## Monotonicité de certaines sommes de Riemann

Ludovick Bouthat

Université Laval
Colloque panquébécois de l'ISM; 27-29 mai 2022

## Acknowledgement

This research is a collaborate effort with Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the NSERC Graduate Scholarships.


## Outline of the presentation

(1) Theoretical motivation for the problem;
(2) Explanation of the problem;
(3) Some history and past results;
(4) Recent development;
(5) Some application to the initial motivation.

## Doubly stochastic matrices

## Definition

A square matrix is doubly stochastic if:

- nonnegative coefficients;
- row sums = 1 ;
- column sums $=1$.

The set of doubly stochastic matrices of order $n$ is denoted by $\Omega_{n}$.

## The diameter of $\Omega_{n}$

The diameter of $\Omega_{n}$ relative to the Schatten $p$-norms $(1 \leq p \leq 2)$ satisfy

$$
\operatorname{diam}_{\mathcal{S}_{p}}\left(\Omega_{n}\right) \geq 2\left(\sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)\right)^{1 / p}
$$

## The diameter of $\Omega_{n}$

The diameter of $\Omega_{n}$ relative to the Schatten $p$-norms ( $1 \leq p \leq 2$ ) satisfy

$$
\operatorname{diam}_{\mathcal{S}_{p}}\left(\Omega_{n}\right) \geq 2\left(\sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)\right)^{1 / p}
$$

To prove that this bound is in fact an equality, we needed to show that

$$
\frac{1}{n} \sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)
$$

is a monotonically increasing function relative to $n$.

## The right Riemann sum of $f$

## Definition

Let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function. Then

$$
R_{n}(f):=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)
$$

is the right Riemann sum of $f$ over $[0,1]$ and $R_{n}(f) \xrightarrow{n \rightarrow \infty} \int_{0}^{1} f(x) \mathrm{d} x$.


Figure: The right Riemann sum of $f(x)=x^{3}$ over $[0,1]$ when $n=10$.

## The left Riemann sum of $f$

## Definition

Let $f:[0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function. Then

$$
L_{n}(f):=\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)
$$

is the left Riemann sum of $f$ over $[0,1]$ and $L_{n}(f) \xrightarrow{n \rightarrow \infty} \int_{0}^{1} f(x) \mathrm{d} x$.


Figure: The left Riemann sum of $f(x)=x^{3}$ over $[0,1]$ when $n=10$.

## Some examples

## The function $f(x)=x$

- If $f(x)=x$, then $L_{n}(f)=\frac{1}{2}\left(1-\frac{1}{n}\right)$ and $R_{n}(f)=\frac{1}{2}\left(1+\frac{1}{n}\right)$.


Figure: The left and right Riemann sum of $f(x)=x$ over $[0,1]$.

## Some examples

The function $f(x)=5 x-4 x^{2}-\frac{2}{3}$

- If $f(x)=5 x-4 x^{2}-\frac{2}{3}$, then $L_{n}(f)=\frac{3 n^{2}-3 n-4}{6 n^{2}}$ and $R_{n}(f)=\frac{3 n^{2}+3 n-4}{6 n^{2}}$.


Figure: The left and right Riemann sum of $f(x)=5 x-4 x^{2}-\frac{2}{3}$ over $[0,1]$.

## The function $f(x)=\frac{1}{1+x^{2}}$

- In 2012, Szilárd András asked if $L_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=0}^{n-1} \frac{n}{n^{2}+k^{2}}$ and $R_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}$ exhibit some monotonicity properties.


## The function $f(x)=\frac{1}{1+x^{2}}$

- In 2012, Szilárd András asked if $L_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=0}^{n-1} \frac{n}{n^{2}+k^{2}}$ and $R_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}$ exhibit some monotonicity properties.


Figure: The left and right Riemann sum of $f(x)=\frac{1}{1+x^{2}}$ over $[0,1]$.

## Some general result using convexity

## Theorem (S. András; 2012)

If $f:[0,1] \rightarrow \mathbb{R}$ is convex (or concave) and decreasing on the interval $[0,1]$, then $L_{n}(f)$ decreases monotonically and $R_{n}(f)$ increases monotonically relative to $n$.

## Some general result using convexity

## Theorem (S. András; 2012)

If $f:[0,1] \rightarrow \mathbb{R}$ is convex (or concave) and decreasing on the interval $[0,1]$, then $L_{n}(f)$ decreases monotonically and $R_{n}(f)$ increases monotonically relative to $n$.

