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Abstract: 

IS analysts need to acquire knowledge about users’ work processes to design high-quality systems. While researchers 
have proposed hands-on activities in cognitive learning theories to improve knowledge acquisition, current approaches 
rely on analysts verbally communicating with users or observing them perform their tasks in order to learn these work 
processes. We draw on social cognitive theory (SCT) to hypothesize and examine how effectively two learning 
approaches (an observation-only approach and an observation plus hands-on approach) help analysts better 
understand users’ computer-mediated work processes. Accordingly, we conducted an experimental study to compare 
these two learning approaches. We found that, while participants who had low prior domain knowledge about users’ 
work processes ended up understanding them better in the observation plus hands-on treatment than in the observation-
only treatment, the difference between the two approaches was not significant for participants who had high prior domain 
knowledge. 
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1 Introduction 

While the recognition that analysts need to understand users’ system needs has resulted in much literature 
that focuses on improving their ability to elicit system requirements (for a review, see Mathiassen, Saarinen, 
Tuunanen, & Rossi, 2007; Méndez Fernández et al., 2017), evidence in the literature suggests that, even 
when analysts acquire all the necessary user requirements, they still may not be able to recognize users’ 
fundamental issues, which can result in systems that fail to meet users’ needs (Gallivan & Keil, 2003; Markus 
& Mao, 2004; Shuraida & Barki, 2013). According to a report from the Standish Group (2015), inaccurate or 
inadequate system features negatively impact more than two thirds of IS projects and result in poor system 
quality, project delays, and cost overruns. Accordingly, researchers and practitioners have both 
underscored the idea that, in order to develop better systems, IS analysts need to better understand users’ 
work processes and the application domain1 that a future system intends to support (Beyer & Holtzblatt, 
1995; Byrd, Cossick, & Zmud, 1992; Schenk, Vitalari, & Davis, 1998; Vitalari, 1985).  

Some IS scholars have suggested that analysts need to observe users perform their tasks in order to better 
understand their work processes (e.g., Beyer & Holtzblatt, 1995; Dennis, Wixom, & Tegarden, 2015; 
Satzinger, Jackson, & Burd, 2016); that is, that they need to use observational learning2 methods. These 
methods build on social cognitive theory (SCT), a dominant paradigm in learning (Robertson, 1990; Taylor, 
Russ-Eft, & Chan, 2005) and IT training research. Findings from studies on these methods in which users 
first observe a model and then re-enact the behaviors (Gupta, Bostrom, & Huber, 2010; Santhanam, 
Sasidharan, & Park, 2013, p. 143) have consistently “converge[d] on the[ir] superiority”. 

The IT-training literature provides considerable insights into how participants learn computer applications 
(Gupta et al., 2010; Santhanam et al., 2013). We can extend this literature in two ways in order to better 
inform analysts when they learn about users’ computer-mediated work processes. First, while this literature 
has focused on participants learning productivity software (Gupta et al., 2010; Santhanam et al., 2013), 
analysts often need to learn users’ work tasks that they often conduct using more complex systems, such 
as enterprise systems. Second, although this literature has largely focused on novice users learning a new 
system (Gupta et al., 2010), analysts often design systems in familiar and novel domains throughout their 
careers as external consultants, agile experts, or organizational employees (Ko, Kirsch, & King, 2005; 
Schenk et al., 1998; Vitalari, 1985). Indeed, past research suggests that the benefit of certain observational 
learning approaches to the learner may depend on the learner’s prior domain knowledge. Notably, despite 
the central role that hands-on activites play in SCT for learning complex tasks (Johnson & Marakas, 2000; 
Gupta et al., 2010), researchers have found mixed results for the value it adds to observation (for a review, 
see Robertson, 1990; for a meta-analysis, see Taylor et al., 2005) and suggested that its influence may 
depend on a learner’s prior knowledge and expertise about the domain (Tannenbaum & Yukl, 1992; Taylor 
et al., 2005). 

The above considerations suggest that it would be useful to consider analysts’ domain knowledge when 
empirically examining whether hands-on observational learning approaches can help them better 
understand users’ work processes. In order to expand our knowledge on this issue, we conducted an 
experiment with 43 participants in order to compare how effectively observation-only and observation plus 
hands-on activities help analysts learn about users’ work processes that they perform when using an 
enterprise system. We found that participants who had low prior domain knowledge benefited more from 
the observation plus hands-on treatment than from the observation-only treatment, and that the difference 
between two approaches lacked significance for participants who had high prior domain knowledge.  

 
1 Consistent with Iivari, Hirschheim, and Klein (2004), we use the term “application domain” (or domain) to refer to a domain such as 
accounting, logistics, or marketing in which an organization currently or will use an IS. As the term “work processes” refers to the 
activities that users perform in an organizational context in order to produce products and/or services (see Alter, 2001; Iivari et al., 
2004), we use “application domain knowledge” (or domain knowledge) in order to refer to general knowledge regarding a given 
domain’s concepts and principles and “work process knowledge” to refer to specific knowledge of the organizational activities that 
users perform to make products and/or services. 
2 According to social cognitive theory (SCT), observing and modeling competent models represent observational learning’s foundation. 
However, according to Bandura (1988, 1999), effective observation and modeling provide guidance and feedback for explaining the 
rules that underlie a performed behavior, and the empirical literature we mention in this paper has used this “guided 
observation/modeling” approach. 
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2 Conceptual Background 

Contemporary systems analysis and design practices suggest that “more than any other activity, observing 
a business process in action” will help analysts better understand users’ processes (Satzinger et al., 2016, 
p. 56; Dennis et al., 2015). According to social cognitive theory (SCT), observation constitutes the first of 
two information processing activities that constitute observational learning. More specifically, SCT suggests 
that learning starts with behavior modeling in which individuals transform information about an observed 
behavior into knowledge structures that represent the “models, rules, and strategies” underlying that 
behavior (Bandura, 1986; Bandura, 1999, p. 24, italics added). Subsequently, in enactive mastery, learners 
refine and correct these knowledge structures as they perform the behavior themselves (i.e., by engaging 
in hands-on activities) (Bandura, 1986; Bandura, 1999).  

Notably, SCT has been the prevalent theory in IT learning and training research, which has found 
observational learning to be more effective than other learning methods (for useful reviews, see Gupta et 
al., 2010; Santhanam et al., 2013). However, this research has largely focused on novice participants using 
observation to learn productivity software (Gupta et al., 2010) and paid little attention to hands-on activities’ 
additional learning effects. While some researchers have found hands-on (enactive learning) activities to 
provide attentional and feedback mechanisms that enhance and refine learners’ knowledge (Bandura, 
1999), previous empirical research has not clearly established their benefit to observation (for a review, see 
Robertson, 1990; for a meta-analysis, see Taylor et al., 2005). The few IT training studies that have 
examined hands-on activities’ additional knowledge benefit (to observation) have found similar mixed results 
(see Gupta & Bostrom, 2013; Yi & Davis, 2001).  

Some researchers suggest that the value that hands-on practice provides to observational learning may 
depend on a learner’s prior domain knowledge (Yi & Davis, 2001; Tannenbaum & Yukl, 1992; Taylor et al., 
2005). As such, we need more research that considers analysts’ expertise and learning processes given 
the little work on the topic in the IT training and learning literature (Gupta et al., 2010). Accordingly, in this 
paper, we extend SCT in two main ways. First, we draw on the cognitive learning literature to account for 
the influence that prior domain knowledge has on individuals’ learning (Anderson, 1982; Glaser, 1990). 
Whereas SCT specifies the role that prior experience has on motivational and regulatory processes, such 
as outcome expectations and self-efficacy (Bandura, 1986), the cognitive learning literature expands on the 
influence that prior knowledge has on learning. Second, SCT provides a conceptual framework that 
illustrates how individuals develop behaviors and competencies (Bandura, 1986). However, analysts need 
to learn users’ work processes to design systems rather than competently perform these processes 
themselves. As such, we include the notion of knowledge structure in order to examine individuals’ 
understanding of the learned concepts and their relationships. 

