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Abstract
The Somatic Marker Hypothesis, an influential neurobiological account of decision-making, states that emotional somatic 
markers (e.g., skin conductance responses) influence decision-making processes. Despite its prominence, the hypothesis 
remains controversial partly because of inconsistent results stemming from inappropriate statistical methods. Tasks designed 
to assess decision-making often use repeated measures designs, such as the Iowa Gambling Task (IGT), which requires par-
ticipants to maximize profits by selecting 100 cards among four decks offering varying win–loss contingencies. Researchers 
often aggregate repeated measures into a single averaged value to simplify analyses, potentially committing an ecological 
fallacy by erroneously generalizing results obtained from aggregated data (i.e., interindividual effects) to individual repeated 
measurements (i.e., intraindividual effects). This paper addresses this issue by demonstrating how to analyze concurrent 
repeated measures of both independent and dependent variables using multilevel logistic models. First, the principles of 
logistic multilevel models are explained. Then, simulated and empirical IGT data are analyzed to compare the performance 
of traditional statistical approaches (i.e., general linear models) with multilevel logistic models. Our proposed multilevel 
logistic analyses address critical methodological gaps in decision-making research, ensuring more accurate interpretations 
of repeated measures data. This approach not only advances the study of the Somatic Marker Hypothesis but also provides 
a robust framework for similar research protocols, ultimately enhancing the reliability and validity of findings.
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In his seminal work, Descartes’ Error, Antonio Damasio 
(1994) proposed one of the most influential neurobiological 
accounts of decision-making. Bridging together the fields 

of affective, cognitive, and behavioral neuroscience, the 
Somatic Marker Hypothesis (SMH) highlights the role of 
emotions in the decision-making process (Damasio, 1994). 
According to the SMH, certain choice options become 
associated with emotional responses through repeated 
experiences. Initially, emotional responses follow decisions, 
because they are a consequence of the decision. When simi-
lar situations arise in the future, these emotional responses 
are retrieved and reexperienced before the individual makes 
a decision. These anticipatory emotional responses are 
expressed by specific bodily sensations (somatic markers), 
such as increased electrodermal activity. The SMH posits 
that these somatic markers then bias decisions (whether 
consciously or not) towards options associated with positive 
somatic markers and away from those with negative ones.

To test the SMH, Bechara & Damasio (1994) developed 
the Iowa Gambling Task (IGT), which requires partici-
pants to select 100 cards from four decks of cards asso-
ciated with different win–loss contingencies. Using the 
feedback provided at each trial (indicating the losses and 
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gains), participants must learn which decks are advanta-
geous or disadvantageous in the long-term to maximize 
profits. To measure the somatic markers, anticipatory skin 
conductance responses (SCRs) are recorded before par-
ticipants make each decision. The IGT provides a means 
for researchers to test specific predictions of the SMH. 
In accordance with the SMH, a recent meta-analysis has 
demonstrated that anticipatory SCR exerts a small to mod-
erate influence on decision-making as assessed by the IGT 
(Simonovic et al., 2019).

Although promising, the SMH has faced substantial criti-
cism since its inception. A prominent critic centers on the 
relative roles of cognitive and emotional processes in guid-
ing decision-making in the IGT, specifically questioning 
whether somatic states (i.e., bodily signals) directly influ-
ence decision-making (Chiu et al., 2022; Colombetti, 2008; 
Dunn et al., 2006; Maia & McClelland, 2004, 2005; Over-
skeid, 2021). Proponents of the SMH acknowledge that its 
most vulnerable aspect is the limited quantity and quality 
of evidence (i.e., lack of causality) supporting the effect of 
peripheral somatic states (e.g., SCR) on decision-making, 
what they refer to as the body-loop mechanism (Poppa & 
Bechara, 2018; Reimann & Bechara, 2010). Furthermore, 
some researchers argue that the IGT may not be optimal to 
test SMH predictions, leading to varied (mis)interpretations 
of the hypothesis and, consequently, inconsistent findings 
(Bartol & Linquist, 2015; Colombetti, 2008; Linquist & Bar-
tol, 2013). We suggest that a key limitation in the empirical 
testing of the SMH could be underlying many of the above-
mentioned critics; numerous studies have used statistical 
methods to analyze the IGT that fail to capture a comprehen-
sive and fine-grained understanding of ways somatic markers 
might influence decision-making (Dunn et al., 2006). We 
further argue that traditional analytical strategies may have 
led to erroneous conclusions about the SMH and propose a 
novel analytical approach to resolve these issues.

Objective

Our objective is to demonstrate why common analysis meth-
ods (i.e., general linear models) are not suited to test the 
SMH. This paper presents a multilevel modeling approach 
and the disaggregation of the SCR variable as a means to 
obtain precise insights into the nature of the SMH, specifi-
cally in modelling the predictive value of somatic states on 
individual decisions. The proposed analysis methods are 
then used to analyze simulated as well as empirical IGT 
data (obtained from an open-access database). The R code 
is provided and explained to allow researchers to implement 
this methodology in future studies that address multilevel 
data structures, such as those pertaining to the IGT.

