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Outline of the presentation

1 Theoretical motivation for the problem;
2 Explanation of the problem;
3 Some history and past results;
4 Recent development;
5 Some application to the initial motivation.
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Doubly stochastic matrices

Definition
A square matrix is doubly stochastic if:

• nonnegative coefficients;
• row sums = 1;
• column sums = 1.

The set of doubly stochastic matrices of order n is denoted by Ωn.
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The diameter of Ωn

The diameter of Ωn relative to the Schatten p-norms (1 ≤ p ≤ 2) satisfy

diamSp(Ωn) ≥ 2

(
n∑

k=1

sinp
(
kπ
n

))1/p

.

To prove that this bound is in fact an equality, we needed to show that

1
n

n∑
k=1

sinp
(
kπ
n

)
is a monotonically increasing function relative to n.
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The right Riemann sum of f

Definition
Let f : [0, 1] → R be a Riemann integrable function. Then

Rn(f ) :=
1
n

n∑
k=1

f
(
k
n

)
is the right Riemann sum of f over [0, 1] and Rn(f )

n→∞−−−→
∫ 1
0 f (x)dx .

Figure: The right Riemann sum of f (x) = x3 over [0, 1] when n = 10.
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The left Riemann sum of f

Definition
Let f : [0, 1] → R be a Riemann integrable function. Then

Ln(f ) :=
1
n

n−1∑
k=0

f
(
k
n

)
is the left Riemann sum of f over [0, 1] and Ln(f )

n→∞−−−→
∫ 1
0 f (x)dx .

Figure: The left Riemann sum of f (x) = x3 over [0, 1] when n = 10.
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Some examples
The function f (x) = x

• If f (x) = x , then Ln(f ) =
1
2

(
1 − 1

n

)
and Rn(f ) =

1
2

(
1 + 1

n

)
.

Figure: The left and right Riemann sum of f (x) = x over [0, 1].
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Some examples
The function f (x) = 5x − 4x2 − 2

3

• If f (x) = 5x − 4x2 − 2
3 , then Ln(f ) =

3n2−3n−4
6n2 and Rn(f ) =

3n2+3n−4
6n2 .

Figure: The left and right Riemann sum of f (x) = 5x − 4x2 − 2
3 over [0, 1].
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The function f (x) = 1
1+x2

• In 2012, Szilárd András asked if Ln
( 1

1+x2

)
=
∑n−1

k=0
n

n2+k2 and
Rn

( 1
1+x2

)
=
∑n

k=1
n

n2+k2 exhibit some monotonicity properties.

Figure: The left and right Riemann sum of f (x) = 1
1+x2 over [0, 1].
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Some general result using convexity

Theorem (S. András; 2012)
If f : [0, 1] → R is convex (or concave) and decreasing on the interval
[0, 1], then Ln(f ) decreases monotonically and Rn(f ) increases
monotonically relative to n.

• Using the fact that Ln(−f ) = −Ln(f ) and Rn(−f ) = −Rn(f ), we also
have:

Corollary (S. András; 2012)
If f : [0, 1] → R is convex (or concave) and increasing on the interval [0, 1],
then Ln(f ) increases monotonically and Rn(f ) decreases monotonically
relative to n.

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 11 / 28



Motivation Explanation Past results Recent developments Initial problem

Some general result using convexity

Theorem (S. András; 2012)
If f : [0, 1] → R is convex (or concave) and decreasing on the interval
[0, 1], then Ln(f ) decreases monotonically and Rn(f ) increases
monotonically relative to n.

• Using the fact that Ln(−f ) = −Ln(f ) and Rn(−f ) = −Rn(f ), we also
have:

Corollary (S. András; 2012)
If f : [0, 1] → R is convex (or concave) and increasing on the interval [0, 1],
then Ln(f ) increases monotonically and Rn(f ) decreases monotonically
relative to n.

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 11 / 28



Motivation Explanation Past results Recent developments Initial problem

A minor blunder

• András then asserts that the previous theorem apply to f (x) = 1
1+x2 and

thus that Ln(f ) decreases monotonically and Rn(f ) increases monotonically
relative to n.