2.1 Analyst Learning and Expertise  

Cognitive learning researchers agree that one’s knowledge acquisition involves a transition from possessing 
encoded declarative knowledge (i.e., general knowledge about facts, concepts, and principles in a domain, 
such as accounting or logistics) to acquiring more interconnected and organized “chunks” of knowledge that 
define the rules and relationships between these concepts (i.e., knowledge structure) (Anderson, 1982; 
Bandura, 1999; Glaser, 1990).  

Researchers have observed that experts and novices differ more in their knowledge structures than their 
declarative knowledge (Day, Arthur, & Gettman, 2001; Kraiger, Ford, & Salas, 1993) and that more 
developed knowledge structures reflect an individual’s domain expertise (Dorsey, Campbell, Foster, & 
Miles, 1999; Glaser, 1990; Rowe, Hall, Cooke, & Halgren, 1996). Further, researchers have found these 
knowledge structures to be more important than declarative knowledge for how effectively one accomplishes 
tasks, recalls information, solves problems (Day et al., 2001; Dorsey et al., 1999; Kozlowski et al., 2001; 
Rowe et al., 1996), acquires new information (Glaser, 1990; Kraiger et al., 1993), and understands complex 
and ill-defined domains (Day et al., 2001; Rowe et al., 1996).  

The IS literature echoes these findings and suggests that having accurate knowledge structures of users’ 
work processes likely helps analysts infer relations between various abstract, and often complex concepts 
about users’ work processes and application domains (Huang & Burns, 2000; Mackay & Elam, 1992; 
Schenk et al., 1998). Analysts likely first develop these knowledge structures via acquiring declarative 
knowledge, which then becomes increasingly structured through mental and physical practice. 
Consequently, analysts can draw on their knowledge structures in order to accomplish various system-
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development tasks to create physically representations of an IS and its related work processes (Browne & 
Parsons, 2012).  

Hence, given that analysts focus on designing systems that meet users’ task needs rather than skillfully 
perform these tasks themselves, we use knowledge assessments that focus on analysts’ cognitive 
knowledge of users’ work. More specifically, as we summarize in Table 1, we evaluate analysts’ knowledge 
of users’ work processes via their a) declarative knowledge, b) knowledge structure, and c) conceptual 
models. These components closely correspond to knowledge types that previous IT learning studies have 
proposed (Gupta et al., 2010; Nambisan, Agarwal, & Tanniru, 1999; Santhanam, Seligman, & Kang, 2007). 
In the present study, while declarative knowledge closely corresponds to know-what that reflects analysts’ 
knowledge of work process concepts and task procedures, knowledge structures and conceptual models 
closely correspond to know-why, which reflect analysts’ knowledge of the rules and interrelatedness 
between work process concepts. For example, in order to develop an appropriate supply chain system, 
analysts need to understand the product inventory concept and recognize that a replenishment operation 
occurs once inventory falls below a certain level (business concept and procedural know-what). They also 
need to understand the interrelationship between this concept and other work process concepts, such as 
product sales, forecast, and pricing (know-why). 

Table 1. The Knowledge Concepts We Use in this Study 

Concept Definition 
Conceptualization in 

previous studies 
Conceptualization in the 

present study 

Declarative 
knowledge 

“Knowledge about facts, 
concepts, and principles that 
apply within a certain domain” (de 
Jong & Ferguson-Hessler, 1996, 
p. 107). 

Know-what: “conceptual 
knowledge of the system 
functions and which of these 
are useful to support 
business tasks” (Santhanam 
et al., 2007, p. 176) 

Analysts’ knowledge about users’ 
work process concepts and tasks 
that an ERP system supports.  

Knowledge 
structures 

“Knowledge of how concepts 
within a domain are interrelated 
and organized” (Jonassen, 
Beissner, & Yacci, 1993, p. 4). 

Know-why: “knowledge of 
the business rules built into 
the systems” (Santhanam et 
al., 2007, p. 177). 

Analysts’ knowledge of the 
organization, interrelatedness, and 
rules that underlie users’ work 
process concepts and tasks. 

Conceptual 
models 

“[Conceptual models] represent 
the semantics of the domain as 
perceived by stakeholders of the 
information system” (Burton-
Jones, Wand, & Weber, 2009, p. 
496) 

Know-why: “knowledge of 
the business rules built into 
the systems” (Santhanam et 
al., 2007, p. 177). 

Analysts’ formal semantic 
representation of the relationships 
and rules that underlie users’ work 
processes and tasks.  

2.2 Analysts’ Prior Domain Knowledge and Learning Methods 

Social cognitive theory (SCT) posits that learners develop knowledge structures about behaviors via 
observation and that they further develop these structures as they model the behaviors or perform them 
themselves (Bandura, 1999). Cognitive learning research has supported these ideas and suggested that 
hands-on experience can help develop knowledge structures via two mechanisms: 1) experimenting with 
an activity can provide learners direct feedback that can enable them to identify problems and evaluate their 
hypotheses regarding that activity (Bell & Kozlowski, 2008; Frese et al., 1988) and can allow them to make 
mistakes, which, in turn, can help them develop integrated and coherent knowledge structures (Frese et al., 
1988; Keith & Frese, 2008); and 2) hands-on activities can lead to greater attention and motivation than 
vicarious learning methods, such as observation alone (Bell & Kozlowski, 2008; Frese et al., 1988).  

However, while hands-on practice will likely provide added benefit to novice learners, it will not likely benefit 
experts for two reasons. First, while novices often tend to overestimate their knowledge (Kruger & Dunning, 
1999; Johnson & Marakas, 2000) and will likely require the direct feedback from hands-on experience that 
allows them to validate their knowledge and correct any misconceptions and knowledge gaps they have (Yi 
& Davis, 2001), experts are more aware of their knowledge abilities (Johnson & Marakas, 2000) and more 
likely to better address them via observation alone. Second, as novices have greater knowledge gaps and 
less integrated and structured knowledge (Huang & Burns, 2000), they will likely require additional cognitive 
effort and hands-on experience to acquire knowledge about a particular domain. In contrast, experts’ well-
organized knowledge structures enable them to more easily process and acquire novel and unstructured 
information about that domain (Huang & Burns, 2000; Sweller, 1988). Thus, once experts have assimilated 
the information they acquire from observation into their knowledge structure, providing redundant 
information fails to deliver any learning gains (Kalyuga, 2007). 
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The above considerations suggest that, by first observing users demonstrate their work, a novice analyst 
who possesses little prior knowledge regarding that user’s domain would be able to understand the concepts 
involved in that user’s work process and the relationships among those concepts at a basic level (i.e., 
develop their own knowledge structures of the users’ work process). Then, by performing these activities 
hands-on, analysts who possess low prior domain knowledge (novice) would be likely to better integrate 
and organize their newly learned concepts, and, through a trial-and-error process, they would be able to 
better organize and develop the relationships between them. In contrast, by observing users execute their 
work processes, analysts who already have prior domain knowledge about users’ work domain (e.g., 
expertise in accounting, operations) would be likely to more easily acquire and integrate new and relevant 
knowledge into their existing knowledge structures than analysts who possess little prior domain knowledge. 
As such, “already knowledgeable or expert” analysts would be less likely to benefit from doing additional 
hands-on activity since such activity would likely provide redundant knowledge. Hence, we hypothesize: 

H1:  The observation plus hands-on approach positively influences the accuracy of analysts’ 
knowledge structure (concerning users’ work processes) more strongly than the observation-
only approach when they have low prior domain knowledge (concerning the general domain of 
those work processes) compared to when they have high prior domain knowledge. 