Traditional statistical analyses

The SMH was initially proposed to explain the significant 
deficits in decision-making observed in patients with lesions 
to the ventromedial prefrontal cortex who showed impaired 
decision-making in the IGT, despite normal cognitive func-
tioning (Bechara et al., 1994). Bechara et al. (1996) later 
demonstrated that compared with control participants, these 
patients did not exhibit an increase in mean SCRs preceding 
decisions, suggesting that SCRs were necessary to guide 
advantageous decision-making during the IGT. However, 
these patients also exhibited less intraindividual variabil-
ity in SCRs throughout the task compared with controls, 
indicating that their SCR levels did not vary significantly 
from one decision to another. This solicits two interpreta-
tions: 1) individuals with more frequent or greater SCRs 
perform better (i.e., interindividual variability predicts deci-
sion-making), or 2) those with greater variability in SCRs 
throughout the task perform better (i.e., intraindividual vari-
ability predicts decision-making). Subsequent research on 
the SMH has focused disproportionately on the relationship 
between interindividual differences in SCRs and decision-
making (i.e., between-subjects designs).

For simplicity, a common approach in IGT studies has 
been to aggregate the 100 decisions and anticipatory SCR 
observations by summing the total number of draws in the 
advantageous decks and averaging SCRs per individual. This 
procedure allows the use of general linear models, such as 
multiple regressions, which can be expressed as

The left side of the equation represents the average num-
ber of draws in the advantageous decks (i.e., the dependent 
variable), b0 is the intercept, b1 is the regression coefficient 
of the averaged SCR for individual i, and �i is the residual 
error. General linear models only integrate the individual 
(i) level of variance and ignore intraindividual variability in 
SCR and decision-making. With the emphasis on the effect 
of aggregated SCR (interindividual variability), this may 
have led to inaccurate conclusions about the SMH. Statisti-
cally, this removes rich information about within-individual 
variability (i.e., the analyses focus only on between-indi-
vidual differences) and limits the sample size (i.e., it does 
not consider the 100 repeated measures within individuals), 
which lowers the statistical power to detect any effect. Con-
ceptually, this approach may lead researchers to draw inac-
curate conclusions about intraindividual effects by inferring 
from interindividual differences, a logical flaw in the inter-
pretation of statistical results known as the ecological fallacy 
(Robinson, 1950). Simpson’s paradox represents a specific 
example of an ecological fallacy where a trend in a vari-
able within individuals reverses or disappears when these 

yi = b0 + b1SCRi + �i.
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data are aggregated to conduct analyses between individuals 
(Leppink, 2019). For example, aggregating the 100 deci-
sions in the IGT into a single value could give the impres-
sion that two individuals performed similarly, despite their 
actual decision-making patterns being reversed over time. 
For instance, one individual may begin by drawing cards 
from the risky decks and gradually pick from the safe decks, 
while the other might do the opposite. We believe that many 
researchers investigating the SMH using general linear mod-
els have fallen prey to the ecological fallacy, assuming that 
individuals are the sum of their decisions. Investigating the 
SMH not only involves being careful about the treatment of 
the repeated dependent variable (i.e., the decisions) but also 
the repeated independent variable (i.e., SCRs).

Electrodermal activity as an index of somatic 
markers

Electrodermal activity (EDA) is a physiological phenom-
enon that manifests as changes in the electrical properties 
of the skin in response to the activity of the sympathetic 
nervous system. Electrodermal activity has been utilized as a 
physiological marker of emotional and cognitive processing 
since the 1800s (Boucsein, 2012). Electrodermal activity is 
composed of tonic and phasic components, which character-
ize slow and rapid changes in skin conductivity, respectively 
(Boucsein, 2012). Skin conductance responses are phasic 
changes defined as discrete increases in EDA activity cross-
ing a predetermined threshold. When these SCRs occur in 
response to a stimulus, they can be used as a proxy for physi-
ological emotional responses. The tonic component of EDA 
is composed of the baseline skin conductance level and the 
nonspecific SCRs (i.e., SCRs appearing without any eliciting 
stimulus). The tonic component of EDA is primarily evalu-
ated by aggregating non-specific SCRs that occur within 
a specified timeframe. Compared with baseline, the num-
ber of nonspecific SCRs increases during the completion 
of various cognitive tasks, which has been linked to higher 
arousal, increased selective attention, and task engage-
ment (Boucsein, 2012; Dawson et al., 2017). For example, 
individuals who disengage from tasks that are too difficult 
exhibit a reduction in nonspecific SCRs relative to those who 
successfully complete the same task (Pecchinenda, 1996).

Studies investigating the SMH have generally opera-
tionalized anticipatory SCRs as the area under the curve of 
the five seconds preceding the decision (Figner & Murphy, 
2011; Naqvi & Bechara, 2006). Consequently, this method 
quantifies the somatic state before the decision by assuming 
that this captures the somatic state of the participant while 
they reflect on which deck to choose. Although we believe 
this method to be adequate, it must be interpreted with cau-
tion. This 5-s time window is presumably a mixture of both 

phasic and tonic EDA components, as nonspecific SCRs may 
be incorporated in the anticipatory SCR calculation.

Traditionally, the 100 anticipatory SCRs have been 
aggregated into a single value to use general linear models. 
However, the aggregation of SCRs spanning the completion 
of a task is predominantly used as a proxy for tonic EDA 
(Tronstad et al., 2022). Aggregating SCRs eliminates any 
intraindividual effect, which is problematic given that the 
latter is the primary focus of the SMH (i.e., somatic mark-
ers before a given decision will influence the decision at 
that specific moment for a given individual). Therefore, this 
method addresses substantially different questions, such as 
whether arousal, concentration, or involvement levels (i.e., 
the tendency to generate SCRs) correlate with the tendency 
to take risks. Given that individual differences in tonic EDA 
are related to performance in tasks demanding sustained 
attention (e.g., IGT; Dawson et al., 2017), individuals dis-
playing greater aggregated SCR should perform better on 
the IGT. These issues cast doubt on the interpretation of 
the SMH literature. In fact, the inverse correlation between 
interindividual (and potentially tonic) SCR and risk-taking 
in the IGT could simply indicate that individuals who suc-
ceed are those who are engaged in the task.

