error

}

216 CHAPTER 8

func fetchURL(url string, ch chan Response) {
// Create HTTP client with timeout
client := &http.Client{

Timeout: 10 * time.Second,
}

// Make HTTP GET request
resp, err := client.Get(url)
if err != nil {

ch <- Response{url, "", err}
return

}
defer resp.Body.Close()

ch <- Response{url, resp.Status, nil}
}

func main() {
// Record start time
startTime := time.Now()
// Create channel for responses
ch := make(chan Response)

// URLs to fetch
urls := []string{

"https://www.google.com",
"https://www.github.com",

}

// Start goroutines for each URL
for _, url := range urls {

go fetchURL(url, ch)
}

THREADS AND GOROUTINES 217

// Collect responses
for i := 0; i < len(urls); i++ {

resp := <-ch
if resp.err != nil {

fmt.Printf("Error fetching %s: %v\n",
resp.url, resp.err)

} else {
fmt.Printf("Successfully fetched %s: %s\n",

resp.url, resp.status)
}

}

// Close the channel (optional since program ends here)
close(ch)

// Calculate and print elapsed time
elapsed := time.Since(startTime)

fmt.Printf("\nTotal time taken: %s\n", elapsed)
}

This program defines a Response struct to hold the URL, its status, and
any error that occurred. It implements a fetchURL function that takes a
URL and a channel as parameters, uses an HTTP client with a 10-second
timeout, makes a GET request to the URL, sends the result through
the channel. It uses defer to ensure the response body is closed. In this
instance, the channel can be written to or read from in the function: to
ensure that it can only be written to, we could declare it as ch chan<-
Response instead as ch chan Response when passing it. In the main
function, we create a channel to receive responses, we define two URLs to
fetch, we launch a goroutine for each URL, we collect responses from the
channel and we print the results. When we run this program, it will fetch
both URLs simultaneously using separate goroutines, it will use channels
to communicate results back to the main goroutine, and it will print the

218 CHAPTER 8

status (like “200 OK”) or any errors for each URL. We can rewrite this
program so that it is simpler, without goroutines, like so:
package main

import (
"fmt"
"net/http"
"time"

)

type Response struct {
url string
status string
err error

}

func fetchURLSynchro(url string) Response {
// Create HTTP client with timeout
client := &http.Client{

Timeout: 10 * time.Second,
}

// Make HTTP GET request
resp, err := client.Get(url)
if err != nil {

return Response{url, "", err}
}
defer resp.Body.Close()

return Response{url, resp.Status, nil}
}

func main() {
// URLs to fetch

THREADS AND GOROUTINES 219

urls := []string{
"https://www.google.com",
"https://www.github.com",

}
startTime := time.Now()

for i := 0; i < len(urls); i++ {
resp := fetchURLSynchro(urls[i])
if resp.err != nil {

fmt.Printf("Error fetching %s: %v\n",
resp.url, resp.err)

} else {
fmt.Printf("Successfully fetched %s: %s\n",

resp.url, resp.status)
}

}
elapsed := time.Since(startTime)
fmt.Printf("\nTotal time taken: %s\n", elapsed)

}

The two programs do the same work, but one uses two goroutines (in
addition to the main goroutine) while the other uses only the main
goroutine. Testing these programs, you may find that the one using two
goroutines completes faster: network accesses are typically expensive
and easily parallelizable. That is, the two tasks can be done almost
independently on your computer, even if executed simultaneously. Hence,
you may find that we can query two URLs using HTTP requests in 250
ms whereas 400 ms is needed if the requests are consecutive, using a single
goroutine. However, you should not assume that using more goroutines
always makes software run faster. It often does not. Furthermore,
additional goroutines might trigger the use of additional processors which
increases the cost or power usage of your software. Adding more goroutines
makes your software more complicated, more difficult to maintain and
debug. Formally speaking, you do not need parallelism (i.e., many physical

220 CHAPTER 8

processors) to execute two network requests concurrently. Executing such
requests does not require much processing time and has much to do with
waiting for the network response. Therefore, it is a case where using
goroutines is likely appropriate. When splitting up more computational
tasks into goroutines, you are less certain to get a performance boost.
To illustrate the point, let us consider the case where we are summing
all values in an array. We consider two cases, first a small array (100k
elements) and then a large array with millions of elements. For both
cases, we can either use a simple function (with one goroutine) or a
function that uses multiple goroutines. To maximize parallelism, we set
the number of goroutines to the number of processors detected on the
system by Go (runtime.NumCPU()).
package main

import (
"fmt"
"runtime"
"testing"

)

// sequentialSum calculates the sum
// of an array sequentially
func sequentialSum(numbers []int) int {

sum := 0
for _, n := range numbers {

sum += n
}
return sum

}

func goroutineSumWithChannels(numbers []int) int {
numGoroutines := runtime.NumCPU()
chunkSize := (len(numbers) + numGoroutines - 1)

