Motivation	Explanation	Past results	Recent developments	Initial problem
	00000	0000000000	000	00000

Monotonicité de certaines sommes de Riemann

Ludovick Bouthat

Université Laval

Colloque panquébécois de l'ISM; 27-29 mai 2022

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	0000000000	000	00000
Acknowl	edgement			

This research is a collaborate effort with Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the NSERC Graduate Scholarships.

Motivation	Explanation 00000	Past results 0000000000	Recent developments	Initial problem 00000

Outline of the presentation

- 1 Theoretical motivation for the problem;
- Explanation of the problem;
- 3 Some history and past results;
- 4 Recent development;
- **5** Some application to the initial motivation.

Motivation	Explanation	Past results	Recent developments	Initial problem
•0				

Doubly stochastic matrices

Definition

A square matrix is *doubly stochastic* if:

- nonnegative coefficients;
- row sums = 1;
- column sums = 1.

The set of doubly stochastic matrices of order n is denoted by Ω_n .

The *diameter* of Ω_n relative to the Schatten *p*-norms ($1 \le p \le 2$) satisfy

The *diameter* of Ω_p relative to the Schatten *p*-norms ($1 \le p \le 2$) satisfy

$$\operatorname{diam}_{\mathcal{S}_p}(\Omega_n) \geq 2\left(\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)\right)^{1/p}$$

To prove that this bound is in fact an equality, we needed to show that

$$\frac{1}{n}\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)$$

is a monotonically increasing function relative to n.

Motivation	Explanation	Past results	Recent developments	Initial problem
	00000			

The right Riemann sum of f

Definition

Let $f : [0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function. Then

$$R_n(f) := \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

is the right Riemann sum of f over [0, 1] and $R_n(f) \xrightarrow{n \to \infty} \int_0^1 f(x) dx$.

6 / 28

Motivation	Explanation 0●000	Past results 0000000000	Recent developments	Initial problem 00000

The left Riemann sum of f

Definition

Let $f:[0,1] \to \mathbb{R}$ be a Riemann integrable function. Then

$$L_n(f) := \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$

is the left Riemann sum of f over [0,1] and $L_n(f) \xrightarrow{n \to \infty} \int_0^1 f(x) dx$.

Motivation 00	Explanation 0000●	Past results 000000000	Recent developments 000	Initial problem 00000
The fund	ction $f(x) =$	$\frac{1}{1+x^2}$		

• In 2012, Szilárd András asked if $L_n(\frac{1}{1+x^2}) = \sum_{k=0}^{n-1} \frac{n}{n^2+k^2}$ and $R_n(\frac{1}{1+x^2}) = \sum_{k=1}^n \frac{n}{n^2+k^2}$ exhibit some monotonicity properties.

 Motivation
 Explanation
 Past results
 Recent developments
 Initial problem

 00
 00000
 000
 0000
 00000
 00000

Some general result using convexity

Theorem (S. András; 2012)

If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and decreasing on the interval [0,1], then $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

 Motivation
 Explanation
 Past results
 Recent developments
 Initial problem

 00
 00000
 000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Some general result using convexity

Theorem (S. András; 2012)

If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and decreasing on the interval [0,1], then $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

• Using the fact that $L_n(-f) = -L_n(f)$ and $R_n(-f) = -R_n(f)$, we also have:

Corollary (S. András; 2012)

If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and increasing on the interval [0,1], then $L_n(f)$ increases monotonically and $R_n(f)$ decreases monotonically relative to n.

Motivation	Explanation 00000	Past results ○●○○○○○○○○	Recent developments	Initial problem 00000
A minor	blunder			
			eorem apply to $f(x)$ and $B(f)$ increases m	

• Anotas then asserts that the previous theorem apply to $T(x) = \frac{1}{1+x^2}$ and thus that $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

• András then asserts that the previous theorem apply to $f(x) = \frac{1}{1+x^2}$ and thus that $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to *n*. However, *f* has an inflection point at $1/\sqrt{3}$.

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	00●0000000	000	00000
A (partia	l) solution			

• This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_n(\frac{1}{1+x^2}) = \sum_{k=1}^n \frac{n}{n^2+k^2}$ increases monotonically.