To overcome this issue, one could reasonably approxi-
mate the intraindividual variability in SCR by including a 
term for the variance in SCR for each participant in a general 
linear model. However, this method would also be unsuitable 
as the independence assumption of general linear models 
remains violated. Moreover, summarizing intraindividual 
variability with a single variance measure would mask trial-
by-trial SCR fluctuations over time, which are critical for 
testing the SMH. Finally, interpreting this variance as an 
individual-level variable could still lead researchers to com-
mit an ecological fallacy, because it reduces SCR trial-level 
dynamics to a static person-level summary. Recently, more 
sophisticated statistical models have been increasing in pop-
ularity and can be used to circumvent ecological fallacies.

Multilevel logistic models

As with the repeated trials in the IGT, repeated measures 
designs confront researchers with a hierarchical 2-level data 
structure: level 1, representing the repeated measures within 
a participant (intraindividual component), and level 2, rep-
resenting the interindividual differences. Owing to the 100 
observations within the same individual in the IGT, the data 
violates the statistical assumption of independent observa-
tions of general linear models. Ignoring this assumption 
violation underestimates the standard errors and leads to a 
greater likelihood of Type I (false positive) errors (Musca 
et al., 2011). Given their ability to simultaneously model 
level 1 (within-individual) and 2 (between-individual) 
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variance components, multilevel models can account for 
these within-individual correlations. Many authors have 
discussed the mathematical principles of multilevel mod-
els in depth (Duplessis-Marcotte et al., 2022; Nezlek & 
Mroziński, 2020; Page-Gould, 2016; Sommet & Morselli, 
2017). Briefly, the intercepts and slopes in general linear 
models are fixed. In other words, these models assume that 
the mean intercept and slope of the sample are representa-
tive of all individuals and that these parameters do not vary 
between individuals. Multilevel models are an extension of 
general linear models and address this issue by allowing 
these parameters to vary across individuals. As every deci-
sion in the IGT (rather than their sum) must be considered, 
the dependent variable is dichotomous (i.e., selection of a 
risky or safe deck). Consequently, multilevel logistic mod-
eling is recommended (Sommet & Morselli, 2017). To test 
the SMH using the IGT, the following multilevel logistic 
model equation can be used:

The left side of the equation corresponds to the logit of 
the probability (i.e., the natural logarithm of the odds) that 
the participant picked from a risky deck. The t identifies 
level 1 variables (draws 0 to 99), whereas i identifies level 
2 variables (i.e., individuals). On the right side, b0 corre-
sponds to the mean intercept, b1 is the mean slope of learn-
ing, TIME is a specific draw from 0 to 99, b2 is the mean 
slope of SCR, and SCR is the independent variable. The μ0i, 
μ1i, and μ2i correspond to the variance in the intercept and 
slope of SCR according to an individual i.

Several authors have employed multilevel models in 
IGT studies in recent years (Priolo et al., 2021; Wright & 
Rakow, 2023; Yip et al., 2020). However, with one excep-
tion (Yip et al., 2020), most have not explicitly stated how 
they treated the SCR variable. Others treated SCR as a 
dependent variable and deck selections as an independent 
variable (Priolo et al., 2021; Wright & Rakow, 2023), which 
raises concerns for three reasons. First, this approach does 
not conceptually align with the SMH as it inverts the tem-
poral sequence (i.e., anticipatory SCRs naturally precede 
decisions and should hence be modeled as predictors and 
not outcomes in the model). Second, the model impedes the 
investigation of variables potentially moderating the asso-
ciation between SCR and decision-making (e.g., emotional 
intelligence; Yip et al., 2020) and thus, renders the model 
less flexible. Third, modeling SCR as a dependent variable 
cannot readily distinguish between the intra- and interin-
dividual variance components of SCR. Given that SCR is 
collected multiple times within an individual, its raw value 

Logit
(

P(yit=1)
1−P(yit=1)

)

= b0i + b1iTIMEit + b2iSCRit,

b0i = b0 + �0i,

b1i = b1 + �1i,

b2i = b2 + �2i.

represents an uninterpretable mixture of intra- and interin-
dividual variance (Wang & Maxwell, 2015). Its variance 
components must be partitioned to understand the impact 
of the phasic time-dependent (intraindividual variance) and 
tonic time-invariant (interindividual variance) components 
on decision-making. To do so, the variable must be centered 
within individuals (Enders & Tofighi, 2007), meaning that 
the mean SCR of each individual is subtracted from their 
own raw SCR values. This creates a new level 1 variable, 
which depicts within-individual variations in SCR through-
out the task, that is orthogonal (i.e., uncorrelated) to the 
level 2 component (the mean SCR). In other words, the 
intraindividual SCR variable has a mean of 0 for all partici-
pants (corresponding to their personal mean SCR), whereas 
the interindividual SCR has a mean of 0 (representing the 
mean SCR value for all participants). With this, the afore-
mentioned equation now becomes:

Here, xSCRi
 is the interindividual SCR (i.e., the mean SCR 

for each individual) and SCRit − xSCRi
 is the intraindividual 

mean-centered variable representing the SCR of individual i 
at draw t. The parameter (b2) of the interindividual effect of 
SCR, xSCRi

 is now fixed at level 2, as level 1 variance is rep-
resented by b3i (the parameter of the intraindividual SCR). 
This model now allows us to test whether the intraindividual 
(b3i) and/or the interindividual (b2) effects of SCR predict 
decision-making.