/ numGoroutines

THREADS AND GOROUTINES 221

resultChan := make(chan int, numGoroutines)
activeGoroutines := 0
for i := 0; i < numGoroutines; i++ {

start := i * chunkSize
end := start + chunkSize
if end > len(numbers) {

end = len(numbers)
}
if start >= end {

break
}

go func(slice []int) {
partialSum := 0
for _, n := range slice {

partialSum += n
}
resultChan <- partialSum

}(numbers[start:end])
activeGoroutines++

}

// Collect partial sums from the channel
total := 0
for i := 0; i < activeGoroutines; i++ {

total += <-resultChan
}
close(resultChan)

return total
}

// Benchmark functions
func BenchmarkSequentialSum(b *testing.B) {

222 CHAPTER 8

numbers := make([]int, 100000)
for i := range numbers {

numbers[i] = i
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

sequentialSum(numbers)
}

}

func BenchmarkGoroutineSumWithChannels(b *testing.B) {
numbers := make([]int, 100000)
for i := range numbers {

numbers[i] = i
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

goroutineSumWithChannels(numbers)
}

}

// Benchmark functions
func BenchmarkSequentialSumLarge(b *testing.B) {

numbers := make([]int, 10000000)
for i := range numbers {

numbers[i] = i
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

sequentialSum(numbers)
}

THREADS AND GOROUTINES 223

}

func BenchmarkGoroutineSumWithChannelsLarge(b *testing.B) {
numbers := make([]int, 10000000)
for i := range numbers {

numbers[i] = i
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

goroutineSumWithChannels(numbers)
}

}

func main() {
fmt.Println("Number of CPU cores: ", runtime.NumCPU())

res :=
testing.Benchmark(BenchmarkGoroutineSumWithChannels)
fmt.Println("BenchmarkGoroutineSumWithChannels", res)
ress := testing.Benchmark(BenchmarkSequentialSum)
fmt.Println("BenchmarkSequentialSum", ress)

resl :=
testing.Benchmark(BenchmarkGoroutineSumWithChannelsLarge)
fmt.Println("BenchmarkGoroutineSumWithChannelsLarge",
resl)
ressl := testing.Benchmark(BenchmarkSequentialSumLarge)
fmt.Println("BenchmarkSequentialSumLarge", ressl)

}

On a system with a large number of processors, we might get the following
result:

Number of CPU cores: 128

224 CHAPTER 8

BenchmarkGoroutineSumWithChannels 4048 258798 ns/op
BenchmarkSequentialSum 23756 50516 ns/op
BenchmarkGoroutineSumWithChannelsLarge 744

1414114 ns/op
BenchmarkSequentialSumLarge 237 5030224 ns/op

We see that when summing up the modest array, we get that the approach
using 128 goroutines takes five times longer. If it does end up using 128
processors, then it might be 128 * 5 = 640 times less efficient! The
lesson is that if the task is sufficiently inexpensive, such as summing up
thousands of integers, you should not use more than one goroutine. In
the instance where we are summing 10 million integers, the parallelized
task is more interesting: it goes 3.6 times faster. Again, the single-routine
approach is likely much more efficient: a single processor takes 3.6 longer
than over one hundred goroutine. The problem with a simple sum is that
it is driven by memory accesses and not especially computational. What
if we consider a more expensive task? Let us sum the sine of the values
of an array using various numbers of goroutines (1, 2, . . .). We use one
million values in the array.
package main

import (
"fmt"
"math"
"runtime"
"testing"

)

func computeSineSum(numbers []int) float64 {
sum := 0.0
for _, n := range numbers {

sum += math.Sin(float64(n))
}
return sum

}

THREADS AND GOROUTINES 225

func computeSineSumWithGoroutines(numbers []int,
numGoroutines int) float64 {

chunkSize := (len(numbers) + numGoroutines - 1)
/ numGoroutines

resultChan := make(chan float64, numGoroutines)

for i := 0; i < numGoroutines; i++ {
start := i * chunkSize
end := start + chunkSize
if end > len(numbers) {

end = len(numbers)
}
if start >= end {

break
}

go func(slice []int) {
partialSum := 0.0
for _, n := range slice {

partialSum += math.Sin(float64(n))
}
resultChan <- partialSum

}(numbers[start:end])
}

// Collect results
total := 0.0
activeGoroutines := (len(numbers) + chunkSize - 1)

/ chunkSize
for i := 0; i < activeGoroutines; i++ {

total += <-resultChan
}
close(resultChan)
return total

226 CHAPTER 8

}

// Benchmarks
func BenchmarkSequential(b *testing.B) {

numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000 // Keep numbers manageable
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSum(numbers)
}

}

func Benchmark1Goroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSumWithGoroutines(numbers, 1)
}

}

func Benchmark2Goroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

b.ResetTimer()

THREADS AND GOROUTINES 227

for i := 0; i < b.N; i++ {
computeSineSumWithGoroutines(numbers, 2)

}
}

func Benchmark4Goroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSumWithGoroutines(numbers, 4)
}

}

func Benchmark8Goroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSumWithGoroutines(numbers, 8)
}

}

func Benchmark16Goroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

228 CHAPTER 8

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSumWithGoroutines(numbers, 16)
}