Motivation	Explanation 00000	Past results 00●0000000	Recent developments 000	Initial problem 00000
A (partia	al) solution			

- This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_n(\frac{1}{1+x^2}) = \sum_{k=1}^n \frac{n}{n^2+k^2}$ increases monotonically.
- To achieve this, they prove a series of theorems and corollaries which can be viewed as extensions of the theorems of S. András.

Motivation	Explanation	Past results	Recent developments	Initial problem
		000000000		

Some extensions

Theorem (D. Borwein et al.; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is convex on the interval [0,c] for some 0 < c < 1, concave on [c,1], and decreasing on [0,1], then $R_n(f)$ increases monotonically and $L_n(f)$ decreases monotonically relative to n.

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	000●000000		00000

Some extensions

Theorem (D. Borwein et al.; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is convex on the interval [0,c] for some 0 < c < 1, concave on [c,1], and decreasing on [0,1], then $R_n(f)$ increases monotonically and $L_n(f)$ decreases monotonically relative to n.

Remark

One might expect this result to hold even when exchanging the roles of *convex* and *concave*. However, it suffice to consider $f(x) = 1_{[0,1/2]}$ to see that it cannot work, since

$$R_{2n-1}(f) + \frac{1}{2(n-1)} = R_{2n}(f) = R_{2n+1}(f) + \frac{1}{2n}$$

Motivation	Explanation 00000	Past results 0000●00000	Recent developments 000	Initial problem 00000
Some ex	tensions			
• Consider	$\sin \sigma - f$ in the r	previous theorem	vield	

Corollary (D. Borwein et al.; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is concave on the interval [0, c] for some 0 < c < 1, convex on [c,1], and increasing on [0,1], then $R_n(f)$ decreases monotonically and $L_n(f)$ increases monotonically relative to n.

Motivation 00	Explanation 00000	Past results 0000●00000	Recent developments 000	Initial problem 00000
Some ex	tensions			
 Consider 	ring $-f$ in the p	previous theorem	yield:	

Corollary (D. Borwein et al.; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is concave on the interval [0, c] for some 0 < c < 1, convex on [c,1], and increasing on [0,1], then $R_n(f)$ decreases monotonically and $L_n(f)$ increases monotonically relative to n.

• Using similar techniques, Borwein et al. showed that:

Theorem (D. Borwein et al.; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is concave on the interval [0,1], with maximum f(c) for some 0 < c < 1, then $R_n(f) - \frac{f(c) - f(0)}{n}$ increases monotonically relative to n.

 Motivation
 Explanation
 Past results
 Recent developments
 Initial problem

 00
 00000
 0000
 000
 00000

Symmetrization (about x = 1/2)

Definition

Given a function $f : [0, 1] \to \mathbb{R}$, its symmetrization (about $x = \frac{1}{2}$) is defined to be $\mathcal{F}_{1/2}(x) := \mathcal{F}(x) = \frac{f(x) + f(1-x)}{2}.$

• The symmetrization of a convex (resp. concave) function is again convex (resp. concave). Interestingly, though the symmetrization process cannot destroy convexity or concavity, it can generate either of these properties.

 Motivation
 Explanation
 Past results
 Recent developments
 Initial problem

 00
 00000
 0000
 000
 00000

Symmetrization (about x = 1/2)

Definition

Given a function $f : [0, 1] \to \mathbb{R}$, its symmetrization (about $x = \frac{1}{2}$) is defined to be $\mathcal{F}_{1/2}(x) := \mathcal{F}(x) = \frac{f(x) + f(1-x)}{2}$.

• The symmetrization of a convex (resp. concave) function is again convex (resp. concave). Interestingly, though the symmetrization process cannot destroy convexity or concavity, it can generate either of these properties.

• Such is the case of the function $f(x) = \frac{1}{1+x^2}$.