Although Bechara and Damasio (2005) did not ini-
tially consider this multilevel structure, they also proposed 
hypotheses at level 2. For example, they propose that back-
ground somatic states may interfere with discrete somatic 
markers during decision-making. Empirically, participants 
exposed to a stressor have indeed exhibited lower between-
individual SCRs, resulting in riskier performance in the IGT 
compared with a control group (Yilmaz & Kafadar, 2022). 
By aggregating all level 1 data to level 2, the conclusions 
emerging from the analyses may only concern background 
(level 2) somatic states. In fact, lower interindividual SCR 
in the stressed group may infer lower tonic EDA activity 
(Dawson et al., 2017). This suggests that the poorer per-
formance of the stressed group was attributable to fewer 
attentional resources allocated to the IGT, rather than an 
alteration in somatic markers. The use of multilevel mod-
els allows for the direct testing of the hypothesis by mod-
eling the interaction between the level 2 component of SCR 
(i.e., background somatic state) and level 1 component (i.e., 
decision-specific SCR) on decision-making. Therefore, mul-
tilevel modeling is a flexible analytical tool allowing us to 

Logit
(

P(yit=1)
1−P(yit=1)

)

= b0i + b1iTIMEit + b2

(

xSCRi

)

+ b3i(SCRit − xSCRi
),

b0i = b0 + �0i,

b1i = b1 + �1i,

b3i = b3 + �3i.
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test more fine-grained research questions regarding level 1, 
level 2, or cross-level interactions.

Comparison of general linear and multilevel 
logistic analyses of simulated IGT data

Pseudorandom data were generated to test different mod-
eling approaches to analyze IGT data. This allowed us to 
compare whether the specified parameters used to gener-
ate the data are retrievable using different analysis meth-
ods (e.g., general linear or multilevel logistic models). For 
details on data generation, the complete scripts and data 
sets used in this study are available at https://​osf.​io/​e7ang/?​
view_​only=​2209d​066bf​7d43f​ea9cf​2803c​e44ba​58. All pro-
cedures were conducted in R (R Core Team, 2024). Based 
on commonly used sample sizes in IGT studies, we gener-
ated data for a fictitious study comprising 80 individuals. A 
variance–covariance matrix was constructed to generate the 
level 1 parameters for all simulated individuals. Each indi-
vidual has their own intercept (i.e., baseline tendency to take 
risks), slope of time (i.e., learning rate throughout the IGT), 
and slope of SCR (i.e., the intraindividual effect of SCR).

A total of six scenarios (i.e., data sets) were generated 
using different combinations of intraindividual and inter-
individual SCR estimates, which are depicted in Table 1 
as the specified parameters. The dependent variable had 
a dichotomous scale indicating whether the individual 
picked from the risky A or B decks (value of 1) or the safe 
C or D decks (value of 0) on a given draw. The meta-anal-
ysis by Simonovic et al. (2019) indicated that aggregated 

between-individual SCR is negatively associated with risk-
taking in the IGT. The first three scenarios included a nega-
tive level 2 SCR parameter (b2 = − 0.5) with either a positive 
(b3i = 0.3), negative (b3i = − 0.3), or null effect (b3i = 0.0) 
of level 1 SCR. This meta-analysis also revealed that some 
studies did not find any significant effect of SCR in the IGT. 
Therefore, the three remaining scenarios were generated 
using a null level 2 SCR effect (b2 = 0.0), with the three 
variations in level 1 SCR estimates. The specified standard 
errors were 0.115 for the effect of intra-SCR (level 1) on 
risk-taking and 0.121 for the effect of inter-SCR (level 2).

All six scenarios were initially analyzed using general 
linear models with the native linear regression lm function 
in R. The percentage of risky deck selections was taken to 
obtain a single value indicating the number of times indi-
viduals selected decks A and B across the 100 deck choices. 
The SCR value utilized was the mean of the SCRs across 
the 100 draws, which corresponds to the interindividual SCR 
component. The following syntax was employed to compute 
the linear regression: lm(total/100 ~ inter_SCR, 
data = wide_data), where total is a continuous variable 
representing the sum of the binary choices and inter_SCR is 
the mean SCR value across the 100 draws.

The six scenarios were then analyzed with the proposed 
multilevel logistic models, using the glmer function in the 
package lme4 (Bates et al., 2015). The first analyses were 
run using the raw aggregated SCR variable, which repre-
sents a mixture of intra- and interindividual SCR effects. 
Therefore, the model included a fixed effect of time (i.e., the 
learning rate) and SCR, as well as their random effects. The 
syntax was as follows:

glmer(binary ∼ time + SCR + (time + SCR|ID), data, family = binomial.

Table 1   Recovered estimates and standard errors of SCR for general linear models, multilevel logistic models with aggregated and disaggre-
gated SCR

Coefficients in logit scale (standard errors). Intra-SCR = intraindividual skin conductance response (SCR). Inter-SCR = interindividual SCR. 
Aggregated multilevel = multilevel logistic model with the raw aggregated SCR variable. Disaggregated multilevel = multilevel logistic model 
with the SCR variable disaggregated into its level 1 (intraindividual) and level 2 (interindividual) variance components. The specified parameters 
and standard errors of intra-SCR and inter-SCR were used to generate the six simulated data sets. For parsimony, we did not depict a positive 
association between inter-SCR and risk-taking considering that the scientific literature consistently reveals either a negative or a null association 
between inter-SCR and risk-taking (see the meta-analysis by Simonovic et al., 2019), but the conclusions remain the same for this scenario

