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Abstract

A plethora of techniques exist to determine the number of factors to retain in
exploratory factor analysis. A recent and promising technique is the Next Eigenvalue
Sufficiency Test (NEST), but has not been systematically compared with well-
established stopping rules. The present study proposes a simulation with synthetic
factor structures to compare NEST, parallel analysis, sequential x2 test, Hull method,
and the empirical Kaiser criterion. The structures were based on 24 variables con-
taining one to eight factors, loadings ranged from .40 to .80, inter-factor correlations
ranged from .00 to .30, and three sample sizes were used. In total, 360 scenarios
were replicated 1,000 times. Performance was evaluated in terms of accuracy (cor-
rect identification of dimensionality) and bias (tendency to over- or underestimate
dimensionality). Overall, NEST showed the best overall performances, especially in
hard conditions where it had to detect small but meaningful factors. It had a tendency
to underextract, but to a lesser extent than other methods. The second best method
was parallel analysis by being more liberal in harder cases. The three other stopping
rules had pitfalls: sequential x2 test and Hull method even in some easy conditions;
the empirical Kaiser criterion in hard conditions.
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Determining the correct number of factors remains a long-standing challenge in

exploratory factor analysis. Factor analysis is used to reduce the dimensionality of

data sets and, when no specific factorial structure is known a priori, deciding how

many latent factors to extract is a decisive question. Underextraction results in sub-

stantial bias on factor loadings, whereas overextraction can lead to factor splitting.

There has been a wide variety of techniques, called stopping rules, developed over

the years to determine the correct number of factors. A recent and promising tech-

nique which has already shown excellent performances in previous studies is the

Next Eigenvalue Sufficiency Test (NEST; Achim, 2017) which has been shown to

be robust to cross-loadings (Brandenburg & Papenberg, 2024), to have a low false-

positive rate (Achim, 2017, 2021) to be accurate in circumplex models (Brandenburg

& Papenberg, 2024), to be strongly theoretically aligned with factor analysis concep-

tualization (Brandenburg & Papenberg, 2024), and, being a nonparametric approach,

to be more flexible and broadly applicable across different types of data sets (Achim,

2021). In the work by Achim (2017), NEST was already shown to be better at identi-

fying the number of dimensions than other stopping rules, such as parallel analysis

(PA; Horn, 1965), revised PA (Green et al., 2012, 2015), minimum average partial

correlation (Velicer, 1976), and comparison data (Ruscio & Roche, 2012) over a lim-

ited set of scenarios. It was also shown to have a clear advantage over exploratory

graph analysis in the work by Brandenburg and Papenberg (2024).

Despite this promising start, the advantages of NEST in deciphering the number

of dimensions have remained relatively undiscussed. Among four recent extensive

comparisons (Auerswald & Moshagen, 2019; Finch, 2023; Lim & Jahng, 2019;

Neishabouri & Desmarais, 2024), none included NEST as a potential contender.

Therefore, it is unclear how well NEST performs compared with a wide range of

stopping rules in extensive simulation studies. Given the very few comparisons of

NEST to other methods, the purpose of the current study is to compare NEST perfor-

mance against the recommended stopping rules (Auerswald & Moshagen, 2019;

Finch, 2023; Lim & Jahng, 2019; Neishabouri & Desmarais, 2024), which are PA

(Horn, 1965), sequential x2 model test (SMT; Lawley, 1940), Hull method (HULL;

Lorenzo-Seva et al., 2011), and empirical Kaiser criterion (EKC; Braeken & van

Assen, 2017). They will serve as a benchmark for the current study.

Method

This simulation was carried out in R (R Core Team, 2023). The method NEST, PA,

and EKC were homemade functions. The HULL and the sequential x2 model tests

were from the EFAtools package (Steiner & Grieder, 2020). The MASS package

(Venables & Ripley, 2002) was used for data generation.

Methods to Decide the Number of Retained Factors
Parallel Analysis. PA (Horn, 1965) compares the empirical eigenvalues to the average

eigenvalues derived from a random multivariate normal distribution with uncorrelated
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variables (the identity matrix). The random samples are designed to have the same num-

ber of observations and variables as the actual data set. The criterion for extracting fac-

tors in PA is that their eigenvalues must exceed the average eigenvalue of the random

samples.

Although, some studies (for instance, Glorfeld, 1995) argued for the 95th percen-

tile of sample eigenvalues instead of traditional PA (average, or 50th percentile),

Auerswald and Moshagen (2019) and Lim and Jahng (2019) found that the tradi-

tional PA performed better than 95th PA. Meanwhile, Finch (2023) and Neishabouri

and Desmarais (2024) only used and recommended traditional PA. Thus, only the

mean variant of the PA method will be used herein.