 Motivation
 Explanation
 Past results
 Recent de

 00
 00000
 0000000000
 000

Recent developments

Initial problem

Some results using Symmetrization

Theorem (D. Borwein et al.; 2020)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies $f(0) > f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

Recent developments

Initial problem

Some results using Symmetrization

Theorem (D. Borwein et al.; 2020)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies $f(0) > f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

• Observing that $R_n(f(1-x)) = L_n(f(x))$, we obtain, by applying this theorem to -f(x), f(1-x), and -f(1-x) respectively, the following corollaries:

MotivationExplanationPast resultsRecent developmentsInitial problem00000000<00</td>000000000000

Some results using Symmetrization

Corollary (D. Borwein et al.; 2020)

If f has a convex symmetrization and verifies $f(0) < f(\frac{1}{2})$, then $R_n(f)$ decreases monotonically relative to n.

Corollary (D. Borwein et al.; 2020)

If f has a concave symmetrization and verifies $f(\frac{1}{2}) < f(1)$, then $L_n(f)$ increases monotonically relative to n.

Corollary (D. Borwein et al.; 2020)

If f has a convex symmetrization and verifies $f(\frac{1}{2}) > f(1)$, then $L_n(f)$ decreases monotonically relative to n.

Application to $f(x) = \frac{1}{1+x^2}$

• The symmetrization of $f(x) = \frac{1}{1+x^2}$ is concave and satisfy f(0) > f(1/2). Hence, $R_n(f)$ increases monotonically relative to n.

19 / 28

Motivation 00	Explanation 00000	Past results 00000000●	Recent developments 000	Initial problem 00000
The prob	lem of $L_n(f$)		

• Surprisingly, none of the above theorems allows us to prove directly that $L_n(\frac{1}{1+x^2})$ decreases monotonically relative to *n*. Borwein *et al.* left it at that.

Motivation	Explanation 00000	Past results 000000000●	Recent developments	Initial problem 00000
The prot	blem of $L_n(f)$)		

- Surprisingly, none of the above theorems allows us to prove directly that $L_n(\frac{1}{1+x^2})$ decreases monotonically relative to *n*. Borwein *et al.* left it at that.
- Recently, using the previous results as tools, we have been able to resolve the problem of $L_n(f)$ and even more, since we studied functions of the form

$$f_b(x) = \frac{1}{x^2 - bx + 1},$$
 $(b \le 1).$

Motivation	Explanation	Past results	Recent developments	Initial problem
	00000	0000000000	●00	00000

The result and proof idea

Theorem

Let $f_b(x) = \frac{1}{x^2 - bx + 1}$ with $b \in \mathbb{R}$. Then $R_n(f_b)$ increases monotonically relative to n for $b \in (-\infty, 1]$ and $L_n(f_b)$ decreases monotonically relative to n for $b \in (-\infty, \alpha)$, where $\alpha \approx 0.493862$.

Motivation	Explanation	Past results	Recent developments	Initial problem
	00000	0000000000	●00	00000

The result and proof idea

Theorem

Let $f_b(x) = \frac{1}{x^2 - bx + 1}$ with $b \in \mathbb{R}$. Then $R_n(f_b)$ increases monotonically relative to n for $b \in (-\infty, 1]$ and $L_n(f_b)$ decreases monotonically relative to n for $b \in (-\infty, \alpha)$, where $\alpha \approx 0.493862$.

Proof idea.

Let
$$g : [0,1] \to \mathbb{R}$$
 and define the function $h := f_b - g$. Then $L_n(f_b) = L_n(h) + L_n(g)$ and $R_n(f_b) = R_n(h) + R_n(g)$.

Hence, we simply need to show that $L_n(h)$, $L_n(g)$ decreases monotonically relative to n and that $R_n(h)$, $R_n(g)$ increases monotonically relative to n.

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments ○●○	Initial problem 00000
Sketch o [.]	f proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $L_n(f_b)$ is monotonically decreasing.

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	0000000000	○●○	00000
Sketch o	fproof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $L_n(f_b)$ is monotonically decreasing.

Otherwise, let

$$g_{a,c}(x) := \begin{cases} 0, & \text{if } 0 \leq x < \frac{1}{2}, \\ a\left(x - \frac{1}{2}\right)^2 + c\left(x - \frac{1}{2}\right)^4, & \text{if } \frac{1}{2} \leq x \leq 1. \end{cases}$$

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments ○●○	Initial problem 00000
Skotch c	of proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $L_n(f_b)$ is monotonically decreasing. Otherwise, let

$$g_{a,c}(x) := \begin{cases} 0, & \text{if } 0 \le x < \frac{1}{2}, \\ a\left(x - \frac{1}{2}\right)^2 + c\left(x - \frac{1}{2}\right)^4, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

For $b \in \left(-1, \frac{3 - \sqrt{13}}{4}\right)$, let $a := 1 - b^2$ and $c := 0$.

