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In a recent two-part series of articles, A. A. Chavez, S. R. Garcia and J. Hurley [Canad.
Math. Bull. 66 (2023), no. 3, 808–826; MR4651637; Canad.Math. Bull. 67 (2024), no. 2,
447–457; MR4751519] introduced a family of norms on the space Mn of n⇥n complex
matrices that are induced by real-valued random vectors whose entries are independent
and identically distributed (iid) random variables having finite d-moments where d
satisfies d� 2. These norms arise from a probabilistic framework, and their construction
and validation involve probability theory, partition combinatorics, and trace polynomials
in noncommuting variables.
The first paper culminated in a series of open problems, one of which called for a

characterization of those random vectors that give rise to submultiplicative norms. In
the article under review, this question is partially answered by showing that for any real
number d� 1 and any random variable X 2 Lmax{2+",d}(⌦,F ,P), there exists a positive
constant �d, which is independent of n, such that the norm induced by X becomes
submultiplicative when multiplied by �d.
In Section 2, before tackling the main question, the author shows that the family of

norms defined by Chávez, Garcia and Hurley can be extended further to any real d� 1.
Consequently, the question of Chávez, Garcia and Hurley is extended too.
Section 3 presents, for the sake of completeness, a number of classic inequalities

(Jensen’s, Lyapunov’s, and a few others) that will be used in the proofs. In Section 4,
a pair of useful lower and upper bounds for the norms at the heart of this paper are
derived.
Section 5 contains the proof of the main result. The special case d = 2 is dealt with

first, as it is then used as a basis for dealing with the general case. An enlightening
example is presented in Section 6. Finally, three open problems (two of which are seeking
generalizations of the family of norms and one which inquires about the possibility of
loosening the conditions in the result of Section 5) are listed in Section 7.

Frédéric Morneau-Guérin
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and right Riemann sums. In: Alpay, D., Behrndt, J., Colombo, F., Sabadini, I.,
Struppa, D.C. (eds.) Recent Developments in Operator Theory, Mathematical
Physics and Complex Analysis. Oper. Theory Adv. Appl., vol. 290, pp. 89–113.
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