Specified parameters Recovered SCR estimates

Intra-SCR Inter-SCR General linear model Aggregated multilevel Disaggregated multilevel

Level 1 Level 2

 − 0.3 (.115)  − 0.5 (.121)  − 0.072 (.024)  − 0.299 (.124)  − 0.285 (.128)  − 0.409 (.125)
 − 0.3 (.115) 0.0 (.121) 0.022 (.024)  − 0.277 (.114)  − 0.291 (.118) 0.103 (.131)

0.0 (.115)  − 0.5 (.121)  − 0.111 (.023)  − 0.034 (.119)  − 0.005 (.122)  − 0.595 (.125)
0.0 (.115) 0.0 (.121)  − 0.013 (.023) 0.008 (.103) 0.008 (.107) 0.031 (.108)
0.3 (.115)  − 0.5 (.121)  − 0.053 (.024) 0.289 (.107) 0.320 (.111)  − 0.348 (.125)
0.3 (.115) 0.0 (.121) 0.021 (.024) 0.234 (.117) 0.241 (.122) 0.112 (.125)

https://osf.io/e7ang/?view_only=2209d066bf7d43fea9cf2803ce44ba58
https://osf.io/e7ang/?view_only=2209d066bf7d43fea9cf2803ce44ba58
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Here, binary is the dichotomous dependent variable 
(1 = risky decks, 0 = safe decks) and “|” denotes the level 
of the random effects, which is the individual identifier 
“ID”. The second multilevel analysis required an addi-
tional step to separate the raw SCR variable into its inter- 
and intraindividual SCR components. Previous studies 
have addressed the issues regarding centering and dis-
aggregating between- and within-variance components 
in multilevel models (Curran & Bauer, 2011; Wang & 
Maxwell, 2015). A person-mean-centering approach is 

recommended to obtain two orthogonal variables repre-
senting the intra- and interindividual SCR components, 
which facilitates interpretation (Wang & Maxwell, 2015). 
The interindividual SCR is the mean of the person and 
the intraindividual SCR represents the deviation of a per-
son’s given SCR value from that same person’s mean. This 
method necessitates the inclusion of two variables in the 
analyses instead of a single SCR value. The syntax now 
becomes:

Here, intra_SCR represents the person-mean-centered 
SCR variable.

A summary of the recovered estimates and standard 
errors for the linear regressions, multilevel logistic mod-
els with the raw aggregated SCR variable, and multilevel 
logistic models with the disaggregated SCR variables are 
presented in Table 1. Of note, only the disaggregation of 
SCR variance components in multilevel models enables 
the simultaneous estimation of intra- (level 1) and interin-
dividual (level 2) effects of SCR. The recovered estimates 
of the linear regressions did not correspond to the specified 
intra- or interindividual SCR effects. The estimates were 
influenced by variation in the effect of interindividual SCR, 
but systematically underestimated the true interindividual 
SCR in the scenarios with a specified parameter of − 0.5. 
This is because of the lack of consideration of the intraindi-
vidual SCR effect and the learning rate throughout the IGT. 
Another issue of general linear models is the violation of the 
assumption of normality of the residuals. Considering that 
the dependent variable in the IGT is bounded between 0 and 
1 (i.e., it has a lower limit of 0% and an upper limit of 100% 
total cards drawn from the risky decks), and that individuals 
learn during the task (i.e., they choose less frequently the 
risky decks), the residuals are unlikely to follow a normal 
distribution. This means that linear models are inadequate 
to address nonlinear distribution and heterogenous variance 
of the residuals. Accordingly, Table S1 (see Supplemental 
Materials) shows that beta regressions, which account for 
bounded dependent variables and heteroscedastic variance, 
recovered more precise estimates of interindividual SCR 
compared to general linear models. Note that they remain 
less appropriate than multilevel models, as the latter allow 
to also estimate the effect of intraindividual SCR.

The recovered estimates of the multilevel logistic mod-
els using the raw aggregated SCR variable corresponded to 
the specified intraindividual SCR value. Yet, because the 
aggregated SCR is a mixture of level 1 and level 2 variances, 
the disaggregation of the intraindividual SCR variance from 
the interindividual SCR variance resulted in more accurate 

glmer(binary ∼ time + inter_SCR + intra_SCR + (time + intra_SCR|ID), data, family = binomial).

level 1 parameter estimates (i.e., not influenced by level 2 
variance). The results show that modeling random effects 
using multilevel logistic models with aggregated level 1 
and level 2 SCR components recovers parameters that are 
mostly representative of level 1. Consequently, interpreting 
results from aggregated multilevel models and general lin-
ear models may be erroneous, because these estimate to a 
greater extent level 1 and level 2 variances, respectively. 
Future meta-analyses should distinguish whether the esti-
mated effects reflect level 1 or level 2 SCR components as 
these could have opposing effects.

Because general linear models assume the independence 
of observations and do not account for random effects, the 
standard errors specified to generate the data sets (0.115 for 
the effect of intra-SCR and 0.121 for inter-SCR) were under-
estimated by the linear regressions (range 0.023–0.024) 
compared with both multilevel logistic models (range 
0.103–0.131). A similar conclusion applies for beta regres-
sions (see Supplemental Materials). This yields an overes-
timation of the test statistic and may cause greater Type I 
error rates (i.e., false positives; Musca et al., 2011). These 
results demonstrate that multilevel logistic models are more 
effective in recovering parameters. Disaggregating the SCR 
variable into its intra- and interindividual components allows 
for the accurate estimation of level 1 and level 2 parameters, 
as well as their standard errors.