The Next Eigenvalue Sufficiency Test. Like PA, NEST uses a synthetic correlation

matrix and resamples over a large amount (over a thousand) of data sets with the

same number of subjects as the target data set. The main difference is that NEST

sequentially uses synthetic correlation matrices containing k factors from which the

k + 1ð Þth sampled eigenvalues are recorded.

Contrary to PA which only uses the identity matrix for all eigenvalues (a well-

known issue with PA, Turner, 1998), NEST updates the synthetic correlation matrix

at every step. At k = 0, NEST uses, like PA, the identity correlation matrix to gener-

ate these samples. If the k + ið Þth empirical eigenvalue is higher than the 95th percen-

tile of the k + 1ð Þth sampled eigenvalues, the synthetic correlation matrix is updated

to contain the k-factor model’s loadings. In the common factor model defined as

X = Lj + E ð1Þ

where X are the manifest variables, L are the loadings, j are the factor scores, and E
is the residual error. If the manifest variables are standardized, we can express the

correlation matrix as

R =E(XX
0
): ð2Þ

From the loadings, L, and the uniquenesses, P =E ee
0� �

, factor analysis is the

model for the correlation matrix, R, of X,

R = LL
0
+ P: ð3Þ

When k . 0, the synthetic correlation matrix, R, is based upon Equation 3, that is,

from loadings, L and communalities, P, extracted from the k-factor model. The syn-

thetic correlation matrices are full correlation matrices. At this point, it is clear that

k = 0 is the specific case where L is empty (no factors, no loadings), and P is an iden-

tity matrix.

There are numerous ways to estimate the loadings L, such as maximum likelihood

(ML), principal axis factoring, minimum rank factor analysis, or any other factor

analysis method. As such, NEST is similar to revised PA (Green et al., 2012) which

first proposed to generate artificial data to produce an empirical probability for the
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k + 1ð Þth eigenvalues from a k-factor model. In its computation though, revised PA

uses the squared multiple regressions as the communality estimates and the associ-

ated eigenvalues, which reduced its performance (Achim, 2017).

Once the synthetic correlation matrix is updated, there is again a resampling over a

large number of data sets from which the k + 1ð Þth sampled eigenvalues are recorded.

The k + ið Þth empirical eigenvalue is compared to the 95th percentile of the k + 1ð Þth
sampled eigenvalues. This procedure continues until the test fails to reject the k + 1ð Þth
eigenvalues from the 95th percentile sampled eigenvalues obtained from the k-factor

model. When the test fails, k factors are deemed sufficient to account for the data set.

Sequential x2 Model Test. Common factor models are often evaluated using the likeli-

hood ratio test statistic (Lawley, 1940) with ML estimation. This test assesses

whether the model’s implied covariance matrix is equal to the population covariance

matrix. The test statistic follows an asymptotic x2 distribution if the observed vari-

ables conform to a multivariate normal distribution and other underlying assumptions

are met (Bollen, 1989).

To determine the appropriate number of factors in the model, the likelihood ratio

test can be sequentially applied, starting with a zero-factor model. If the x2 test statis-

tic is statistically significant (e.g., p\:05), it suggests that a model with one additional

factor (unidimensional factor model) should be estimated and tested. This iterative

process continues until a nonsignificant result is obtained, indicating the identification

of the appropriate number of common factors.

Hull Method. The HULL (Lorenzo-Seva et al., 2011) is an approach inspired by the

Hull heuristic. This method, akin to nongraphical versions of Cattell’s scree plot,

seeks to identify an elbow as evidence for the appropriate number of common fac-

tors. The HULL utilizes goodness-of-fit indices in relation to the model degrees of

freedom instead of relying on eigenvalues. It is based on the goodness-of-fit index

(better fit equals better models) and the viability of the model (more complex models

with lower fit index are unviable). The elbow is determined as the point where, con-

cerning the change in the model’s degrees of freedom, there is a substantial increase

in model fit compared with a lower number of factors, while the model fit is only

marginally lower compared with a higher number of factors. This criterion is estab-

lished by considering all viable fit values in relation to both their preceding and sub-

sequent fit values.

Empirical Kaiser Criterion. The EKC (Braeken & van Assen, 2017) is an approach that

incorporates random sample variations of the eigenvalues in the Kaiser–Guttman cri-

terion. On a population level, both criteria are equivalent. On the sample level, the

criterion is based on the distribution of eigenvalues of an identity matrix, which

asymptotically follows a Marchenko–Pastur distribution as

l0 = 1 +
ffiffiffiffiffiffiffiffi
p=n

p� �2
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for the first and then corrected for the next ones

lj = max
p
Pj

i = 0 l

p� j� 1
1 +

ffiffiffiffiffiffiffiffi
p=n

p� �2

, 1

 !