Motivation	Explanation 00000	Past results 000000000	Recent developments ○●○	Initial problem 00000
Skotch c	of proof			

c:

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $L_n(f_b)$ is monotonically decreasing. Otherwise. let

$$g_{a,c}(x) := \begin{cases} 0, & \text{if } 0 \le x < \frac{1}{2}, \\ a\left(x - \frac{1}{2}\right)^2 + c\left(x - \frac{1}{2}\right)^4, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

For $b \in \left(-1, \frac{3-\sqrt{13}}{4}\right)$, let $a := 1 - b^2$ and $c := 0$.
For $b \in \left[\frac{3-\sqrt{13}}{4}, \alpha\right)$ where $\alpha \approx 0.493862$, let $a := -32\frac{4b^2-6b-1}{(5-2b)^3}$ and $c := 16\left(\frac{59-198b+164b^2-40b^3}{(2-b)(5-2b)^3} - \varepsilon\right)$, where $\varepsilon > 0$.

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	0000000000	००●	00000
Sketch o	of proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $R_n(f_b)$ is monotonically increasing.

Motivation	Explanation 00000	Past results 000000000	Recent developments 00●	Initial problem 00000
Sketch o	of proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $R_n(f_b)$ is monotonically increasing.

Otherwise, let

$$g_{a,c,d}(x) := \begin{cases} a \left(x - \frac{1}{2}\right)^2 + c \left(x - \frac{1}{2}\right)^4 + d \left(x - \frac{1}{2}\right)^6, & \text{if } 0 \le x < \frac{1}{2}, \\ 0, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Motivation	Explanation 00000	Past results 000000000	Recent developments 00●	Initial problem 00000
Sketch o	of proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $R_n(f_b)$ is monotonically increasing.

Otherwise, let

$$g_{a,c,d}(x) := \begin{cases} a \left(x - \frac{1}{2}\right)^2 + c \left(x - \frac{1}{2}\right)^4 + d \left(x - \frac{1}{2}\right)^6, & \text{if } 0 \le x < \frac{1}{2}, \\ 0, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

For
$$b \in \left(-1, \frac{3-\sqrt{13}}{4}\right)$$
, let $a := \frac{4}{9}(5-2\sqrt{13})$, $c := 0$ and $d := 0$.

Motivation	Explanation 00000	Past results 000000000	Recent developments 00●	Initial problem 00000
Sketch o	of proof			

For $b \in (-\infty, -1]$ the function $f_b(x)$ is convex and decreasing on [0, 1] and one of the earlier theorem implies that $R_n(f_b)$ is monotonically increasing.

Otherwise, let

$$g_{a,c,d}(x) := \begin{cases} a \left(x - \frac{1}{2}\right)^2 + c \left(x - \frac{1}{2}\right)^4 + d \left(x - \frac{1}{2}\right)^6, & \text{if } 0 \le x < \frac{1}{2}, \\ 0, & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

For
$$b \in \left(-1, \frac{3-\sqrt{13}}{4}\right)$$
, let $a := \frac{4}{9}(5-2\sqrt{13})$, $c := 0$ and $d := 0$.
For $b \in \left[\frac{3-\sqrt{13}}{4}, 1\right]$, let $a := 32\frac{1+6b-4b^2}{(5-2b)^3}$, $c := -\frac{128}{3}\frac{1+6b-4b^2}{(5-2b)}$ and $d := \frac{512}{15}\frac{1+6b-4b^2}{(5-2b)^3}$.

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

increases monotonically relative to n.

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

increases monotonically relative to n.

• Surprisingly, none of the above methods and theorems were able to provide a proof of this property.

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

increases monotonically relative to n.

• Surprisingly, none of the above methods and theorems were able to provide a proof of this property. Nonetheless, we were able to show that $R_n(\sin^p(\pi x))$ is indeed a monotonically increasing function relative to n for $p \in [1, 2]$.