H1 compares the interaction between both learning approaches and analysts’ prior domain knowledge. 
Interestingly, the above argument also suggests that an observation-only approach will more strongly benefit 
analysts who have high prior domain knowledge than analysts who have low prior domain knowledge. This 
reasoning suggests that, just by observing users demonstrate their work processes, analysts who have high 
prior domain knowledge would be likely to more easily acquire and integrate new and relevant knowledge 
(e.g., about a specific work process in an organization) into their existing knowledge structures than analysts 
who have low prior domain knowledge. Hence, we hypothesize: 

H2:  In an observation-only approach, analysts with high prior domain knowledge accumulate more 
accurate knowledge structures of users’ work processes than analysts with low prior domain 
knowledge. 

Even though knowledge structures represent analysts’ cognitive models about users’ work processes 
(Bandura, 1986), analysts also need to use formal modeling approaches in order to communicate their 
application domain and work process knowledge to users and other project stakeholders (Browne & 
Parsons, 2012; Davern, Shaft, & Te’eni, 2012; Wand & Weber, 2002). As such, we also need to measure 
IS analysts’ conceptual models and declarative knowledge to examine their IS design effectiveness (e.g., 
Khatri, Vessey, Ramesh, Clay, & Park, 2006; Marakas & Elam, 1998). Yet, while researchers believe that 
analysts rely on internal mental representations to create such physical models, they have yet to extensively 
examine these models’ quality and how well they represent their knowledge of work processes (Davern et 
al., 2012, p. 278; Khatri & Vessey, 2016).  

In order to create physical artifacts that model “real-world” work process concepts and their relationships, 
analysts need to draw on their internal representations (Davern et al., 2012; Wand & Weber, 2002) (i.e., 
their knowledge structures). Given that well-structured knowledge can help enhance information retrieval 
and recall (Chi, Glaser, & Rees, 1982; Glaser, 1990; Kraiger et al., 1993), analysts with more developed 
knowledge structures will be more likely to recall work process concepts and their relationships and, thus, 
more likely to render more complete and accurate conceptual models. Hence, we hypothesize: 

H3:  The accuracy of IS analysts’ knowledge structures of users’ work processes positively 
influences the accuracy of their conceptual models (of users’ work processes). 

Further, given that structured knowledge facilitates information recall and recognition (e.g., Chi et al., 1982; 
Davis & Yi, 2004), as analysts’ knowledge of users’ work processes becomes more structured, they will be 
more likely to more effectively recall their declarative knowledge about those processes. Hence, we 
hypothesize: 

H4:  The accuracy of IS analysts’ knowledge structures of users’ work processes positively 
influences the accuracy of their declarative knowledge of those processes. 
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3 Method 

In order to test the above hypotheses, we conducted an experiment by manipulating learning as a between-
subject factor and randomly assigning subjects to one of the following two treatments: 1) observation only, 
and 2) observation plus Hands-on. 

3.1 Participants 

We recruited students in graduate management information systems (MIS) programs, graduate computer 
science (CS) programs, or masters of business administration programs with an IS background or IS 
concentration from four universities. First, we conducted a pre-test and a pilot study (with two and 17 
participants, respectively) to assess and improve the experimental procedure and study measures. Next, 
we conducted the experiment with 51 graduate students who had agreed to participate in the study. 
However, we eliminated eight due to their self-assessed language deficiency, which yielded a final sample 
with 43 participants (16 MBA, 11 MIS, and 16 CS students). We describe participants’ characteristics in 
Table 2 below. 

Table 2. Participant Characteristics 

Demographics Category 
Participants in each category 

Count % 

Participants’ degree (completed or 
pending) 

MBA 16 37.2 

Management information systems 11 25.6 

Computer science 16 37.2 

Years of IT-related work experience 
Mean: 4.26 years 

Standard deviation: 3.61 years 

< 1 year 5 11.6 

1 - 4 years 21 48.8 

5 - 8 years 12 27.9 

9 - 12 years 3 7.0 

> 12 years 2 4.7 

Type of IT-related work experience 
(numerous participants had 

multiple experiences) 

Software application 
programming/development 

34 79 

System/business analysis 23 53 

IS project management 18 42 

Database administration 13 30 

Network security administration 6 14 

Network architecture/administration 11 26 

Other (e.g., IT support and QA) 15 35 

Experience gathering requirements 
during IS projects (number of 

projects) 

None 17 39.5 

1-4 projects 22 51.2 

5-8 projects 2 4.7 

> 8 projects 2 4.7 

Age group (years) 

20-25 13 30.2 

26-30 16 37.2 

31-35 9 20.9 

36-40 5 11.6 

Gender 
Male 35 81 

Female 8 19 
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As the table shows, the participants had highly similar profiles to the professional IS analyst population (U.S. 
Department of Labor, 2013). In fact, several had already worked as professional IS analysts. The 
participants had 4.3 years of various IT-related work experience on average, 53 percent had worked as 
system/business analysts, and approximately 60 percent had experience in collecting system requirements 
in their respective IT functions3. Note that the participants’ similarity to IS analysts diminishes any potential 
issues regarding the student sample’s external validity and generalizability (Compeau, Marcolin, Kelley, & 
Higgins, 2012; Gordon, Slade, & Schmitt, 1986). 

3.2 Experimental Task 

The learning goal was for the participants to learn how a firm that distributes bottled water operates and to 
use the mySAP ERP package (which we refer to as SAP henceforth) to manage its operations. The package 
comes with ERPsim, software that simulates a buyer and supplier market and the passage of time. It also 
automates several administrative SAP transactions (Léger, 2006). ERPsim simulates a “real-world” 
operational business context that participants can use to evaluate the impact of their decisions across time 
(we describe ERPsim in more detail in Appendix A). In the experimental simulation, participants used the 
SAP interface to execute transactions and view reports in exactly the same way that one would use SAP in 
an actual organization. The experiment used a work process that comprised buying and selling bottled 
water. Thus, in addition to learning transactions to perform different SAP activities, the participants had to 
also identify the information that the system provided in order to make operational decisions. No participant 
had any prior experience with ERPsim or with the experimental work process. 

3.3 Experimental Procedure 

The experimental procedure used a randomized block design with subgroups that represented the 
participants study area (MBA, MIS, or CS) in order to minimize any potential differences between subgroup 
characteristics. We randomly assigned the participants from each block to one of two conditions: 1) 
observation only or 2) observation plus hands-on. As Figure 1 shows, all participants followed a similar 
experimental procedure except the participants in the treatment manipulation. Each participant conducted 
the experimental procedure individually in an office. First, we told them that we conducted our study to 
investigate how IS analysts learn users’ tasks, but we did not tell them about the different conditions. Next, 
asked them to respond to a pre-treatment questionnaire on demographic data (age group, educational 
background, IS-related experience, systems analysis experience, SAP and other ERP package experience, 
English proficiency, and prior knowledge of the task’s knowledge domain (i.e., operations management and 
logistics)). We explain how we developed the domain knowledge questions in Appendix B.  

Subsequently, we informed the participants that we would show them a task that simulated a real-life context 
after which we would ask them some questions about it. Next, we showed them a pre-recorded presentation 
that described the organizational context, which included organization’s products, operations, and market 
environment. Finally, the participant performed one of the two experimental treatments and, when finished, 
completed a post-treatment questionnaire that contained a declarative and structural knowledge test and a 
conceptual modeling task. The experimental session lasted approximately two hours for each participant. 
The study facilitator and research assistant (MIS doctoral students) followed a detailed script to ensure 
procedural consistency for each participant, and the facilitator observed each participant throughout the 
procedure in order to ensure their adherence to the treatment procedure.  