However, f has an inflection point at 1/
√

3.

Figure: The function f (x) = 1
1+x2 and its inflection point at 1/

√
3.
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A (partial) solution

• This problem caught the attention of David Borwein and his son. They
provided a rectified proof of the fact that Rn

( 1
1+x2

)
=
∑n

k=1
n

n2+k2

increases monotonically.

• To achieve this, they prove a series of theorems and corollaries which can
be viewed as extensions of the theorems of S. András.

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 13 / 28



Motivation Explanation Past results Recent developments Initial problem

A (partial) solution

• This problem caught the attention of David Borwein and his son. They
provided a rectified proof of the fact that Rn

( 1
1+x2

)
=
∑n

k=1
n

n2+k2

increases monotonically.

• To achieve this, they prove a series of theorems and corollaries which can
be viewed as extensions of the theorems of S. András.

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 13 / 28



Motivation Explanation Past results Recent developments Initial problem

Some extensions

Theorem (D. Borwein et al.; 2020)
If the function f : [0, 1] → R is convex on the interval [0, c] for some
0 < c < 1, concave on [c , 1], and decreasing on [0, 1], then Rn(f ) increases
monotonically and Ln(f ) decreases monotonically relative to n.

Remark
One might expect this result to hold even when exchanging the roles of
convex and concave. However, it suffice to consider f (x) = 1[0,1/2] to see
that it cannot work, since

R2n−1(f ) +
1

2(n − 1)
= R2n(f ) = R2n+1(f ) +

1
2n

.
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Some extensions

• Considering −f in the previous theorem yield:

Corollary (D. Borwein et al.; 2020)
If the function f : [0, 1] → R is concave on the interval [0, c] for some
0 < c < 1, convex on [c , 1], and increasing on [0, 1], then Rn(f ) decreases
monotonically and Ln(f ) increases monotonically relative to n.

• Using similar techniques, Borwein et al. showed that:

Theorem (D. Borwein et al.; 2020)
If the function f : [0, 1] → R is concave on the interval [0, 1], with
maximum f (c) for some 0 < c < 1, then Rn(f )− f (c)−f (0)

n increases
monotonically relative to n.
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Symmetrization (about x = 1/2)

Definition
Given a function f : [0, 1] → R, its symmetrization (about x = 1

2) is
defined to be

F1/2(x) := F(x) =
f (x) + f (1 − x)

2
.

• The symmetrization of a convex (resp. concave) function is again convex
(resp. concave). Interestingly, though the symmetrization process cannot
destroy convexity or concavity, it can generate either of these properties.

• Such is the case of the function f (x) = 1
1+x2 .
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Some results using Symmetrization

Theorem (D. Borwein et al.; 2020)

If f : [0, 1] → R has a concave symmetrization and verifies f (0) > f (1
2),

then Rn(f ) increases monotonically relative to n.

• Observing that Rn(f (1 − x)) = Ln(f (x)), we obtain, by applying this
theorem to −f (x), f (1 − x), and −f (1 − x) respectively, the following
corollaries:
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Some results using Symmetrization

Corollary (D. Borwein et al.; 2020)

If f has a convex symmetrization and verifies f (0) < f (1
2), then Rn(f )

decreases monotonically relative to n.

Corollary (D. Borwein et al.; 2020)

If f has a concave symmetrization and verifies f (1
2) < f (1), then Ln(f )

increases monotonically relative to n.

Corollary (D. Borwein et al.; 2020)

If f has a convex symmetrization and verifies f (1
2) > f (1), then Ln(f )

decreases monotonically relative to n.
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Application to f (x) = 1
1+x2

• The symmetrization of f (x) = 1
1+x2 is concave and satisfy f (0) > f (1/2).

Hence, Rn(f ) increases monotonically relative to n.

Figure: The symmetrization F(x) of the function f (x) = 1
1+x2 .
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The problem of Ln(f )

• Surprisingly, none of the above theorems allows us to prove directly that
Ln
( 1

1+x2

)
decreases monotonically relative to n. Borwein et al. left it at

that.