Motivation	Explanation 00000	Past results 0000000000	Recent developments 000	Initial problem ○●○○○
"Sketch'	' of proof			

Motivation	Explanation 00000	Past results 0000000000	Recent developments 000	Initial problem ○●○○○
"Sketch	" of proof			

$$\sum_{k=0}^{n-1}\cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4^{j}}\sum_{k=-\lfloor j/n\rfloor}^{\lfloor j/n\rfloor} \binom{2j}{j+kn}, \qquad (n,j\in\mathbb{N});$$

Motivation	Explanation 00000	Past results 0000000000	Recent developments 000	Initial problem ○●○○○
"Sketch	" of proof			

$$\sum_{k=0}^{n-1} \cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4j} \sum_{k=-\lfloor j/n \rfloor}^{\lfloor j/n \rfloor} {2j \choose j+kn}, \qquad (n,j\in\mathbb{N});$$

$$(1+x)^{z} = \sum_{k=0}^{\infty} {\binom{z}{k}} x^{k},$$
 (Re(z) > 0, |x| ≤ 1);

Motivation	Explanation 00000	Past results 0000000000	Recent developments 000	Initial problem ○●○○○
"Sketch'	" of proof			

$$\sum_{k=0}^{n-1}\cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4^{j}}\sum_{k=-\lfloor j/n\rfloor}^{\lfloor j/n\rfloor} \binom{2j}{j+kn}, \qquad (n,j\in\mathbb{N});$$

$$(1+x)^{z} = \sum_{k=0}^{\infty} {\binom{z}{k} x^{k}},$$
 (Re(z) > 0, |x| ≤ 1);

$$\sum_{j=0}^{\infty} \binom{p/2}{j} \binom{-1/2}{-1/2-j} = \binom{p/2-1/2}{-1/2}, \qquad (p \ge 0).$$

Motivation	Explanation 00000	Past results 0000000000	Recent developments	Initial problem 00●00

"Sketch" of proof

• We showed that

$$R_{n+1}(\sin^p(\pi x)) - R_n(\sin^p(\pi x)) \geq \sum_{j=n+1}^{\infty} B_j C_j$$

where

$$B_{j} := \frac{2}{4^{j}} \frac{\Gamma(j - p/2)}{j!\Gamma(-p/2)},$$

$$C_{j} := \sum_{k=1}^{\lfloor j/(n+1) \rfloor} \left(\binom{2j}{j+k(n+1)} - \binom{2j}{j+kn} \right).$$

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	000000000		00●00

"Sketch" of proof

• We showed that

$$R_{n+1}(\sin^p(\pi x)) - R_n(\sin^p(\pi x)) \geq \sum_{j=n+1}^{\infty} B_j C_j$$

where

$$B_{j} := \frac{2}{4^{j}} \frac{\Gamma(j - p/2)}{j! \Gamma(-p/2)},$$

$$C_{j} := \sum_{k=1}^{\lfloor j/(n+1) \rfloor} \left(\binom{2j}{j+k(n+1)} - \binom{2j}{j+kn} \right).$$

For $j \ge n+1$ and $p \in [0,2]$, we proved that $B_j, C_j \le 0$. Hence, $R_{n+1}(\sin^p(\pi x)) \ge R_n(\sin^p(\pi x)).$

Motivation	Explanation 00000	Past results 0000000000	Recent developments 000	Initial problem 000●0
Final an	nlication			

Theorem

The diameter of Ω_n , the set of doubly stochastic matrices of order n, relative to the Schatten p-norms $(1 \le p \le 2)$ satisfy

$$diam_{\mathcal{S}_p}(\Omega_n) = 2\left(\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)\right)^{1/p}$$

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments	Initial problem 0000●
Reference	es			

- András, Szilárd (2012) Monotonicity of certain Riemann-type sums. *The Teaching Of Mathematics.*, 15(2): 113–120.
- David Borwein, Jonathan M. Borwein & Brailey Sims (2020) Symmetry and the Monotonicity of Certain Riemann Sums. From Analysis to Visualization: A Celebration of the Life and Legacy of Jonathan M. Borwein, Callaghan, Australia, September 2017, 313:7–20.