}

func BenchmarkMaxGoroutines(b *testing.B) {
numbers := make([]int, 1000000)
for i := range numbers {

numbers[i] = i % 1000
}

b.ResetTimer()
for i := 0; i < b.N; i++ {

computeSineSumWithGoroutines(numbers,
runtime.NumCPU())

}
}

func main() {

fmt.Printf("CPU cores: %d\n", runtime.NumCPU())
res1 := testing.Benchmark(BenchmarkSequential)
fmt.Println("BenchmarkSequential", res1)
res11 := testing.Benchmark(Benchmark1Goroutines)
fmt.Println("Benchmark1Goroutines", res11)
res2 := testing.Benchmark(Benchmark2Goroutines)
fmt.Println("Benchmark2Goroutines", res2)
res4 := testing.Benchmark(Benchmark4Goroutines)
fmt.Println("Benchmark4Goroutines", res4)
res8 := testing.Benchmark(Benchmark8Goroutines)
fmt.Println("Benchmark8Goroutines", res8)
res16 := testing.Benchmark(Benchmark16Goroutines)
fmt.Println("Benchmark16Goroutines", res16)

THREADS AND GOROUTINES 229

resmax := testing.Benchmark(BenchmarkMaxGoroutines)
fmt.Println("BenchmarkMaxGoroutines", resmax)

}

On a powerful machine with many cores, we might get the following
results:

CPU cores: 128
Benchmark1Goroutines 114 13701908 ns/op
Benchmark2Goroutines 134 8913817 ns/op
Benchmark4Goroutines 253 4648170 ns/op
Benchmark8Goroutines 472 2272842 ns/op
Benchmark16Goroutines 835 1227975 ns/op
BenchmarkMaxGoroutines 916 1189217 ns/op

Going from one goroutine to two improves the speed by a factor of 1.5.
Going from one goroutine to 16 goroutines improves the speed by a factor
of 11. Increasing the number of goroutines beyond 16 brings no further
gain. This pattern is sublinear gains with an upper limit is rather typical.

Yet goroutines and channels can be remarkably efficient in their own right.
Let us create a chain of channels. Each goroutine has an input channel
and an output channel. As soon as data is received in the input channel,
data is written to the input channel. We link hundreds of goroutines in a
chain of input and output channels:
package main

import (
"fmt"
"time"

)

func relay(input <-chan int, output chan<- int) {
// Wait for value from input channel
value := <-input

230 CHAPTER 8

// Send value to output channel
output <- value

}

func main() {
// Number of goroutines in the chain
const chainLength = 10000

// Create slice to hold all channels
channels := make([]chan int, chainLength+1)

// Initialize all channels
for i := range channels {

channels[i] = make(chan int)
}

// Start timing
startTime := time.Now()

// Create the chain of goroutines
for i := 0; i < chainLength; i++ {

go relay(channels[i], channels[i+1])
}

// Send initial value into the first channel
go func() {

channels[0] <- 42
}()

// Wait for and receive the value from the last channel
result := <-channels[chainLength]

// Calculate elapsed time
elapsed := time.Since(startTime)

THREADS AND GOROUTINES 231

// Print results
fmt.Printf("Value %d successfully passed"

+" through %d goroutines\n",
result, chainLength)

fmt.Printf("Time taken: %v\n", elapsed)
fmt.Printf("Average time per hop: %v\n",

elapsed/time.Duration(chainLength))
}

Running this program, you may get the following result:

Value 42 successfully passed through 10000 goroutines
Time taken: 13.987416ms
Average time per hop: 1.398µs

Effectively, you can traverse nearly a million goroutines per second in
this manner.

Channels are commonly used in the context of file and network access.
Employing multiple goroutines is often beneficial in this scenario, as the
processor can execute different tasks concurrently, thereby enhancing the
program’s efficiency and responsiveness.

The following program creates ten text files, writes the word “Canada” to
each, and then reads each file to count its byte size, displaying the results.
File operations are carried out using Go’s standard library. Initially, the
os.WriteFile function creates or overwrites each file listed in the files
array (f1.txt to f10.txt) and writes the string “Canada” as bytes, with
file permissions set to 0644 (read/write for the owner, read for others).
Subsequently, the countBytes function opens each file using os.Open,
establishing a connection for reading. If the file cannot be opened (e.g.,
if it does not exist), an error is returned. The defer file.Close()
statement ensures the file is closed after use, freeing system resources.
Then, io.ReadAll reads the entire file content into memory as a byte
array, and the length of this array (obtained via len(data)) provides the
file’s byte count. These operations are performed concurrently for each

232 CHAPTER 8

file using goroutines, with results (filename and byte count) collected
through a channel (results) for display.
package main

import (
"fmt"
"io"
"os"

)

type FileResult struct {
Filename string
Bytes int64

}

func countBytes(filename string) (int64, error) {
file, err := os.Open(filename)
if err != nil {

return 0, err
}
defer file.Close()
data, err := io.ReadAll(file)
if err != nil {

return 0, err
}
return int64(len(data)), nil

}

func main() {
files := []string{

"f1.txt", "f2.txt", "f3.txt", "f4.txt", "f5.txt",
"f6.txt", "f7.txt", "f8.txt", "f9.txt", "f10.txt",