Further, in order to encourage participants to better focus on their experimental task, we paid them CAD$60 
for their time plus an additional payment of up to CAD$25 depending on their knowledge-assessment score 
that we calculated at the end of the experimental session. 

 
3 We note that the relatively small proportion of female participants in the study sample resembles the percentage of females who 

major or work in the IS/IT field, which ranges from 20 to 30 percent (Armstrong, Riemenschneider, & Giddens, 2018; U.S. Department 
of Labor, 2013; Harris, Cushman, Kruck, & Anderson, 2009). 
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Figure 1. Experimental Procedure 

3.4 Experimental Treatment Design 

In order to simulate a real-world analyst-user interaction environment, we followed applied ethnography 
approaches (Ball & Ormerod, 2000) and contextual inquiry (Beyer & Holtzblatt, 1995) that human-computer 
interaction and design research uses (Ball & Ormerod, 2000; Millen, 2000) to model the treatment’s 
observation component. Specifically, all participants watched a pre-recorded video of a research assistant 
who played a business expert. We told them that, in their role as system analysts, they needed to learn the 
work process they were about to observe in the video. During their session, each participant could also pause 
the video and ask questions to the research assistant (who stayed with the participant throughout this phase) 
whenever they wanted. We trained and instructed the research assistant to confine his answers and 
explanations only to task procedures and processes, and the assistant could repeat or further explain any part 
if a participant asked. We tested how consistently the research assistant responded to participants via 17 pilot 
sample interviews. In order to control for any potential confounding effects from different assistants, the same 
assistant acted as the expert in all interviews.  
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Following the video observation, we encouraged participants in the observation-only treatment to review 
their notes, re-watch any video segment, or ask questions to the assistant in case they finished the interview 
before the end of the allotted time. However, during the second half of the experimental session, rather 
reviewing their notes or re-watching video segments like the participants in the observation-only treatment, 
we asked the participants in the observation plus hands-on treatment to use SAP for 20 minutes in order to 
manage the firm’s operations and maximize its profitability. We based the model we used for this hands-on 
treatment on previous studies that have used exploratory research with few instructions about task 
procedures (e.g., Bell & Kozlowski, 2008; Carroll, Mack, Lewis, Grischkowsky, & Robertson, 1985; Frese et 
al., 1988). However, the model also provided participants with an objective and, thus, guidance to help focus 
their activities (Bell & Kozlowski, 2008). Also note that the same research assistant assisted participants 
during the hands-on experimental phase to provide help about software procedures and use. 

3.5 Measures 

We assessed participants’ knowledge of users’ work processes via declarative and structural knowledge 
measures and a conceptual modeling task. 

3.5.1 Declarative Knowledge 

We measured declarative knowledge at the end of each experimental session via 13 multiple-choice and 
true/false questions (we provide examples in Appendix C) that assessed the amount of knowledge each 
participant retained about task concepts and procedures. As no knowledge measures existed for the 
experimental task, we followed a deductive approach to create 10 questions to assess how well the 
participants recalled terms and activities related to their task. In developing these questions, we considered 
the ERPsim training materials and ensured we came to a consensus before we pre-tested them with two 
PhD students who were familiar with the experimental task and with the 17 participants in the pilot study. 
Based on their feedback, we revised some items for greater clarity, which also resulted in our adding three 
new items. We calculated each participant’s declarative knowledge score as the number of correct answers 
they gave to the 13 questions.  

3.5.2 Knowledge Structure 

We measured knowledge structure via a structural assessment approach that involved knowledge 
elicitation, representation, and evaluation (Goldsmith, Johnson, & Acton, 1991). In order to elicit how well 
participants understood relationships between task concepts, we identified the key concepts that 
represented the task domain. As no empirically validated procedures existed for selecting task concepts, 
we followed the suggestions in past research on cognitive structures in order to identify and refine relevant 
knowledge structure concepts. Thus, as researchers knowledgeable about the ERPsim tasks, we identified 
a list of 13 task-central concepts that a panel of three subject-matter experts (i.e., the researchers who 
designed the simulation software and the study’s experimental task) subsequently reviewed and revised. 
Based on the experts’ suggestions, we deleted one concept and made minor revisions to the others. As 
Appendix D shows, we then used the final set of concepts to ask respondents to assess the relatedness 
between each concept pair on 10-point scales (1 = completely unrelated to 10 = highly related) based on 
the knowledge they had acquired about the experimental task’s specific work processes4. Consistent with 
past research (Goldsmith, Johnson, & Acton, 1991), we asked the participants to base their answers on 
how they first intuitively judged the relatedness between each concept pair, and they all completed the rating 
task in the allotted time. 

While the proximity matrix that the participants generated in their responses reflects their domain 
knowledge, this raw proximity data contains noise; thus, researchers recommend that one conduct a scaling 
procedure to represent the data’s underlying organization (Goldsmith et al., 1991). One can do so via multi-
dimensional scaling (MDS) to compute “coordinates for a set of points in a space such that the distances 

 
4 Note that the pre-treatment questionnaire assessed analysts’ prior domain knowledge at a general abstraction level. In contrast, 
analysts’ knowledge structures that we elicited in the post-treatment questionnaire specifically pertained to the work processes they 
had learned (i.e., they pertained to the specific context). Hence, analysts’ prior domain knowledge differed in abstraction level than 
their knowledge structures. In addition, empirical studies in cognitive psychology have observed the notion that “different levels…of 
knowledge exist in a domain of interest” and that context-specific training mainly influences context-specific knowledge rather than 
general-level knowledge (e.g., Dorsey et al., 1999, p. 54).  
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between pairs of these points fit as closely as possible to measured dissimilarities between a corresponding 
set of objects” (Kruskal, 1964; Wilkinson, 1986).  

Based on the above suggestion, we used MDS to assess each participant’s knowledge representation by 
comparing it to the referent structure of the subject-matter expert panel. We correlated each participant’s 
MDS spatial representation (Euclidian distances between concept pairs) with an average composite of 
experts’ MDS spatial representation5 based on the idea that “experts’ organization and comprehension of 
domain knowledge are a close approximation of the true representation of that domain” (Day et al., 2001, 
p. 1023) and that experts’ aggregated responses can provide a robust referent structure (Day et al., 2001). 
The three ERPsim developers constituted the study’s expert panel and completed the structural assessment 
measure that we show in Appendix D. As their structural assessment largely converged (correlations 
between the three experts were r12 = 0.65, r13 = 0.76, r23 = 0.75, p < 0.01), we averaged their responses in 
order to provide the referent expert structure. We discuss the knowledge structure assessment in more 
detail in Appendix D. 

3.5.3 Conceptual Model 

For the conceptual modeling task, we asked participants to create a matrix similar to a modified version of 
an activity-data matrix6 (see Appendix E). Similar to data-flow diagrams (DFDs), this matrix has a functional 
perspective as it depicts the activities performed and the data (information) flows related to those activities 
(Curtis, Kellner, & Over, 1992; Luo & Tung, 1999). Its three columns identify: 1) activities, 2) information 
input needed to perform them, and 3) their information output. We also provided participants with a list of 
relevant and irrelevant elements (see Appendix E) as a memory aid to help them use a consistent 
terminology in their matrices. We obtained the correct matrix solution from the educational literature on 
ERPsim, which the simulation software’s technical developer verified. We then compared each participant’s 
matrix to this solution and calculated the participant’s score by giving a point for each accurate element 
(maximum score = 27). 