The first empirical eigenvalues above the criteria are retained. Like the Kaiser–

Guttman criterion, the value of one is the minimum to consider a factor as meaningful.

Simulations

Simulations were similar to previous studies (Auerswald & Moshagen, 2019; Caron,

2019; Finch, 2023; Lim & Jahng, 2019; Peres-Neto et al., 2005) using synthetic fac-

torial structures. To compare the methods, we incorporated a wide range of data con-

ditions that are challenging, but realistic in psychological and biological research.

Data were generated using random multivariate normal distributions from factorial

structures based on 24 variables with the number of factors (j) ranging between one

and eight factors, that is, common denominators of 24. The population loadings (d)

were .40, .50, .60 .70, and .80 in a given scenario; correlations between factors (r)

were .00, .10, .20, and .30. The first eight eigenvalues of every factor model are pre-

sented in the Online Supplementary Material. Three sample sizes (N ), 120, 240, and

480 were considered to reflect the 5, 10, and 20 subjects per item. In total, 360 sce-

narios were repeated 1,000 times. The performance of the stopping rules were evalu-

ated in terms of accuracy, the percentage of correct identification of the number of

factors (p z = jð Þ�100), and bias, the tendency to over- or underestimate (�z� j).

Results

The results section is divided into three parts: easy (one and two factors), intermedi-

ate (three and four factors), and hard cases (six to eight factors). All figures are struc-

tured similarly. The x-axis is the sample size (N .); the colored lines are the different

methods (see the legend). Each column represents a different population loading in

the given condition. Rows are divided by two conditions, the correlations between

factors (r) and the number of factors (j) in the scenario. The y-axis represents either

the accuracy (ranging from 0 to 100) or bias (ranging from 28 to 8).

Easy Cases

Figure 1 illustrates easy conditions and shows that PA, NEST, and EKC had the best

performances, having close to 100% correct identification. This result was obtained

regardless of sample sizes, loadings, correlations between factors, and the number of

factors. SMT and HULL were not the most accurate methods, both having correct

identification close to 80%, ranging between 70% and 90% depending on the condi-

tions. Figure 2 shows that SMT had a tendency to overestimate, whereas HULL had
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a tendency to underestimate the number of factors in the j = 2 condition. Overall, the

results depicted in Figure 1 indicate that the conditions were so easy that loading val-

ues and correlations between factors did not seem to have a substantial impact on the

performances.

Figure 1. Identification of Dimensionality for Conditions With 1 and 2 Factors (Easy).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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Intermediate Cases

Figure 3 shows that PA and NEST had the best overall performances in the intermedi-

ate condition. The worst performances were in the harder conditions pictured in

Figure 3, that is, l\:5 and N = 120. Otherwise, they showed excellent results. In

Figure 2. Bias for Conditions With 1 and 2 Factors (Easy).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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intermediate conditions (j = 3 or 4) shown in Figure 3, SMT and HULL still struggled

in the 70% to 90% correction identification. Again, correlations between factors did

not seem to have a substantial impact on the performances. Loading values (l) started

to show some influences at the low values of .40 and .50 (harder cases). EKC had

Figure 3. Identification of Dimensionality for Conditions With 3 and 4 Factors
(Intermediate).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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poorer performance than SMT and HULL at low sample sizes (n = 120). According

to Figure 4, SMT and HULL had the same pattern. HULL underestimated every con-

dition, whereas SMT overestimated in most conditions, except the low sample size

(n = 120) and low loadings (l = :40) where all stopping rules underestimated.

Figure 4. Bias for Conditions With 3 and 4 Factors (Intermediate).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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Hard Cases

Figure 5 presents the hardest conditions when the number of factors is j = 6 and 8.

NEST and PA stand out the most in identifying the number of factors compared with

other stopping rules. They were not perfect though as they were still incorrectly

Figure 5. Identification of Dimensionality for Conditions With 6 and 8 Factors (Hard).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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identifying the dimensionality in very hard conditions, especially when l\:50 and

n\240. Nevertheless, they were the closest to the correct identification on average

compared with other stopping rules. In the hardest case of l = :4, PA appeared super-

ior to NEST under the j = 8 condition, but this advantage is expected to vanish as

sample size increases, as shown in the j = 6, l = :4 conditions. As it is already

known, PA struggles in oblique structure r . 0 (Caron, 2019), which was noticeable

in the l = :6 conditions. NEST was much less influenced by the correlations between

factors. Finally, in the most challenging conditions, SMT had an generally good per-

formance, never better than NEST, but sometimes better than PA when n = 120.