The analyses of the simulated data show that multilevel 
logistic models allow for a more comprehensive under-
standing of the impact of somatic markers on decision-
making than traditional methods. Since its inception, the 
SMH has rarely been tested in accordance with its intended 
purpose, as studies mainly focused on between-individual 
differences. Yet, the intra- and interindividual variances in 
anticipatory SCRs may predict distinct patterns of decision-
making. Assessing intraindividual SCR directly tests the 
proposition of the SMH that experiencing a somatic marker 
can bias the subsequent decision and thereby, strengthens 
causal inferences. Furthermore, modeling the learning 
rate makes multilevel models highly flexible to test more 
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fine-grained hypotheses. For instance, the impact of SCR on 
decision-making may vary as participants learn throughout 
the task (Bechara & Damasio, 2005; Bechara et al., 1997). 
Including an interaction between the learning rate and the 
intraindividual SCR component could reveal important 
time-dependent effects. Somatic markers are thought to 
be implicit warning signals about the riskiness of choice 
options. At the beginning of the task, a positive relationship 
may be found between intraindividual SCR and risk-taking, 
such that an increase in SCR before selecting a card (rela-
tive to the individual’s mean anticipatory SCR) enhances 
the probability of choosing from the risky decks. Once par-
ticipants form intuitions about the win-loss contingencies of 
the decks, somatic markers may become a more conscious 
risk signal biasing them towards safer decks. Multilevel 
logistic models allow us to test this possible reversal in the 
relationship between intraindividual SCR and risk-taking 
throughout the task.

Empirical data demonstration

To assist researchers in implementing the proposed method 
for testing the SMH, we used the open access database from 
Priolo et al. (2021) for illustrative purposes. In their study, 
the authors investigated whether the use of irrelevant affec-
tive cues impacted risk-taking in the IGT. They used two 
experimental conditions with modified IGT procedures, and 
a control group which underwent standard IGT procedures. 
They used multilevel linear models with SCR as the depend-
ent variable and learning rate and deck choices (binary) as 
independent variables. Skin conductance response was not 
found to differentiate risky from safe decks in the control 
condition. Because they employed deck choices as an inde-
pendent variable, they were compelled to model the learning 
rate as a discrete variable representing five blocks for the 
draws 1–10, 11–20, 21–60, and 61–100. This was done to 
ensure that each cell included variability in deck choices. 
However, this technique does not allow to easily separate 

level 1 and level 2 variance components in SCR, as SCR is 
modeled as a level 1 dependent variable.

We aimed to demonstrate how to disaggregate SCR com-
ponents, implement multilevel logistic models, and interpret 
the results. We only applied our analytical strategy to their 
control condition, because it employed the standard IGT pro-
cedures. We show that the proposed analyses unravel new 
results that are coherent with the SMH.

SCR disaggregation

The initial step is to disaggregate the raw SCR variable. 
We subtracted the mean of the sample from all individual 
SCR measures, resulting in a variable with a mean of 0. 
Then, using the group_by() function of the dplyr package, 
we grouped the data by participant to compute the personal 
mean SCR for each participant, corresponding to the level 
2 component (interindividual SCR). To compute the level 1 
component (intraindividual SCR), we retained the data 
grouped by participant and subtracted their personal mean 
(interindividual SCR) from their individual SCR measures. 
This new intraindividual SCR variable has a mean of 0 for 
all participants. Therefore, this variable represents the vari-
ance in SCR relative to a given person’s mean. Critically, 
the intra- and interindividual SCR variables are orthogonal, 
meaning that one represents only level 2 variance (interin-
dividual SCR) and the other represents only level 1 variance 
(intraindividual SCR). Finally, we z-scored both the intra- 
and interindividual SCR variables to facilitate interpretation.

Model building and analyses

We fitted two multilevel logistic models using the glmer 
function of the lme4 package (Bates et al., 2015). The first 
model included the raw aggregated SCR variable, which was 
z-scored and centered around the grand mean of all individu-
als and was specified using this formula:

glmer(isBad ∼ SCRz ∗ Trial + (Trial|ID), data = df_priolo, family = binomial).

Here, isBad is a binary variable indicating the selec-
tion of a risky deck (1) or a safe deck (0), and Trial is 
the learning rate variable (from draw 0.00 to 0.99). In 

the second model, we used the disaggregated inter- and 
intraindividual SCR variables. The model was specified 
as 

glmer(isBad ∼ inter_SCRz + intra_SCRz ∗ Trial + (Trial|ID), data = df_priolo, family = binomial),

where inter_SCRz and intra_SCRz represent the inter- 
and intraindividual z-scored SCR variables and intra_
SCRz*Trial is the interaction term between intra_SCRz and 
Trial. As Priolo et al. (2021) reported an interaction in their 

congruent condition (where SCR predicted choosing from 
the bad decks only in the last 60 draws or so), we included 
an interaction term between the intraindividual SCR vari-
able and learning rate. Having a random slope for Trial and 
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intra_SCRz produced a singular fit. This is likely due to the 
random effect structure being too intricate. We ran two addi-
tional models, removing one random slope at a time. Only 
the model with a random slope of Trial converged. Upon 
examination of the variance of the random slope of intra_
SCRz, the model estimated a small random effect variance 
of 0.0004 between participants and may have contributed to 
insufficient variance.