4 Analyses and Results 

We provide the correlations between the experimental variables in Table 3. In Table 4, we show the 
participants’ work experience, IS analysis work experience, and prior SAP, ERP and domain knowledge. In 
the latter table, one can see the experimental groups did not significantly differ in any characteristic. We 
determined the participants’ prior domain knowledge (i.e., operations management and logistics) in the pre-
treatment questionnaire with a median split identifying the high and low prior domain knowledge (domain 
novice/expert) groups. 

We tested the direct and moderating effects of participants’ prior domain knowledge measures separately 
for H1 and H2 by calculating each participant’s prior domain knowledge scores (i.e., the operations and 
logistics domain) as being either higher or lower than the sample median. Hence, we tested H1 with a two-
way ANOVA of learning method (observation-only, observation plus hands-on) and prior domain knowledge 
(high, low). Table 5 provides the descriptive statistics of the analysis, and Table 6 provides the results from 
the two-way ANOVA. 

As Table 6 shows, we found a significant interaction effect between the learning approach used and prior 
domain knowledge (F (1, 39) = 7.06, p = .011), which supports H1.  

 

 

 

 
5 As Appendix F shows, an elbow criterion test provided a two dimensional MDS solution with the best structural fit to the experts’ 
concept-similarity data. Hence, we performed all subsequent MDS analyses with two dimensions. 
6 Initially, we required pilot participants to construct a DFD after a 10-minute refresher on DFD concepts. We tested their knowledge in 
the pre-treatment questionnaire. However, consistent with anecdotal and research findings (for a discussion, see Neill & Laplante, 
2003; Wand & Weber, 2002), pilot participants found conceptual modeling difficult and could not construct a DFD. We then examined 
several alternative assessment approaches with other pilot participants and, based on the participants’ performance, used the modified 
activity-data matrix rather than the DFD. The feedback from the pilot participants confirmed that the final version of this matrix (see 
Appendix E) did not require complex conceptual modeling skills, which reduced this factor’s potential noise effect.  
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Table 3. Correlations Between Study Variables 

Variable Mean S.D. 1 2 3 4 5 6 7 8 9 

1. Declarative knowledge 10.09 2.39 1.00         

2. Knowledge structure .35 .22 0.37* 1.00        

3. Total work experience 
(years) 

4.26 3.60 0.05 -0.00 1.00       

4. IS analysis experience 
(years) 

1.07 1.32 -0.15 -0.18 0.45** 1.00      

5. SAP prior knowledge 0.99 1.29 0.14 0.11 0.01 -0.18 1.00     

6. ERP prior knowledge 1.65 2.88 -0.02 0.10 0.13 0.30* 0.16 1.00    

7. Prior domain knowledge 2.23 1.00 0.38* 0.28 -0.23 -0.29 0.34* -0.05 0.25   

8. Age 28.55 5.13 -0.04 0.10 0.55** 0.25 -0.20 0.30* 0.20 1.00  

9. Conceptual model 15.03 5.14 0.53** 0.32* -0.07 -0.18 0.15 0.18 0.35* -0.02 1.00 

* p < 0.05, ** p < 0.01 

 

Table 4. Characteristics of Participants in the Observation-only and Observation plus Hands-on Treatments 

 
Observation only Observation + hands-on 

T-test 
Mean S.D. Mean S.D. 

Total work experience 4.04 3.32 4.51 3.98 t(41) = -0.43, p = 0.67 (ns) 

IS analysis experience 1.09 1.41 1.05 1.23 t(41) = 0.09, p = 0.93 (ns) 

Prior SAP knowledge 0.99 1.24 0.98 1.38 t(41) = 0.01, p = 0.99 (ns) 

Prior ERP knowledge 1.17 2.70 2.20 3.05 t(41) = -1.17, p = 0.25 (ns) 

Prior domain knowledge 2.43 0.95 2.00 1.03 t(41) = 1.45, p = 0.16 (ns) 

 

Table 5. Descriptive Statistics (Dependent Variable: Knowledge Structure Accuracy) 

Treatment Knowledge level Mean Std. Deviation N 

Observation only 

Low  0.1463 0.17501 10 

High  0.4600 0.15769 13 

Total 0.3236 0.22665 23 

Observation plus hands-on 

Low  0.3938 0.19242 13 

High  0.3786 0.28533 7 

Total 0.3885 0.22170 20 

Total 

Low  0.2862 0.22014 23 

High  0.4315 0.20737 20 

Total 0.3538 0.22408 43 
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Table 6. Interaction Between the Learning Approach (Observation-only and Observation plus Hands-on) and 
Prior Domain Knowledge (i.e., Operations and Logistics) 

Source Type III sum of squares Df. Mean square F Sig. 

Corrected model 0.602a 3 0.201 5.195 0.004 

Intercept 4.792 1 4.792 124.025 0.000 

Treatment (learning 
approach) 

0.070 1 0.070 1.799 0.188 

Prior domain knowledge 0.224 1 0.224 5.809 0.021 

Treatment * prior domain 
knowledge 

0.273 1 0.273 7.059 0.011 

Error 1.507 39 0.039   

Total 7.492 43    

Corrected total 2.109 42    

R-square = 0.286 (adjusted R-square = 0.231) 

While the results in Table 6 indicate a significant interaction effect, they do not reveal its pattern. Thus, in 
order to identify the exact interaction pattern, we examined the effect that the two learning method 
treatments had (observation only and observation plus hands-on) on participants’ knowledge structures for 
the high and low prior domain knowledge groups. As Figure 2, Table 5, and the difference of means between 
groups (t-tests below), participants who had low levels of prior domain knowledge acquired significantly 
more accurate knowledge structures in the observation plus hands-on treatment (M = 0.39, SD = 0.19), than 
those who were in the observation-only treatment (M = 0.15, SD = 0.18) t (21) = -3.178, p = 0.005). On the 
other hand, for the high prior domain knowledge group, we found no significant difference between the two 
learning approaches in terms of their influence on participants’ knowledge structure accuracy (t (18) = 0.831, 
p = 0.417). Also note that, since we observed no significant differences between the low prior domain 
knowledge participants in the two experimental groups (in terms of their work experience, systems analysis 
experience, SAP/ERP knowledge, and age), these factors did not likely confound the observed and 
significant interaction effect (Table 7, t-test 1 vs. 2). We also measured other potentially confounding 
variables that we found in the literature, such as participants’ self-efficacy (Johnson & Marakas, 2000) and 
perceived system ease of use (PEOU). We measured the variables in the post-treatment questionnaire 
using four items each with the former adapted from Ortiz de Guinea and Webster (2011) and the latter from 
Venkatesh (2000). As Table 7 shows, both intergroup t-tests did not have a significant effect on both 
variables. 

 

Figure 2. Knowledge Structures of High and Low Domain Knowledge Participants in Each Treatment 
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Table 7. Differences Between Experimental Treatment Groups 

 
1) Observation only 

(low prior domain 
knowledge) (n = 10) 

2) Observation + 
hands-on (low prior 

domain knowledge) (n 
= 13) 

3) Observation only 
(high prior domain 

knowledge) (n = 13) 
t-test 

(1 vs. 2) 
t-test 

(1 vs. 3) 

Mean S.D. Mean S.D. Mean S.D. 