}

WAIT GROUPS 233

for _, filename := range files {
os.WriteFile(filename, []byte("Canada"), 0644)

}

results := make(chan FileResult, len(files))
for _, file := range files {

go func(filename string) {
count, _ := countBytes(filename)
results <- FileResult{Filename: filename,

Bytes: count}
}(file)

}

for i := 0; i < len(files); i++ {
r := <-results
fmt.Printf("%s: %d B\n", r.Filename, r.Bytes)

}
}

Wait groups
Another common approach to managing multiple goroutines is the use
of sync.WaitGroup. Before exploring an example, it is helpful to under-
stand the role of wait groups in Go programming. A wait group is a
synchronization mechanism provided by the sync package, which allows
a program to wait for all launched goroutines to complete their execution
before proceeding. In practice, a wait group maintains an internal counter.
Each goroutine increments this counter at startup and decrements it upon
completion. The main function can then wait for the counter to reach
zero, ensuring that all asynchronous tasks are completed.

To use a wait group, three key functions are employed: wg.Add, wg.Done,
and wg.Wait. The wg.Add(n) function increments the wait group counter
by n, typically called before launching goroutines to indicate the number

234 CHAPTER 8

of tasks to wait for. The wg.Done() function decrements the counter
by 1, signaling that a goroutine has completed its execution. Finally,
wg.Wait() blocks the program’s execution until the counter reaches zero,
indicating that all associated goroutines have finished. These functions,
used together, ensure robust and predictable synchronization.

To ensure that wg.Done() is called even in case of an error, we use
defer. In Go, the defer keyword is used to schedule the execution of a
function just before the enclosing function (the one containing the defer
statement) terminates. This approach is particularly useful for ensuring
that cleanup operations, such as closing a file or decrementing a wait
group counter, are performed even in case of an error or early return.
Consider the following example where a division by zero causes a panic,
but defer ensures the execution of a statement before termination.
package main
import "fmt"

func f(x int) int {
defer fmt.Println("!!!")
return 1 / x

}

func main() {
f(0)

}

In this example, when f(0) is called, a division by zero causes a panic.
However, thanks to defer, the fmt.Println("!!!") statement is exe-
cuted before the program crashes, illustrating how defer ensures code
execution even in the case of a fatal error.

The use of defer becomes particularly relevant when an error may occur
in a goroutine, requiring systematic cleanup. Consider the following
example where an error is generated, but defer ensures that the wait
group counter is decremented.

WAIT GROUPS 235

package main
import (

"fmt"
"sync"

)

func divide(x int) (int, error) {
if x == 0 {

return 0, fmt.Errorf("x == zero")
}
return 1 / x, nil

}

func main() {
var wg sync.WaitGroup
wg.Add(1)
go func() {

defer wg.Done()
y, err := divide(0)
if err != nil {

fmt.Println("Error:", err)
return

}
fmt.Println(y)

}()
wg.Wait()
fmt.Println("---")

}

In this example, the defer wg.Done() statement ensures that the wait
group counter is decremented, even if the goroutine terminates early due
to an error, thus preventing a program deadlock. The following code
would not work because wg.Done() would never be called, and the main
function would never be notified that the goroutine has completed.

236 CHAPTER 8

go func() {
y, err := divide(0)
if err != nil {

fmt.Println("Error:", err)
return

}
fmt.Println(y)
wg.Done()

}()

To illustrate a more sophisticated use of wait groups and defer, consider a
program that increments values in an array. In the main function, an array
arr of integers is created. Four goroutines are used to divide the work,
each goroutine processing a portion of the array, calculated via chunkSize
to distribute the indices evenly. The incrementChunk function increments
each element in a given range of the array, from start to end, and uses
a sync.WaitGroup to synchronize the goroutines. Each goroutine calls
wg.Done() via defer once completed, and wg.Wait() in main ensures
that all goroutines finish before the program ends, guaranteeing that all
array elements are incremented concurrently and safely.
package main
import (

"sync"
)

func incrementChunk(arr []int, start, end int,
wg *sync.WaitGroup) {

defer wg.Done()
for i := start; i < end && i < len(arr); i++ {

arr[i]++
}

}

func main() {

ATOMICS 237

size := 100000
arr := make([]int, size)
numGoroutines := 4
chunkSize := (size + numGoroutines - 1) / numGoroutines
var wg sync.WaitGroup
wg.Add(numGoroutines)
for i := 0; i < numGoroutines; i++ {

start := i * chunkSize
end := start + chunkSize
if end > size {

end = size
}
go incrementChunk(arr, start, end, &wg)

}
wg.Wait()

}

Atomics
If you need to read data from different goroutines, that is not a problem
as long as the data remains constant. If nobody writes to the data, there
is no problem. Unfortunately, we often need to change the data, while
reading it from different goroutines. Sometimes you can use channels
to communicate. But that is sometimes not enough. Let us consider
an example. We take an array of 10 integers, and goroutines randomly
decrement one array element and then increment another array element.
Initially, the sum of all elements should be 1000 and it should remain
1000 unless there is a bug. We can implement our code like so:
package main

import (
"fmt"
"math/rand"