• Recently, using the previous results as tools, we have been able to resolve
the problem of Ln(f ) and even more, since we studied functions of the form

fb(x) =
1

x2 − bx + 1
, (b ≤ 1).
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The result and proof idea

Theorem
Let fb(x) = 1

x2−bx+1 with b ∈ R. Then Rn(fb) increases monotonically
relative to n for b ∈ (−∞, 1] and Ln(fb) decreases monotonically relative to
n for b ∈ (−∞, α), where α ≈ 0.493862.

Proof idea.
Let g : [0, 1] → R and define the function h := fb − g . Then
Ln(fb) = Ln(h) + Ln(g) and Rn(fb) = Rn(h) + Rn(g).
Hence, we simply need to show that Ln(h), Ln(g) decreases monotonically
relative to n and that Rn(h),Rn(g) increases monotonically relative to n.
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Sketch of proof

Sketch of proof of Ln(fb).
For b ∈ (−∞,−1] the function fb(x) is convex and decreasing on [0, 1] and
one of the earlier theorem implies that Ln(fb) is monotonically decreasing.

Otherwise, let

ga,c(x) :=

{
0, if 0 ≤ x < 1

2 ,
a
(
x − 1

2

)2
+ c

(
x − 1

2

)4
, if 1

2 ≤ x ≤ 1.

For b ∈
(
−1, 3−

√
13

4

)
, let a := 1 − b2 and c := 0.

For b ∈
[

3−
√

13
4 , α

)
where α ≈ 0.493862, let a := −324b2−6b−1

(5−2b)3 and

c := 16
(

59−198b+164b2−40b3

(2−b)(5−2b)3
− ε
)
, where ε > 0.
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Sketch of proof

Sketch of proof of Rn(fb).
For b ∈ (−∞,−1] the function fb(x) is convex and decreasing on [0, 1] and
one of the earlier theorem implies that Rn(fb) is monotonically increasing.

Otherwise, let

ga,c,d(x) :=

{
a
(
x − 1

2

)2
+ c

(
x − 1

2

)4
+ d

(
x − 1

2

)6
, if 0 ≤ x < 1

2 ,
0, if 1

2 ≤ x ≤ 1.

For b ∈
(
−1, 3−

√
13

4

)
, let a := 4

9(5 − 2
√

13), c := 0 and d := 0.

For b ∈
[

3−
√

13
4 , 1

]
, let a := 321+6b−4b2

(5−2b)3 , c := −128
3

1+6b−4b2

(5−2b) and

d := 512
15

1+6b−4b2

(5−2b)3 .
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Sketch of proof

Sketch of proof of Rn(fb).
For b ∈ (−∞,−1] the function fb(x) is convex and decreasing on [0, 1] and
one of the earlier theorem implies that Rn(fb) is monotonically increasing.

Otherwise, let

ga,c,d(x) :=

{
a
(
x − 1

2

)2
+ c

(
x − 1

2

)4
+ d

(
x − 1

2

)6
, if 0 ≤ x < 1

2 ,
0, if 1

2 ≤ x ≤ 1.

For b ∈
(
−1, 3−

√
13

4

)
, let a := 4

9(5 − 2
√

13), c := 0 and d := 0.

For b ∈
[

3−
√

13
4 , 1

]
, let a := 321+6b−4b2

(5−2b)3 , c := −128
3
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(5−2b) and
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The function sinp(πx)

• Recall our initial motivation: showing that

Rn

(
sinp(πx)

)
=

1
n

n∑
k=1

sinp
(
kπ
n

)
increases monotonically relative to n.