Total work 
experience 

4.83 3.83 4.74 4.31 3.43 2.88 
t(21) = 0.05, 

p = 0.96 
(ns) 

t(21) = 1.00, 
p = 0.33 

(ns) 

IS analysis 
experience 

1.60 1.90 1.31 1.44 0.69 0.75 
t(21) = 0.42, 

p = 0.68 
(ns) 

t(21) = 1.43, 
p = 0.18 

(ns) 

Prior SAP 
knowledge 

0.67 0.99 0.54 0.75 1.23 1.40 
t(21) = 0.36, 

p = 0.72 
(ns) 

t(21) = 1.08, 
p = 0.29 

(ns) 

Prior ERP 
knowledge 

0.70 1.89 2.69 3.40 1.54 3.20 
t(21) = 1.79, 

p = 0.09 
(ns) 

t(21) = 0.73, 
p = 0.47 

(ns) 

Age 26.25 4.35 29.81 5.76 28.62 5.13 
t(21) = 1.62, 

p = 0.12 
(ns) 

t(21) = 1.17, 
p = 0.25 

(ns) 

Post 
treatment 

self-efficacy 
7.83 0.53 6.90 1.50 7.21 1.49 

t(21) = 1.85, 
p = 0.08 

(ns) 

t(21) = 1.24, 
p = 0.23 

(ns) 

Post 
treatment 

PEOU 
7.4 2.14 7.60 1.82 8.19 0.93 

t(21)= -0.24, 
p = 0.81 

(ns) 

t(21)= -1.20, 
p = 0.24 

(ns) 

Further, while Figure 2 suggests that participants with high prior domain knowledge benefited more from 
the observation approach than participants with low prior domain knowledge, we conducted an ANOVA test 
to assess this effect’s significance. More specifically, in order to examine the significant influence that prior 
domain knowledge had on participants’ knowledge structure accuracy in the observation-only approach 
(H2), we compared participants with high and low prior domain knowledge. As Table 8 shows, participants 
with high prior domain knowledge benefited significantly more from the observation-only approach than the 
low prior domain knowledge group (F (1, 21) = 20.34, p = .000), which supports H2. Figure 2, which shows 
that participants with high prior domain knowledge acquired more accurate knowledge structures in the 
observation-only treatment (M = 0.46, SD = 0.16) than those with low prior domain knowledge (M = 0.15, 
SD = 0.18), further provides support for H2. Again, as Table 7 shows (t-test 1 vs. 3), we found no significant 
differences in terms of work experience, systems analysis experience, SAP/ERP knowledge, and age 
between the high and low prior domain knowledge participants in the observation-only treatment, which 
suggests these factors did not likely affect the observed results.  

Table 8. ANOVA Results for the Effect that Prior Domain Knowledge had on Participants’ Knowledge 
Structure Accuracy (Observation Only, H3) 

 Sum of squares Df. Mean square F Sig. 

Between groups .556 1 .556 20.342 0.000 

Within groups .574 21 .027   

Total 1.130 22    

Further, we examined the influence that participants’ knowledge structure accuracy had on their declarative 
knowledge and conceptual model accuracies (H3 and H4, respectively) via a regression analysis. As Table 
9 shows, we found that participants’ knowledge structure accuracy significantly influenced their declarative 
knowledge accuracy scores and the accuracy of their conceptual model (β = 0.368, t (41) = 2.531, p = 0.015, 
and β = 0.316, t (41) = 2.054, p = 0.047), which supports both H3 and H4. 
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Table 9. Regression results: Influence that Participants’ Knowledge Structure Accuracy had on the Accuracy 
of their Declarative Knowledge and Conceptual Model 

 Declarative knowledge Conceptual model 

Variable B SE (B) β B SE (B) β 

Knowledge structure 
accuracy 

3.919 1.548 .368* 7.755 3.776 .316* 

R2  .135   .100  

F  6.408*   4.218*  

* p < 0.05 

5 Discussion 

In this study, we investigated and compared how effectively two theory-based learning approaches help IS 
analysts understand users’ work processes. Hence, we compared the learning effectiveness of 1) observing 
a user perform a work process (observation only) and 2) first observing a user and then actually performing 
the work process (observation plus hands-on). We found that participants’ domain-specific knowledge 
significantly moderated the influence that the two learning approaches had on their knowledge structure’s 
accuracy. Further, we conducted a post hoc analysis and did not find a direct significant difference between 
the two learning approaches in terms of participants’ knowledge structure accuracy (F (1, 41) = 0.89, p = 
0.35), which the significant and large interaction effect that we observed (see Figure 2) between the learning 
approach and participants’ domain knowledge (which they possessed before participating in the experiment) 
explains. More specifically, we found the accuracy of participants’ knowledge structures to depend on their 
prior domain knowledge: participants who had low prior domain knowledge learned significantly more in the 
observation plus hands-on treatment than in the observation-only treatment. As Figure 2 shows, after going 
through the observation plus hands-on treatment, participants with low prior domain knowledge did not have 
significantly different knowledge structure scores than participants who already had high prior domain 
knowledge (M = .39 and .38, SD = .19 and .29, respectively; t (18) = 0.14, p = .89). These results concur 
with SCT and suggest that the observation plus hands-on approach to understanding users’ work processes 
can be an effective learning approach for analysts who have low domain knowledge (domain novice 
analysts).  

In contrast, participants who had prior domain knowledge did not benefit from the hands-on approach. This 
finding supports the previous cognitive learning literature by showing that experts’ rich knowledge structures 
enabled them to more easily assimilate new knowledge into their existing knowledge structures by using 
observation, which rendered the hands-on approach redundant. Further, due to their richer and more 
organized knowledge structures, expert participants learned the work processes they observed significantly 
better than novices (i.e., they benefited from the observation-only approach significantly more than novice 
participants).  

In addition, knowledge structure accuracy significantly influenced declarative knowledge and conceptual 
modeling task accuracy. These findings concur with past research that has found that individuals who 
possess high domain knowledge acquire and organize information more effectively than those who possess 
lower domain knowledge (Armstrong & Hardgrave, 2007; Schenk et al., 1998; Vitalari, 1985).  

5.1 Study Limitations 

Despite the general concerns regarding the external validity of experiments in a laboratory setting (even 
though we conducted an experimental task that accurately simulated actual tasks that actors in 
organizational contexts perform), the controlled environment enables researchers to rigorously control 
several potential confounding factors. Given that we lack prior research in this area, the experiment’s strong 
internal validity provides an effective method for testing the influence of the two treatments. 

We also note that our participants comprised university students who might not have had the same 
motivations as analysts working in organizational settings. In an effort to minimize this limitation, we carefully 
selected participants in order to ensure they represented actual IS analysts’ educational profile and skills 
(e.g., they had an average of 4.26 years of work experience in the IS field, and 26 had more than a year of 
work experience as actual IS analysts). We also provided them with a performance-based reward as an 
incentive. Interestingly, all participants requested to see their results when the study ended, which suggests 
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that they felt motivated to perform well in their experimental task. Nevertheless, the careful selection criteria 
resulted in a final sample with 43 participants; while we would have desired a larger sample size, the 
significant statistical support for H1 and H2 and the large effect sizes suggest that the sample size was 
adequate. 

Another potential limitation concerns our using the modified activity-data matrix as a conceptual model 
rather than the DFD. Even though formal modeling approaches can fall “into disuse” in organizations due 
to their complexity (Wand & Weber, 2002, p. 364), one could view our using a non-standard matrix as a 
limitation. However, as it has also happened in many past studies (Neill & Laplante, 2003), pilot participants 
in our study could not develop DFDs (for a related discussion, see Wand & Weber, 2002), which meant we 
had to use an alternative tool. The activity-data matrix that we used has a similar objective to a DFD as it 
provides a physical artifact that maintains the DFD’s functional perspective (Curtis et al., 1992) and depicts 
the data flows associated with major work process activities. Furthermore, given its simplicity, an activity-
data matrix has the advantage of minimizing the potential confounding effects from participants’ modeling 
skills and knowledge.  