EKC and HULL had the worst performances in these conditions.

Figure 6 shows that all methods had a tendency to underestimate, as expected.

Given the already-known fact that SMT overestimated, see Figures 2 and 4, it is not

surprising that the stopping rules are less biased than the others.

Discussion

The purpose of the current study was to present the stopping rules NEST and compare

its performance against four recommended stopping rules. Overall, NEST showed the

best performance, especially in difficult conditions. NEST was good at identifying

small but meaningful factors (very small eigenvalues). It was followed by PA who

sometimes outperformed NEST, partially due to PA being more liberal by using the

average sampled eigenvalues, whereas NEST used the more conservative 95th per-

centile. This, however, was only beneficial in the l = :4 conditions where it gave an

advantage to PA but was less effective when l . :4. In those cases, the performances

between NEST and PA were nearly equal or NEST was better. EKC had very good

performance in easy conditions, but worsened as conditions became harder. These

harder conditions had factors with eigenvalues close to or below one once sampling

error was added, which EKC cannot detect by definition. Thus, EKC cannot be used

when small factors are theoretically considered relevant. Finally, SMT and HULL

performed poorly in easy scenarios, achieving close to 80% correct identification,

whereas the other three had close to 99%. SMT showed an overestimation bias in

these conditions which proved helpful in harder conditions where its performance

almost matched NEST’s performance. HULL had the worst performance overall, in

the easy, intermediate, or hard conditions.

The current study extends previous work by investigating recommended stopping

rules, ensuring that EFA methodologies are up-to-date with the latest techniques. By

focusing on the performance of stopping rules under difficult conditions, which have

been less frequently addressed (Caron, 2019), the study demonstrates the robustness

of NEST in challenging scenarios, encouraging its broader adoption in EFA.

Comparing NEST with recommended stopping rules ensures that simulations results

can be analyzed, disentangled, and synthesized effectively. There are always new

methods to investigate and compare, such as the Comparison Data Forest (Goretzko

& Ruscio, 2024; combining machine learning techniques with comparison data
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method), methods based on minimizing out-of-sample prediction error across EFA

models (Haslbeck & van Bork, 2024), and signal cancelation factor analysis (Achim,

2024), which recovers each factor with at least two unique indicators by canceling

their common factor signal. Future studies should be carried out to investigate the

state of the art in determining the number of factors in factor analysis.

Figure 6. Bias for Conditions With 6 and 8 Factors (Hard).
Note. EKC = empirical Kaiser criterion; NEST = Next Eigenvalue Sufficiency Test; PA = parallel analysis;

SMT = sequential x2 model test; r = correlations between factors; j = the number of factors; l = loading;

N = sample size.
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Limits

The current simulations have some limits. First, factor structures had uniform load-

ings across factors. That means that eigenvalues of each factor were the same in the

population correlation matrix. Similarly, the correlations between factors were the

same for all factors, which was captured by the first eigenvalues at the population

level. These limits seem warranted to avoid an overcrowded design that would be

harder to interpret, but it would be an interesting step further for comparing stopping

rules. Another limit is that the data generation technique used multivariate Gaussian

variables only. A future study could investigate the effect of asymmetrical distribu-

tion and, if necessary, implement corrections to increase performance of the stopping

rules.

Another conceptual limit regarding NEST, but all techniques based on eigenva-

lues, such as PA and EKC also, is that the p eigenvalues are based on p 1� pð Þ=2

correlations, which leads to overidentification: there are infinitely many correlation

matrices that can produce a given set of eigenvalues. Most of these correlation

matrices lack a meaningful factorial structure, despite that stopping rules would still

yield a number of factors. To avoid such issues, researchers must construct scales in

a thoughtful manner. It is of substantial importance to retrieve meaningful factor

structures. That is why we emphasized earlier the importance of assessing factor

retention methods under real-world conditions.

Conclusion

The purpose of the current study was to compare the performance of NEST against

four recommended stopping rules (PA, HULL, EKC, and SMT). Overall, NEST

showed the best performance, especially in challenging conditions where it had to

detect small but meaningful factors. PA followed closely, sometimes outperforming

NEST, mainly due to being more liberal. While most techniques performed well in

easy scenarios, NEST particularly stood out in difficult ones. Some limitations of

NEST were addressed. Future studies should investigate and compare stopping rules

with more realistic and varied factor structures, such as non-Gaussian variables, ordi-

nal variables, different importance of factors, and various correlation patterns

between factors.
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