• Surprisingly, none of the above methods and theorems were able to
provide a proof of this property. Nonetheless, we were able to show that
Rn

(
sinp(πx)

)
is indeed a monotonically increasing function relative to n for

p ∈ [1, 2].
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"Sketch" of proof

• Using a myriad of identities, we were able to reduce the expression
Rn+1

(
sinp(πx)

)
− Rn

(
sinp(πx)

)
to a convenient form. These identities

includes

n−1∑
k=0

cos2j
(
kπ
n

)
=

n

4j

⌊j/n⌋∑
k=−⌊j/n⌋

(
2j

j + kn

)
, (n, j ∈ N);

(1 + x)z =
∞∑
k=0

(
z

k

)
xk , (Re(z) > 0, |x | ≤ 1);

∞∑
j=0

(
p/2
j

)(
−1/2

−1/2 − j

)
=

(
p/2 − 1/2
−1/2

)
, (p ≥ 0).

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 25 / 28



Motivation Explanation Past results Recent developments Initial problem

"Sketch" of proof

• Using a myriad of identities, we were able to reduce the expression
Rn+1

(
sinp(πx)

)
− Rn

(
sinp(πx)

)
to a convenient form. These identities

includes

n−1∑
k=0

cos2j
(
kπ
n

)
=

n

4j

⌊j/n⌋∑
k=−⌊j/n⌋

(
2j

j + kn

)
, (n, j ∈ N);

(1 + x)z =
∞∑
k=0

(
z

k

)
xk , (Re(z) > 0, |x | ≤ 1);

∞∑
j=0

(
p/2
j

)(
−1/2

−1/2 − j

)
=

(
p/2 − 1/2
−1/2

)
, (p ≥ 0).

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 25 / 28



Motivation Explanation Past results Recent developments Initial problem

"Sketch" of proof

• Using a myriad of identities, we were able to reduce the expression
Rn+1

(
sinp(πx)

)
− Rn

(
sinp(πx)

)
to a convenient form. These identities

includes

n−1∑
k=0

cos2j
(
kπ
n

)
=

n

4j

⌊j/n⌋∑
k=−⌊j/n⌋

(
2j

j + kn

)
, (n, j ∈ N);

(1 + x)z =
∞∑
k=0

(
z

k

)
xk , (Re(z) > 0, |x | ≤ 1);

∞∑
j=0

(
p/2
j

)(
−1/2

−1/2 − j

)
=

(
p/2 − 1/2
−1/2

)
, (p ≥ 0).

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 25 / 28



Motivation Explanation Past results Recent developments Initial problem

"Sketch" of proof

• Using a myriad of identities, we were able to reduce the expression
Rn+1

(
sinp(πx)

)
− Rn

(
sinp(πx)

)
to a convenient form. These identities

includes

n−1∑
k=0

cos2j
(
kπ
n

)
=

n

4j

⌊j/n⌋∑
k=−⌊j/n⌋

(
2j

j + kn

)
, (n, j ∈ N);

(1 + x)z =
∞∑
k=0

(
z

k

)
xk , (Re(z) > 0, |x | ≤ 1);

∞∑
j=0

(
p/2
j

)(
−1/2

−1/2 − j

)
=

(
p/2 − 1/2
−1/2

)
, (p ≥ 0).

Ludovick Bouthat (Université Laval) Monotonicité de certaines sommes de Riemann ISM 2022 25 / 28



Motivation Explanation Past results Recent developments Initial problem

"Sketch" of proof

• We showed that

Rn+1
(
sinp(πx)

)
− Rn

(
sinp(πx)

)
≥

∞∑
j=n+1

BjCj

where

Bj :=
2
4j

Γ(j − p/2)
j!Γ(−p/2)

,

Cj :=

⌊j/(n+1)⌋∑
k=1

(( 2j
j+k(n+1)

)
−
( 2j
j+kn

))
.

For j ≥ n + 1 and p ∈ [0, 2], we proved that Bj ,Cj ≤ 0. Hence,
Rn+1

(
sinp(πx)

)
≥ Rn

(
sinp(πx)

)
.
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Final application

Theorem
The diameter of Ωn, the set of doubly stochastic matrices of order n,
relative to the Schatten p-norms (1 ≤ p ≤ 2) satisfy

diamSp(Ωn) = 2

(
n∑

k=1

sinp
(
kπ
n

))1/p

.
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