MR4766049 15A15 15B51

Song, Seok-Zun (KR-JNU-M); Beasley, LeRoy B. (1-UTS-MS) A face of the polytope of doubly stochastic matrices. (English. English summary)

Linear Multilinear Algebra 72 (2024), no. 10, 1612–1624.

Let Ω_n be the Birkhoff polytope, i.e., the convex polytope of $n \times n$ doubly stochastic matrices. Given an $n \times n$ non-negative matrix $D = [d_{ij}]$, let

$$\Omega(D) = \Big\{ X = [x_{ij}] \in \Omega_n : x_{ij} = 0 \text{ whenever } d_{ij} = 0 \Big\}.$$

Then $\Omega(D)$ is a face of Ω_n , and compactness entails there exists a matrix minimizing the permanent on $\Omega(D)$. Recall that the *permanent* of an $n \times n$ matrix $A = [a_{i,j}]$ is defined by

$$per(A) = \sum_{\sigma} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)},$$

where σ runs over all permutations of $\{1, 2, \ldots, n\}$.

In this paper, the authors consider the face of Ω_n whose non-zero entries coincide with that of

$$V_{l,m,n} = \begin{pmatrix} 0_{l,l} & 0_{l,m} & J_{l,n} \\ 0_{m,l} & I_m & J_{m,n} \\ J_{n,l} & J_{n,m} & J_{n,n} \end{pmatrix}$$

where $0_{r,s}$ denotes the $r \times s$ zero matrix, $J_{u,v}$ is the $u \times v$ all-ones matrix, and I_m is the identity matrix of order m.

In Section 2, it is shown that the matrix minimizing the permanent on the faces $\Omega(V_{l,m,n})$ for $l \ge 1$, $m \ge 2$, $n \ge 2$, and l < n, is of the form

$$B(b) = \begin{pmatrix} 0_{l,l} & 0_{l,m} & \frac{1}{n}J_{l,n} \\ 0_{m,l} & dI_m & aJ_{m,n} \\ \frac{1}{n}J_{n,l} & aJ_{n,m} & bJ_{n,n} \end{pmatrix},$$

with $b \in [0, \frac{n-l}{n^2}]$ for $m+l \ge n$, and $b \in [\frac{1}{n^2}(n-l-m), \frac{n-l}{n^2}]$ for $m+l \le n$. Moreover, it is shown through rather explicit calculations that

- B(0) is the unique minimizing matrix in $\Omega(V_{l,m,n})$ if $m \ge 2(n-l)$;
- B(0) is not a minimizing matrix in $\Omega(V_{l,m,n})$ if $(n-l) < m < (n-l) + \sqrt{n-l}$;
- $B(\frac{n-l}{n^2})$ is not a minimizing matrix in $\Omega(V_{l,m,n})$ if $l+m \ge n$.

This section also includes some results about ranges of values of l, m, n for which $V_{l,m,n}$ is a cohesive matrix, a barycentric matrix, or neither, thus contributing towards the solution of two problems from Minc's well-known lists of unsolved problems on permanents.

In Section 3, the authors investigate a special case where $(n-l) + \sqrt{n-l} < m < 2(n-l)$, that is the case l = 2k, m = 7k, and n = 6k with $k \ge 2$. In this special case, it is shown that B(0) is the unique minimizing matrix on $\Omega(V_{l,m,n})$.

Frédéric Morneau-Guérin

[References]

- 1. Brualdi RA. An interesting face of the polytope of doubly stochastic matrices. Linear Multilinear Algebra. 1985;17:5–18. MR0859664
- Cheon G-S, Wanless IM. An update on Minc's of open problems involving permanents. Linear Algebra Appl. 2005;403:314–342. MR2140290
- 3. Pula K, Song S-Z, Wanless IM. Minimum permanents on two faces of the polytope of doubly stochastic matrices. Linear Algebra Appl. 2011;434:232–238. MR2737245

- 4. Song S-Z. Minimum permanents on certain faces of matrices containing an identity submatrix. Linear Algebra Appl. 1988;108:263–280. MR0959709
- 5. Song S-Z. Minimum permanents on certain doubly stochastic matrices. Linear Algebra Appl. 1991;143:49–56. MR1077723
- Foregger TH. On the minimum value of the permanent of a nearly decomposable doubly stochastic matrix. Linear Algebra Appl. 1980;32:75–85. MR0577907
- 7. Minc H. Minimum permanents of doubly stochastic matrices with prescribed zero entries. Linear Multilinear Algebra. 1984;15:225–243. MR0745395

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.