5.2 Implications for Research and Practice  

Our findings have several important implications for research. First, we compared and found empirical 
support for two relatively well-established theory-based behavioral modeling methods in the IS training and 
learning literature. While the IS literature has long established that observation can provide a key way to 
acquire knowledge (e.g., Gupta & Bostrom, 2013; Yi & Davis, 2003), our findings suggest that, when 
analysts have limited knowledge about a domain for which they develop or implement an IS, adding a hands-
on activity can provide a useful approach that can help them effectively learn the concepts that underlie 
work processes. 

Further, past empirical research that has relied on social cognitive theory (SCT) has also largely focused 
on identifying the effectiveness of training methods for a homogenous group of domain-novice individuals 
(Gupta et al., 2010). As such, our findings contribute to the cognitive psychology literature by specifying and 
explaining the boundary conditions of the relatively well-established SCT. More specifically, our findings 
help explain the moderating effect that prior domain knowledge has on the effectiveness of different learning 
approaches and suggest that, while individuals with high prior domain knowledge tend to learn equally well 
with either approach, an observation plus hands-on approach can be more effective for novice learners than 
an observation-only approach. These findings have particular relevance for the IS training (Gupta et al., 
2010; Santhanam et al., 2013) and requirements analysis (Byrd et al., 1992) literatures that address users’ 
and analysts’ knowledge acquisition. With few exceptions (i.e., Schenk et al., 1998; Vitalari, 1985), past 
research in those areas has largely neglected to consider learner characteristics. Our findings suggest that 
learners’ prior knowledge constitutes an important characteristic since it likely influences the efficacy of the 
knowledge acquisition approach they will use.  

Further, our findings also constitute an important contribution to cognitive research in systems analysis and 
design as they represent a first step in addressing two “enduring” questions in cognitive IS research: 1) how 
to improve analysts’ declarative knowledge recall (Browne & Parsons, 2012) and 2) how to improve their 
mental models of users’ work processes (Davern et al., 2012). With our study, we contribute to this work by 
measuring IS analysts’ knowledge structures and observing that these structures’ accuracy positively affects 
analysts’ declarative knowledge (memory) and physical representation of work processes. While past IS 
training and learning research has used declarative knowledge and skill reproduction more than other 
learning measures (Gupta et al., 2010), our paper likely represents the first in the IS training and learning 
literature to measure participants’ knowledge structures.  

Our findings also have several practical implications. In general, IS project failures tend to significantly and 
negatively affect many organizations’ profitability. The fact that many IS projects continue to still fail and/or 
face challenges due to inadequate system functionalities strongly suggests that we need to further 
empirically investigate different approaches than the ones that analysts currently use in order to help them 
better understand users’ work processes. Hence, with this study, we contribute to organizational practice 
by addressing a real-world problem and suggest that analysts who have low knowledge (about the domain 
for which they develop a system) can develop accurate knowledge structures of users’ work processes by 
first observing the users perform their work before executing the users’ tasks themselves.  
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6 Conclusion 

The idea that hands-on experience enhances observational learning has been central to theories about 
adult learning, such as experiential learning (Kolb, 1984), learning-by-doing (Argyris & Schön, 1978), and 
active learning (Bell & Kozlowski, 2008), which build on the philosophy of experiential education (Dewey 
1938). Also, based on the influential SCT (Bandura, 1986), the idea that hands-on experience can enhance 
observation and promote individuals to develop knowledge structures has found much support (except for 
some mixed results). In this paper, we propose that hands-on learning may depend on analysts’ prior 
domain knowledge. We conducted a study and found that, while novice learners benefited from the added 
hands-on approach, individuals with high prior domain knowledge did not. These findings underscore the 
importance of identifying and specifying the work process knowledge that analysts need to acquire and the 
need to investigate this knowledge under different contextual conditions. 
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Appendix A: ERPsim7 

ERPsim is business simulation software that simulates near-real-life business contexts that feature large 
corporate information systems. It comes with an SAP software interface that enables the simulation 
participants to retrieve information about an organization’s ongoing operations and make decisions 
accordingly in an environment that resembles a real-world operational business context. 

ERPsim provides three functions. First, it simulates a buyer market for an organization’s products. Second, 
it automates some administrative business functions such as invoicing, shipping, and goods receipt in order 
to allow the business simulation participants to focus on operational and strategic decision making. Third, it 
simulates time passing by compressing virtual simulated days into minutes. In the present study, we 
compressed each virtual day into two minutes. 

Also note that more than a hundred universities and more than a dozen Fortune 1000 organizations have 
used ERPsim in order to develop SAP skills mainly due to its contextual realism (Léger et al., 2011). 

 

  

 
7 The SAP University Alliance Competency Centers and the SAP University Alliance has free licenses to use ERPsim in the academic 

world.  
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Appendix B: Example Items for Assessing Domain Knowledge Accuracy 

Please check the box that best completes the statement or answers the question* 

13) A forecast is typically more accurate for  
 Groups of items rather than for individual items  
 Daily rather than monthly periods of time  
 Physical units rather than monetary units  
 Far out in the future rather than nearer time periods 

 
14) Which of the following is used to convert the master production schedule into detail requirements? 

 Production planning  
 Rough-cut capacity planning  
 Production activity control  
 Material requirements planning 

 
15) The main objective of the materials requirement planning (MRP) process is to:  

 Identify the product components 
 Classify the materials into product groups 
 Determine the required amount of products 
 Determine the material stocking location 

 
16) Independent demand is  

 Demand not related to the demand for any other product or service 
 Demand that is derived from that of a second item 
 Demand that is increasing in a linear trend from year to year 
 Demand that demonstrates a cyclical wavelike pattern 

 

The following steps describe the process that we followed to develop the pre-treatment domain knowledge 
questions: 

1) To capture the operation and logistics task domain knowledge, we used a deductive approach 
based on the simulation task activities.  

2) We selected multiple choice questions related to those concepts from test banks that accompany 
a widely used operations management textbook and a professional publication: we selected 
seven questions from Krajewski, Ritzman, and Malhotra (2006) and two questions from the 
APICS CPIM 2002 certification exam for supply chain professionals. 

3) We pre-tested these questions with two PhD students who were familiar with the experimental 
task. We asked them if they found the pre-treatment questions reasonable measures of 
knowledge about the concepts that pertain to the simulated task. Further, we interviewed the 17 
pilot test participants after the experiment in order to elicit their thoughts about the pre-treatment 
and declarative knowledge questions in addition to the treatment conditions. Based on their 
feedback, we eliminated four questions for lack of relevance or redundancy.  

To examine the extent to which the pre-treatment questions assessed domain knowledge, we compared 
the MBA and computer science (CS) students’ pre-treatment domain knowledge. We expected that, as they 
take operations management courses, MBA students would be likely to have more domain knowledge than 
CS students. Indeed, MBA students’ pre-treatment domain knowledge was significantly higher than CS 
students’ pre-treatment domain knowledge (F (1, 30) = 5.54, p = 0.025). 
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Appendix C: Example Items for Assessing Declarative Knowledge 
Accuracy Items 

Please check the box with the most appropriate response: 

75) Which of the following represent activities the business expert undertakes to manage the operations of 
the bottle distribution company?  

 Invoicing customers 
 Pricing products 
 Paying suppliers 
 Launching purchase orders to replenish products 

(Answer: pricing products and launching purchase orders to replenish products) 

76) The business expert performs the following steps to replenish product inventory: 
 Perform the MRP run  
 Pay suppliers for ordered products 
 Launch purchase orders 
 Process invoice received from supplier 

 (Answer: perform the MRP run and launch purchase orders) 

77) The 1L Spritz is selling better than expected and, at the current rate, will be out of stock in one day. 
Which of the following actions will likely decrease the sales rate of this product and increase its profit margin 
per unit sold? 

