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A Hurwitz polynomial is a polynomial whose roots lie in the open left half of the complex
plane. Such a polynomial must have coefficients that are positive real numbers.

Let Pn denote the family of all polynomials of degree n with positive coefficients, and
let Hn be the family of all Hurwitz polynomials in Pn.

Given a polynomial

p(x) =
n∑

k=0

akx
k,

where the ais are positive numbers, the Hurwitz matrix H(p) associated with p is given
by

H(p) =


an−1 an−3 an−5 . . . 0
an an−2 an−4 . . . 0
0 an−1 an−3 . . . 0
...

...
...

. . .
...

0 0 0 . . . a0

 .

The leading principal minors of the matrix H(p) are given by the following determi-
nants, called Hurwitz determinants,

∆1 := an−1,

∆2 :=

∣∣∣∣ an−1 an−3

an an−2

∣∣∣∣ ,
∆3 :=

∣∣∣∣∣ an−1 an−3 an−5

an an−2 an−4

0 an−1 an−3

∣∣∣∣∣ ,
...

∆n := det(H(p)).

Recall that for two matrices A = [aij ] and B = [bij ] of the same dimension m× n,
the Hadamard product A ◦B is a matrix of the same dimension as the operands, with
elements given by A ◦B = [aijbij ]. Likewise, for two polynomials

p(x) =
n∑

k=0

akx
k and q(x) =

n∑
k=0

bkx
k

of equal degree n, then the Hadamard product p ◦ q is the polynomial of the same
dimension as the operands and defined by

(p ◦ q)(x) :=

n∑
k=0

akbkx
k.

A notable inequality (sometimes referred to as Oppenheim’s inequality) regarding the
Hadamard product of two positive semidefinite matrices A = [aij ] and B = [bij ] of order
n states that

det(A ◦B)≥ det(A) ·det(B).

In the paper under review, the authors study the problem of whether this inequality
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holds for Hurwitz matrices. Their main result stipulates that it does if n = 3, 4, 5 (albeit
with a strict inequality). They also obtain a generalization (requiring the addition of a
term to the left-hand member for which an explicit formula is given) for the case n = 6.

This main result is largely based on other results obtained previously, including one
in which the Hurwitz matrix for p ∈ Pn is associated with a positive definite matrix
of roughly the half order and one in which relations for the Hurwitz determinants of
a Hurwitz matrix for p ∈ Pn are obtained. In the process, the authors obtain a new
necessary and sufficient condition for a polynomial to be Hurwitz.

The body of the text presents both the main results and some explanatory examples.
At the very end of the paper, the authors present an application of their main results:

they derive a necessary and sufficient condition for the Hadamard square root of a
Hurwitz polynomial of degree 5 to be Hurwitz. Frédéric Morneau-Guérin
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