238 CHAPTER 8

"sync"
"time"

)

func main() {

// Initialize array with 10 elements, each set to 100
arr := [10]int{100, 100, 100, 100, 100,

100, 100, 100, 100, 100}
var wg sync.WaitGroup

// Function for goroutine behavior
worker := func() {

defer wg.Done()
wg.Add(1)
r := rand.New(rand.NewSource(time.Now().UnixNano()))

// Run for 200000000 iterations as an example
for i := 0; i < 200000000; i++ {

// Pick first random index
idx1 := r.Intn(10)
// Only proceed if value > 0
if arr[idx1] > 0 {

// Decrement first element
arr[idx1]--

// Pick second random index
idx2 := r.Intn(10)
// Increment second element
arr[idx2]++

}
}

}

ATOMICS 239

// Launch two goroutines
go worker()
go worker()
fmt.Println("waiting...")
wg.Wait()
fmt.Println("waiting...ok")

fmt.Println("\nFinal array state:", arr)
// Verify total sum should still be 1000 (10 * 100)
sum := 0
for _, val := range arr {

sum += val
}
fmt.Println("Total sum:", sum)

}

This program is wrong: it contains data races because we are writing
and reading data from different goroutines without synchronization. A
possible ouput of this program is the following:

Final array state: [3001 644 880 324 2319 2845 3664
160 232 1741]

Total sum: 15810

Observe how the sum is higher than expected.

In Go you can avoid such a bug with the guarantee of atomicity pro-
vided by the sync/atomic package, which ensures that operations like
increments are executed as indivisible steps, preventing race conditions.
Functions like atomic.AddInt32(&x, 1) or atomic.AddInt64(&x, 1)
ensure that the increment operation (read-modify-write) is performed
atomically. This means that even if two threads execute the increment
concurrently, the operations are serialized at the hardware level, and no
updates are lost.

240 CHAPTER 8

package main

import (
"fmt"
"math/rand"
"sync"
"sync/atomic"
"time"

)

func main() {

// Initialize array with 10 elements, each set to 100
arr := [10]int32{100, 100, 100,

100, 100, 100, 100, 100, 100, 100}
var wg sync.WaitGroup

// Function for goroutine behavior
worker := func() {

defer wg.Done()
wg.Add(1)
r := rand.New(rand.NewSource(time.Now().UnixNano()))

// Run for 200000000 iterations as an example
for i := 0; i < 200000000; i++ {

// Pick first random index
idx1 := r.Intn(10)
// Only proceed if value > 0
val := atomic.LoadInt32(&arr[idx1])
if val > 0 {

if atomic.CompareAndSwapInt32(&arr[idx1],
val, val-1) {

// Pick second random index
idx2 := r.Intn(10)

ATOMICS 241

// Increment second element
atomic.AddInt32(&arr[idx2], 1)

}

}
}

}

// Launch two goroutines
go worker()
go worker()
fmt.Println("waiting...")
wg.Wait()
fmt.Println("waiting...ok")

fmt.Println("\nFinal array state:", arr)
// Verify total sum should still be 1000 (10 * 100)
sum := 0
for _, val := range arr {

sum += int(val)
}
fmt.Println("Total sum:", sum)

}

The expression atomic.LoadInt32(&arr[idx1]) atomically reads
the value at array position idx1. The value is stored in a lo-
cal variable (val): data races are not possible with a local
variable. We then use a Compare-And-Swap (CAS) operation:
atomic.CompareAndSwapInt32(&arr[idx1], val, val-1). It checks
if arr[idx1] still equals val (the previously loaded value) and if true,
it sets arr[idx1] to val-1. It returns true if successful, false if the
value changed since the load. Importantly, it executes as a single
atomic operation. Finally, we use atomic.AddInt32(&arr[idx2], 1)
to atomically add 1 to arr[idx2].

242 CHAPTER 8

If you run the new program, the sum of the values in the array is
maintained. The program is safe.

Mutex
Atomic operations like AddInt32 or CompareAndSwapInt32 are designed
for single, indivisible operations on a single variable. They become
insufficient when we have more complex data structures.

In these more complex cases, we use a mutex. A mutex (short for “mutual
exclusion”) is a synchronization primitive used in concurrent programming
to prevent multiple threads or processes from simultaneously accessing
or modifying a shared resource. It ensures that only one thread (or
goroutine) can enter a critical section of code at a time, thus avoiding
race conditions and maintaining data consistency. Essentially, only one
‘lock’ can be held at any given time.