The results of the two models are presented in Table 2. 
The models’ total explanatory power was moderate (con-
ditional R2 of 0.150 and 0.151 for the aggregated and dis-
aggregated models, respectively) and the portion related 
to the fixed effects alone was small (marginal R2 of 0.028 
and 0.030 for the aggregated and disaggregated mod-
els, respectively). The exponent of the logit estimates 
was taken to obtain odds ratios (OR). The main effect 
of SCRz in the model with aggregated SCR (OR = 1.10) 
falls between the inter_SCRz (OR = 0.94) and intra_SCRz 
(OR = 1.14) values of the model with disaggregated SCR. 
As expected, the aggregated SCR variable represents a 
combination of intra- and interindividual effects. Indeed, 
the odds ratio of interindividual SCR is below 1, although 
statistically non-significant. This result would indicate 
that individuals experiencing greater SCRs throughout 
the task take fewer risks, as reported in the meta-analy-
sis by Simonovic et al. (2019). In contrast, the effect of 

intraindividual SCR is statistically significant and greater 
than 1, implying that a one standard deviation increase in 
SCR before a given draw increases the odds of selecting 
from a risky deck by 14%.

Although the interaction between intra_SCRz and Trial 
did not reach statistical significance, the p-value of 0.070 
suggests a potential trend that warrants further investigation. 
The marginal moderation suggests that the effect of intrain-
dividual SCR on the likelihood of choosing risky decks may 
vary as participants progress in the task. As illustrated in 
Fig. 1, one method for visualizing the data involves plot-
ting the effect of intraindividual SCR at − 1 and + 1 stand-
ard deviation values to demonstrate how its effect varies 
over time. Importantly, for interpretation purposes, the two 
lines do not represent individuals exhibiting high or low 
intraindividual SCR, as would be the case with the inter-
individual SCR. Instead, the graph indicates that when a 
given person experiences an increase in SCR relative to their 
own mean SCR level, their likelihood of choosing a risky 
deck increases at the beginning of the task. Figure 2 repre-
sents the Johnson-Neyman plot of the marginal interaction, 
which identifies the specific values of the moderator variable 
(Trial) for which the effect of the predictor variable (intrain-
dividual SCR) on the outcome (risk-taking) is statistically 
significant. It can be observed that the effect of intraindi-
vidual SCR is only marginal up to the 30th card draw.

Table 2   Results of the Multilevel Logistic Regressions of the Data from Priolo et al. (2021)

SCR = skin conductance response. σ2 = residual variance. τ00  ID = variance of the random intercepts across IDs. τ11  ID.Trial = Variance of the 
random slopes for Trial across IDs. ρ01  ID = Correlation between random intercepts and random slopes for Trial. ICC = intraclass correlation 
coefficient. The negative correlation between the random intercepts and slopes suggests that individuals with higher baseline odds of selecting 
from risky decks tend to have a more negative slope of Trial, meaning their odds of selecting risky decks decreased over trials. The ICCs of 
0.13 / 0.12 indicate that 13 / 12% of the variance in deck selections is attributable to differences between participants

Predictors Aggregated SCR Disaggregated SCR

OR 95% CI p OR 95% CI p

(Intercept) 1.20 1.01–1.44 .042 1.23 1.02–1.47 .027
Inter_SCRz 0.94 0.83–1.06 .299
Intra_SCRz 1.14 1.01–1.28 .030
Trial 0.32 0.20–0.52  < .001 0.32 0.20–0.51  < .001
Intra_SCRz * trial 0.83 0.67–1.02 .070
SCRz 1.10 0.97–1.23 .130
SCRz * trial 0.88 0.72–1.08 .209
Random effects
σ2 3.29 3.29
τ00 ID 0.24 0.24
τ11 ID.Trial 2.24 2.24
ρ01 ID −0.70 −0.71
ICC 0.13 0.12
NID 49 49
Observations 4900 4900
Marginal R2 / Conditional R2 0.028 / 0.150 0.030 / 0.151



Cognitive, Affective, & Behavioral Neuroscience	

In their study, Priolo et al. (2021) used the raw aggre-
gated SCR variable as a dependent variable and reported 
no significant association between SCR and decision-
making in their control condition. Our analyses dem-
onstrated that disaggregating the SCR variable into its 
intra- and interindividual components enabled us to cap-
ture a more comprehensive understanding of the mod-
eled effects. The interaction between the intraindividual 

SCR and the learning rate was marginal in our proposed 
analyses, with an effect of intraindividual SCR in the first 
30 draws of the IGT. The marginal effect suggests that 
the sample size of 49 participants may be insufficient 
to detect the effect of intraindividual SCR on decision-
making. Alternatively, other variables may need to be 
incorporated in the model to reveal a significant interac-
tion between intraindividual SCR and learning rate in the 

Fig. 1   Simple slope plot of the marginal interaction between intrain-
dividual SCR and trial. Note. The y-axis represents the odds of select-
ing from the risky decks. The intra-SCRz represents the z-scored 

intraindividual SCR variable at − 1 and + 1 standard deviations. The 
plot was created using sjPlot (Lüdecke et al., 2024)

Fig. 2   Johnson-Neyman plot of the region of significance of the mod-
eration. Note. Johnson-Neyman plot using the interactions package 
(Long, 2019). The y-axis represents the slope of the intra-SCRz at 
different values of Trial (card draws). It identifies the moments during 

the IGT when the intraindividual SCR influences risk-taking and its 
corresponding slope. The region of significance is depicted in black 
(p < .05), whereas the grey portion indicates that the interaction is not 
significant (p > .05)
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IGT. For instance, a recent meta-analysis demonstrated 
that men are quicker to learn which decks are risky in the 
IGT (Zanini et al., 2024). Therefore, including the sex of 
participants in the model may reveal sex-specific effects 
of somatic markers on decision-making. Unfortunately, 
individuals’ sex was not available in Priolo et al.’s data-
base. Although the interindividual SCR component was 
statistically non-significant, its effect was opposite to the 
intraindividual SCR component. As the aggregated SCR 
variable had a mixture of intra- and interindividual vari-
ances, its effect was far from being statistically signifi-
cant (as found by Priolo et al., 2021). This underscores 
the necessity to employ SCR as an independent variable 
to disaggregate its variance components to prevent the 
masking of any opposing effects between the intra- and 
interindividual SCR components.