 Increase the product’s price 
 Decrease the product’s sales forecast 
 Order more inventory 
 Decrease the product’s marketing expenditure 

(Answer: increase the product’s price) 

78) Which of the following reports does not update on a daily basis? 
 Purchase order tracking report 
 Inventory report 
 Price market report 
 Summary sales report 

(Answer: summary sales report) 

 

Please check true or false for each statement below: 

85) The company repackages the products it sells (false) 
86) The purchase order quantity partly depends on the forecast (true) 
87) The company does not keep inventory of the products it sells (false) 
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Appendix D: Assessing Participants’ Knowledge Structures 

Domain-specific knowledge structure refers to how an individual organizations the “interrelationships 
between the important concepts in that domain” (Goldsmith et al., 1991, p. 88). In order to measure 
individuals’ knowledge structures, cognitive learning researchers have used a structural measurement 
approach in which learners estimate the pairwise similarity or proximity of important domain concepts that 
the researchers then submit to a scaling or clustering algorithm (Rowe et al. 1996). Consequently, the 
researchers score and assess the resulting individual map according to its similarity to a prototype or expert 
map (Goldsmith et al., 1991).  

Based on previous studies (Goldsmith et al., 1991; Rowe et al., 1996; Dorsey et al., 1999; Day et al., 2001), 
we describe the structural measurement approach we used to assess participants’ knowledge structure 
below.  

Knowledge Elicitation 

In order to elicit how well participants understood relationships between task concepts, we needed to identify 
the first the key concepts that represented the task domain. While no empirically validated procedures for 
selecting concepts in cognitive structure research exists, past literature suggests that the selected concepts 
need to be 1) relevant, 2) specific to the training context, and 3) widely representative of the elicited 
knowledge domain (Dorsey et al., 1999). As such, the first author and an external researcher (both 
knowledgeable in the ERPsim task) constructed the concepts by considering the task-related procedures 
and decisions. As a result, they created 13 task-central concepts that they sent to a panel with three 
researchers who had designed the simulation software to review. Based on their suggestions, we deemed 
one concept redundant and deleted it, and we made minor semantic revisions to others, which resulted in 
the following 12 concepts: product cost, distribution channel, marketing expenditure, material requirements 
planning, product forecast quantity, product inventory level, product market price, product supplier, 
purchase orders, sales orders, regional markets, and replenishment lead time. Pairing these 12 concepts 
resulted in 66 concept pairs (n(n-1)/2) 

Following the training, we asked the respondents to assess the relatedness between each concept pair 
using 10-point scales (1 = completely unrelated to 10 = highly related). Consistent with past research 
(Goldsmith et al., 1991), we asked respondents to base their answers on their intuitive first judgments as in 
the following example. 

Table D1. Structural Assessment Questions 

Instructions for questions 9 to 74: 
Please rate the relatedness of the terms below. Terms can be related in many ways – they can be in the same 
category, used in a similar way, or even related by time. We would say that “bird” and “nest” were highly related as 
well as “hurt” and “ambulance”, “early” and “morning”, and so forth. 
 
For each pair of terms listed below, circle a number from 1 to 10 to indicate how related you think the terms are. 
Smaller numbers mean less related and larger numbers mean more related. Use what you have learned about the 
operations of the wholesale distribution company to make your ratings. Try not to spend more than 10 seconds to 
decide how related a pair is. We are interested in your first impressions. 

 Completely 
unrelated 

 Highly related 

9: regional markets—product cost 1 2 3 4 5 6 7 8 9 10 

10: product inventory level—distribution 
channel 

1 2 3 4 5 6 7 8 9 10 

11: replenishment lead time—distribution 
channel 

1 2 3 4 5 6 7 8 9 10 

12: regional markets—marketing expenditure 1 2 3 4 5 6 7 8 9 10 

Similarly, we also requested the study’s three expert panel members (ERPsim developers) to complete the 
structural assessment measure that we show above in order to create the referent structure.  
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Knowledge Representation  

Based on the idea that “experts’ organization and comprehension of domain knowledge are a close 
approximation of the true representation of that domain” (Day et al., 2001, p. 1023) and prior empirical 
research that has demonstrated the superiority of averaged expert-referent structures (Acton, Johnson, & 
Goldsmith, 1994), we averaged the expert panel’s structural assessments (pairwise relations) to provide the 
referent domain representation. Note that the three experts’ responses significantly converged with 
correlation values of r12 = 0.65, r13 = 0.76, and r23 = 0.75, p < 0.01. 

While this raw proximity data represents’ the domain-specific knowledge, it contains noise (Goldsmith et al., 
1991); thus, we used multi-dimensional scaling (MDS) to represent the data’s underlying organization 
(Kruskal, 1964; Wilkinson, 1986). More specifically, we used proximity scaling (PROXSCAL) in SPSS to 
represent the structure of the experts’ referent structure based on their averaged pairwise proximity matrix. 
The resulting map portrays how the experts assessed similarity/dissimilarity between the domain concepts 
along a given number of dimensions. Objects closer on the map show that individuals perceive them as 
more similar, while objects further apart as more dissimilar. As Appendix F shows, a two-dimensional scale 
provided an acceptable fit that positioned data points in the space in a manner consistent with the positions 
of all other data points. This two dimensional map provides a Euclidian distance between each concept pair 
and serves as the referent map for evaluating the experimental participants’ knowledge.  

Knowledge Evaluation  

Subsequently, we mapped each participants’ proximity matrix using PROXSCAL in SPSS, which also 
provided a Euclidian distance matrix between all concept pairs in the two-dimensional space. We then 
correlated this pairwise Euclidian distance with the experts’ MDS spatial representation (i.e., pairwise 
Euclidian distance). A higher correlation coefficient between the participant’s spatial representation and the 
referent spatial representation suggests a more organized knowledge structure. The participants’ correlation 
coefficients with the referent structure ranged from -0.11 to 0.69 with an average of 0.35.  
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Appendix E: Systems Design Task: Modified Activity-Data Matrix 

Table E1. Modified Activity-data Matrix 

Instructions for questions 88 to 92: 
Using the table of activities and data flows provided below: 

1) Identify and write the five activities the expert user performed in the video to manage the company’s operations. 
Choose the relevant activities from the activity list. 

2) Identify and write the information necessary (data inputs) to perform each activity. Choose the data input(s) 
from the data flow list. 

3) Identify and write the information resulting (data outputs) from each activity. Choose the data output(s) from the 
data flow list. 

Note 1: the list provided below contains irrelevant activity items and data flow items. Choose only the relevant items 
according to the tasks the expert user explained and performed.  
Note 2: a data flow can be a data input for more than one activity. 

Activity Data input(s) Data output(s) 

88: Activity 1:   

:   

92: Activity 5:   

 

Table E2. Sample of Activities 

Accept customer orders 

Change purchase order quantity 

Manage product pricing 

 

Table E3. Sample of Data Flows 

Purchase orders 

Product dimensions 

Average market product price 

Independent demand (forecast) 
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Appendix F: Multidimensional Scaling Elbow Criterion (Scree Plot) and 
Goodness of Fit Tests 

 

Figure F1. Goodness of Fit based on Two Dimensions 

 

Table E1. Goodness of Fit Tests 

Normalized raw stress .0221 

Stress-I .1488a 

Stress-II .3807a 

S-Stress .0588b 

Dispersion accounted for (D.A.F.) .9779 

Tucker’s coefficient of congruence .9889 

Normalized raw stress represents the degree to which the algorithm could position data points in the space 
in a manner consistent with the positions of all other data points. The lower the coefficient, the greater the 
consistency. In general, researchers consider a 0.15 or smaller stress coefficient acceptable. 
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