To illustrate, let us create a program where money is transferred between
two accounts, and we need to ensure that the withdrawal from one account
and deposit to another happen together without interference from other
goroutines. This requires protecting a multi-step operation, which goes
beyond what atomic operations can do.
package main

import (
"fmt"
"sync"
"time"

)

type Bank struct {
accounts map[string]int // Map of account IDs to balances
mutex sync.Mutex

}

MUTEX 243

func NewBank() *Bank {
return &Bank{
accounts: map[string]int{

"Alice": 1000,
"Bob": 500,

},
}

}

func (b *Bank) Transfer(from, to string, amount int,
wg *sync.WaitGroup) {
defer wg.Done()

b.mutex.Lock()
defer b.mutex.Unlock()

// Check if source account has sufficient funds
if b.accounts[from] >= amount {
// Perform the transfer: two related operations
b.accounts[from] -= amount
b.accounts[to] += amount
} else {
fmt.Printf("Failed transfer\n")
}

}

func (b *Bank) GetBalance(account string) int {
b.mutex.Lock()
defer b.mutex.Unlock()
return b.accounts[account]

}

func main() {
bank := NewBank()

244 CHAPTER 8

var wg sync.WaitGroup

// Launch multiple concurrent transfers
wg.Add(4)
go bank.Transfer("Alice", "Bob", 200, &wg)
go bank.Transfer("Bob", "Alice", 100, &wg)
go bank.Transfer("Alice", "Bob", 300, &wg)
go bank.Transfer("Bob", "Alice", 50, &wg)

wg.Wait()

fmt.Printf("Final balances: Alice=%d, Bob=%d\n",
bank.GetBalance("Alice"), bank.GetBalance("Bob"))

}

If no other goroutines are attempting to acquire the same mutex, the lock
operation is fast. The mutex state is updated using atomic operations,
such as compare-and-swap, which are highly optimized at the hardware
level and typically complete in a few nanoseconds. When several gorou-
tines compete for the same mutex at the same time, the speed of the lock
will vary. The goroutine might enter into a spin lock: it will repeatedly
check the mutex state in a tight loop for a short period, attempting to
acquire the lock without immediately yielding to the scheduler. This can
be efficient if the mutex is expected to be released quickly, as it avoids the
overhead of parking the goroutine. However, if the mutex remains locked
for an extended time, the spinning goroutine may waste CPU cycles
before being parked by the Go scheduler, leading to increased latency
and potential performance degradation. Once parked, the goroutine is
placed in a wait queue, and the scheduler will wake it when the mutex
becomes available, incurring additional overhead due to context switching.
In complex cases, it is also possible to trigger a deadlock. A deadlock
is a concurrency failure where threads are trapped in a circular wait for
resources, unable to proceed due to mutual dependencies. We can modify
our example to include a deadlock. Instead of a global mutex, we create

MUTEX 245

a mutex per account. If the goroutine acquires the source account and
then the destination account, a deadlock becomes possible.
package main

import (
"fmt"
"sync"
"time"

)

type Account struct {
balance int
mutex sync.Mutex

}

type Bank struct {
accounts map[string]*Account

}

func NewBank() *Bank {
return &Bank{

accounts: map[string]*Account{
"Alice": {balance: 1000},
"Bob": {balance: 500},

},
}

}

func (b *Bank) Transfer(from, to string, amount int,
wg *sync.WaitGroup) {

defer wg.Done()

// Get the accounts
fromAccount := b.accounts[from]

246 CHAPTER 8

toAccount := b.accounts[to]

// Lock the "from" account first
fromAccount.mutex.Lock()
fmt.Printf("Locked %s for transfer of %d to %s\n",

from, amount, to)

time.Sleep(100 * time.Millisecond)

// Then try to lock the "to" account
toAccount.mutex.Lock()
fmt.Printf("Locked %s for transfer of %d from %s\n",

to, amount, from)

// Perform the transfer
if fromAccount.balance >= amount {

fromAccount.balance -= amount
toAccount.balance += amount
fmt.Printf("Transferred %d from %s to %s."

+" New balances: %s=%d, %s=%d\n",
amount, from, to, from, fromAccount.balance,

to, toAccount.balance)
} else {

fmt.Printf("Failed transfer of %d from %s to %s:"
+" insufficient funds\n",

amount, from, to)
}

// Unlock both accounts
toAccount.mutex.Unlock()
fromAccount.mutex.Unlock()

}

func (b *Bank) GetBalance(account string) int {

MUTEX 247

acc := b.accounts[account]
acc.mutex.Lock()
defer acc.mutex.Unlock()
return acc.balance

}

func main() {
bank := NewBank()
var wg sync.WaitGroup

wg.Add(2)
go bank.Transfer("Alice", "Bob", 200, &wg)

// Alice -> Bob
go bank.Transfer("Bob", "Alice", 100, &wg)

// Bob -> Alice

wg.Wait() // This will never complete due to deadlock

fmt.Printf("Final balances: Alice=%d, Bob=%d\n",
bank.GetBalance("Alice"), bank.GetBalance("Bob"))

}

The deadlock in this code occurs because two goroutines acquire mutexes
in different orders, leading to a circular wait. One strategy to avoid such
a deadlock is to use ordered mutexes. E.g., if accounts are numbered, we
always lock the account with the lesser number first.