Discussion

The objective of this paper was to demonstrate the ben-
efits of using multilevel logistic models and disaggregat-
ing SCR into its intra- and interindividual components 
when investigating the SMH. Recent evidence suggests 
that somatic markers may have a small to medium effect 
on decision-making, such that greater mean SCR through-
out the task predicts better performance (Simonovic et al., 
2019). However, the heterogeneity in the results reported 
by the authors could be explained by statistical analy-
ses that are unfit for data inherent to repeated measures 
research (such as with the IGT). Indeed, the assumption 
of independent observations of general linear models is 
violated, rendering their use inappropriate. Multilevel 
models circumvent this issue by explicitly modeling the 
variance in intercepts and slopes across individuals. As 
the repeated measures of SCRs are modeled, a person-
mean centering approach can be used to generate two 
orthogonal values of SCR, representing purely level 1 
(intraindividual) and level 2 (interindividual) variance 
components. These variables can then be utilized in mul-
tilevel logistic models to ascertain whether the effect of 
SCR on decision-making relies on its variation according 
to one’s average level of SCR (intraindividual variance) 
or the mean level of SCR individuals exhibit through-
out the task (interindividual variance). Our simulations 
demonstrated that common statistical methods (e.g., gen-
eral linear models) result in confounded level 1 and level 
2 variances of SCR. Moreover, general linear models 
underestimated the standard errors, increasing the odds 
of obtaining falsely positive results. We also demon-
strated that disaggregating SCR into its intra- and inter-
individual variance components in a multilevel logistic 
model allowed us to explicitly estimate these two levels 

of variance simultaneously and more precisely (compared 
with using the raw aggregated SCR variable).

Our reanalysis of the data from Priolo et al. (2021) pro-
vides a compelling demonstration of the pitfalls of using the 
raw aggregated SCR (i.e., overlooking significant intraindi-
vidual effects). Our results also shed light on new insights 
for an interesting finding in the study by Simonovic et al. 
(2019). Their two meta-analyses revealed that although 
greater SCR was associated with better performance on the 
IGT (i.e., less risk-taking), individuals experienced greater 
SCR before choosing from risky decks. These conflicting 
results can be reconciled by using a multilevel framework. 
Our results show that intraindividual SCR may indeed pre-
cede the decision to choose from risky decks but only at 
the beginning of the task. Other researchers have empha-
sized the importance of considering the learning rate during 
the IGT, because the SCR may serve different purposes 
throughout the task (Xu & Huang, 2020). In the beginning, 
as participants have little insight into the win-loss contin-
gencies, somatic markers may develop as preconscious 
risky signals and precede the selection of risky decks. Once 
participants have gained a better understanding of the con-
tingencies, intraindividual SCR may then become a sig-
nal with the potential to bias (consciously or not) towards 
the safer decks (Maia & McClelland, 2004). Testing these 
hypotheses is only possible if one explicitly models the 
intraindividual variance in SCR, given that its effect might 
reverse as individuals progress through the IGT.

The IGT has been critiqued for its intricacy, given the 
involvement of numerous cognitive functions and the 
associated challenges of decomposing task performance 
into distinct cognitive processes (Schonberg et al., 2011). 
Some recent analytical approaches address this issue by 
modeling intraindividual cognitive processes with com-
putational methods that capture level 1 variance, as we 
proposed herein. These computational models aim to dis-
entangle latent psychological processes, such as reward 
sensitivity and win frequency sensitivity, and have been 
shown to enhance the psychometric reliability of the IGT 
(Sullivan-Toole et al., 2022). However, no existing compu-
tational models developed for the IGT have incorporated 
physiological data to directly test the SMH. Our approach 
is not in opposition to these computational models; rather, 
it provides a detailed description and demonstration of how 
to incorporate physiological data to enhance their predic-
tive power. By doing so, we could gain a more nuanced 
understanding of the interplay between cognitive and emo-
tional processes in the IGT, which could ultimately help 
address long-standing debates about the SMH and the role 
of emotion in decision-making (Chiu et al., 2022; Maia & 
McClelland, 2004).

Because SCR is the most used somatic marker proxy to 
test the SMH, the current article emphasizes its effect on 
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decision-making. Of note, this methodology can be used with 
other proxies for somatic markers, such as heart rate or elec-
troencephalogram recordings. The complete and annotated R 
syntax used for this manuscript is provided to guide research-
ers in using the proposed analyses. Moreover, the syntax can 
be adapted to include the four card decks if a research question 
is specific to each deck (rather than the dichotomous risky or 
safe decks). For example, this could be used to test the role of 
somatic markers in the prominent deck B phenomenon (Lin 
et al., 2007). Finally, the general concepts illustrated can be 
used in other paradigms using repeated measures, such as 
fear conditioning (Peyrot et al., 2024). Researchers interested 
in both intra- and interindividual variance components may 
benefit from employing the suggested approach, because it 
allows for a more comprehensive examination of the data and 
more precise hypothesis testing. By refining our analytical 
methods, we may finally be able to do justice to Damasio’s 
groundbreaking hypothesis and uncover the true extent of the 
somatic marker’s role in decision-making.
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