To achieve better performance, it is sometimes preferable to replace a
mutex with an RWMutex. An RWMutex, or read-write mutex, is a
synchronization primitive that manages concurrent access to a shared
resource by distinguishing between read and write operations. Unlike
a classic mutex, which exclusively locks access for any operation, an
RWMutex allows multiple goroutines to access the resource simultaneously
for reads, as long as no goroutine is writing. This improves performance in
scenarios where reads are frequent and writes are rare. When a goroutine

248 CHAPTER 8

needs to write, it must acquire an exclusive lock (Lock), which prevents
any other reads or writes during that operation. Reads, on the other
hand, use a shared lock (RLock), allowing multiple goroutines to read
the resource in parallel without interference.

To illustrate the use of an RWMutex, consider a program simulating a
shared cache where multiple goroutines frequently read data, but updates
are less common. In this example, we use an RWMutex to allow multiple
goroutines to read data simultaneously while ensuring that writes are
exclusively protected.
package main

import (
"fmt"
"sync"
"time"

)

type Cache struct {
data map[string]string
mutex sync.RWMutex

}

func NewCache() *Cache {
return &Cache{

data: map[string]string{
"key1": "value1",
"key2": "value2",

},
}

}

func (c *Cache) Read(key string, readerID int,
wg *sync.WaitGroup) {
defer wg.Done()

MUTEX 249

c.mutex.RLock()
defer c.mutex.RUnlock()
value, exists := c.data[key]
if exists {

fmt.Printf("Reader %d read %s: %s\n",
readerID, key, value)

} else {
fmt.Printf("Reader %d: key %s not found\n",

readerID, key)
}
time.Sleep(100 * time.Millisecond)

}

func (c *Cache) Write(key, value string,
writerID int, wg *sync.WaitGroup) {
defer wg.Done()
c.mutex.Lock()
defer c.mutex.Unlock()
c.data[key] = value
fmt.Printf("Writer %d wrote %s: %s\n",

writerID, key, value)
time.Sleep(200 * time.Millisecond)

}

func main() {
cache := NewCache()
var wg sync.WaitGroup

for i := 1; i <= 3; i++ {
wg.Add(1)
go cache.Read("key1", i, &wg)

}

wg.Add(1)

250 CHAPTER 8

go cache.Write("key3", "value3", 1, &wg)

wg.Add(1)
go cache.Read("key2", 4, &wg)

wg.Wait()
fmt.Println("Final cache state:", cache.data)

}

This code implements a shared cache using an RWMutex to manage con-
current access by multiple goroutines. A Cache structure contains a map
associating keys with values and a sync.RWMutex to synchronize access.
The NewCache function initializes the cache with two key-value pairs.
The Read method allows multiple goroutines to simultaneously read a
value using RLock, which locks in shared read mode, displaying the read
value or an error message if the key does not exist, with a simulated
delay of 100 ms. The Write method uses Lock for an exclusive lock,
enabling a cache update with a simulated delay of 200 ms. In main,
three goroutines read the "key1" key in parallel, one goroutine writes
a new "key3:value3" pair, and another reads "key2". A WaitGroup
synchronizes execution, and the final cache state is displayed.

False sharing
False sharing is a performance issue that occurs in multicore systems when
multiple processors access data located in the same cache line, even if the
data is distinct. In a multicore processor, data in memory is transferred
to the cache in blocks called cache lines (typically 64 or 128 bytes). If two
goroutines, running on different cores, modify distinct variables located in
the same cache line, the cache coherence system invalidates and reloads
that line with each modification, leading to significant performance losses.

In Go, false sharing can occur when using data structures shared between
goroutines without considering data alignment in the cache. For example,

FALSE SHARING 251

an array of counters incremented by different goroutines may seem inde-
pendent, but if the counters are contiguous in memory, they may share
the same cache line, causing conflicts.

Here is an example illustrating the false sharing issue in Go, followed by
a solution to avoid it.
package main

import (
"fmt"
"sync"
"time"

)

const iterations = 10000000

type Counter struct {
counts [4]int64

}

type PaddedCounter struct {
counts [4]struct {

value int64
_ [15]int64

}
}

func runBenchmark(wg *sync.WaitGroup,
counter *Counter, index int) {
defer wg.Done()
for i := 0; i < iterations; i++ {

counter.counts[index]++
}

}

252 CHAPTER 8

func runPaddedBenchmark(wg *sync.WaitGroup,
counter *PaddedCounter, index int) {
defer wg.Done()
for i := 0; i < iterations; i++ {

counter.counts[index].value++
}

}

func main() {
var wg sync.WaitGroup

counter := Counter{}
wg.Add(4)
start := time.Now()
for i := 0; i < 4; i++ {

go runBenchmark(&wg, &counter, i)
}
wg.Wait()
elapsed := time.Since(start)
fmt.Printf("No padding - Time: %v\n", elapsed)

paddedCounter := PaddedCounter{}
wg.Add(4)
start = time.Now()
for i := 0; i < 4; i++ {

go runPaddedBenchmark(&wg, &paddedCounter, i)
}
wg.Wait()
elapsed = time.Since(start)
fmt.Printf("Padding - Time: %v\n", elapsed)

}

In this example, we have two structures: Counter and PaddedCounter.
In Counter, the four counts counters are stored contiguously in memory,

CONCLUSION 253

increasing the likelihood that they share the same cache line. Each
goroutine increments a different counter, but since they are in the same
cache line, the cores must constantly synchronize that line, slowing down
execution.

In PaddedCounter, we add padding (an array of 15 unused int64, totaling
120 bytes) between each counter, ensuring that each counter resides in
a distinct cache line (cache lines are typically up to 128 bytes). This
eliminates cache conflicts, improving performance.

When running the code, you might obtain results like these on a multicore
machine:

No padding - Time: 24.979625ms
Padding - Time: 9.303167ms

The test with padding is significantly faster because it avoids unneces-
sary cache line invalidations. To mitigate false sharing, it is crucial to
understand data alignment in memory and use techniques like padding
or separate data structures to ensure that variables accessed by different
goroutines reside in distinct cache lines.

Conclusion
Concurrency is a powerful tool in modern software development, enabling
programs to leverage multiple processors for improved performance. How-
ever, it introduces significant complexities that must be carefully managed.
Data races, where unsynchronized access to shared memory leads to un-
predictable outcomes, underscore the need for robust synchronization
mechanisms. Go’s goroutines and channels offer an elegant, lightweight
approach to concurrency, allowing developers to efficiently parallelize
tasks like network requests or data processing while avoiding the over-
head of traditional threads. Yet, the performance benefits of parallelism
are not guaranteed—simple tasks may suffer from excessive goroutine
overhead, while computationally intensive operations can see substan-

254 CHAPTER 8

tial gains, albeit with diminishing returns as the number of goroutines
increases.

Synchronization tools like sync.WaitGroup, atomic operations from
sync/atomic, and mutexes (sync.Mutex) provide essential safeguards
against concurrency pitfalls. Atomics excel for single-variable updates,
ensuring thread safety with minimal overhead, while mutexes protect
multi-step operations on complex data structures. However, mutexes
come with risks, such as deadlocks, which arise from circular dependen-
cies and require careful design—like consistent lock ordering—to avoid.
Choosing the right concurrency strategy depends on the task’s nature,
scale, and performance requirements. Ultimately, effective concurrent
programming in Go demands a balance between leveraging parallelism
for speed and maintaining simplicity, correctness, and efficiency in the
face of shared resource contention.

Exercises for Chapter 8

Question 1
Write a Go program that counts the total number of words across mul-
tiple text strings concurrently. The program should: Take a slice of
strings as input (e.g., []string{"Hello world", "Go is awesome",
"Concurrency is fun"}). Use a goroutine for each string to count the
words in that string (a word is any sequence of characters separated by
whitespace). Use a channel to collect the word counts from each goroutine.
Sum the results in the main goroutine and print the total word count.

Question 2
Description: Modify the following program, which has a data race, to
ensure correct behavior using the sync/atomic package:
package main

EXERCISES FOR CHAPTER 8 255

import (
"fmt"
"sync"

)

func main() {
var counter int
var wg sync.WaitGroup

for i := 0; i < 100; i++ {
wg.Add(1)
go func() {

defer wg.Done()
for j := 0; j < 1000; j++ {

counter++ // Data race here
}

}()
}

wg.Wait()
fmt.Println("Final counter value:", counter)

}

Exercise 3
Extend the bank transfer example from the chapter to support multiple
accounts and prevent deadlocks. The program should define a Bank struct
with a map of account names to Account structs, where each Account
has a balance (int) and a mutex (sync.Mutex). You must implement a
Transfer method that moves money from one account to another, locking
both accounts safely.

256 CHAPTER 8

	Introduction
	Programming languages
	Acknowledgements

	Chapter 1
	Organization
	Quality
	Documentation
	Regression
	Bug fixing
	Performance
	Conclusion
	Suggested reading
	Exercises for chapter 1

	Chapter 2
	Version control systems
	Distributed version control systems
	Atomic commits
	Branches in Git
	Conclusion
	Exercises for Chapter 2

	Chapter 3
	Words
	Boolean values
	Integers
	Unsigned integers
	Signed integers and two's complement
	Floating-point numbers
	Arrays
	Strings
	Pointers
	Exercises for Chapter 3

	Chapter 4
	Setting, clearing and flipping bits
	Efficient and safe operations over integers
	Efficient Unicode processing
	Basic SWAR
	Rotating and reversing bits
	Fast bit counting
	Indexing Bits
	Conclusion
	Exercises for Chapter 4

	Chapter 5
	Hashing
	Estimating cardinality
	Integers
	Random shuffle
	Reservoir Sampling
	Floats
	Discrete distributions
	Cryptographic hashing and random numbers
	Exercises for Chapter 5

	Chapter 6
	Benchmarks in Go
	Measuring memory allocations
	Measuring memory usage
	Inlining
	Hardware prefetchers
	Cache line
	CPU cache
	Memory bandwidth
	Memory latency and parallelism
	Superscalarity and data dependency
	Branch prediction
	Exercises for Chapter 6

	Chapter 7
	Arrays
	Dynamic arrays and slices
	Hash tables and maps
	Conclusion
	Exercises for Chapter 7

	Chapter 8
	Threads and goroutines
	Wait groups
	Atomics
	Mutex
	False sharing
	Conclusion
	Exercises for Chapter 8