- Using the fact that $L_{n}(-f)=-L_{n}(f)$ and $R_{n}(-f)=-R_{n}(f)$, we also have:


## Corollary (S. András; 2012)

If $f:[0,1] \rightarrow \mathbb{R}$ is convex (or concave) and increasing on the interval $[0,1]$, then $L_{n}(f)$ increases monotonically and $R_{n}(f)$ decreases monotonically relative to $n$.

## A minor blunder

- András then asserts that the previous theorem apply to $f(x)=\frac{1}{1+x^{2}}$ and thus that $L_{n}(f)$ decreases monotonically and $R_{n}(f)$ increases monotonically relative to $n$.


## A minor blunder

- András then asserts that the previous theorem apply to $f(x)=\frac{1}{1+x^{2}}$ and thus that $L_{n}(f)$ decreases monotonically and $R_{n}(f)$ increases monotonically relative to $n$. However, $f$ has an inflection point at $1 / \sqrt{3}$.


Figure: The function $f(x)=\frac{1}{1+x^{2}}$ and its inflection point at $1 / \sqrt{3}$.

## A (partial) solution

- This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}$ increases monotonically.


## A (partial) solution

- This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_{n}\left(\frac{1}{1+x^{2}}\right)=\sum_{k=1}^{n} \frac{n}{n^{2}+k^{2}}$ increases monotonically.
- To achieve this, they prove a series of theorems and corollaries which can be viewed as extensions of the theorems of S. András.


## Some extensions

## Theorem (D. Borwein et al.; 2020)

If the function $f:[0,1] \rightarrow \mathbb{R}$ is convex on the interval $[0, c]$ for some $0<c<1$, concave on $[c, 1]$, and decreasing on $[0,1]$, then $R_{n}(f)$ increases monotonically and $L_{n}(f)$ decreases monotonically relative to $n$.

## Some extensions

## Theorem (D. Borwein et al.; 2020)

If the function $f:[0,1] \rightarrow \mathbb{R}$ is convex on the interval $[0, c]$ for some $0<c<1$, concave on [ $c, 1$ ], and decreasing on $[0,1]$, then $R_{n}(f)$ increases monotonically and $L_{n}(f)$ decreases monotonically relative to $n$.

## Remark

One might expect this result to hold even when exchanging the roles of convex and concave. However, it suffice to consider $f(x)=1_{[0,1 / 2]}$ to see that it cannot work, since

$$
R_{2 n-1}(f)+\frac{1}{2(n-1)}=R_{2 n}(f)=R_{2 n+1}(f)+\frac{1}{2 n} .
$$

## Some extensions

- Considering $-f$ in the previous theorem yield:


## Corollary (D. Borwein et al.; 2020)

If the function $f:[0,1] \rightarrow \mathbb{R}$ is concave on the interval $[0, c]$ for some $0<c<1$, convex on $[c, 1]$, and increasing on $[0,1]$, then $R_{n}(f)$ decreases monotonically and $L_{n}(f)$ increases monotonically relative to $n$.

## Some extensions

- Considering $-f$ in the previous theorem yield:


## Corollary (D. Borwein et al.; 2020)

If the function $f:[0,1] \rightarrow \mathbb{R}$ is concave on the interval $[0, c]$ for some $0<c<1$, convex on $[c, 1]$, and increasing on $[0,1]$, then $R_{n}(f)$ decreases monotonically and $L_{n}(f)$ increases monotonically relative to $n$.

- Using similar techniques, Borwein et al. showed that:


## Theorem (D. Borwein et al.; 2020)

If the function $f:[0,1] \rightarrow \mathbb{R}$ is concave on the interval $[0,1]$, with maximum $f(c)$ for some $0<c<1$, then $R_{n}(f)-\frac{f(c)-f(0)}{n}$ increases monotonically relative to $n$.

## Symmetrization (about $x=1 / 2$ )

## Definition

Given a function $f:[0,1] \rightarrow \mathbb{R}$, its symmetrization (about $x=\frac{1}{2}$ ) is defined to be

$$
\mathcal{F}_{1 / 2}(x):=\mathcal{F}(x)=\frac{f(x)+f(1-x)}{2}
$$

- The symmetrization of a convex (resp. concave) function is again convex (resp. concave). Interestingly, though the symmetrization process cannot destroy convexity or concavity, it can generate either of these properties.


## Symmetrization (about $x=1 / 2$ )

## Definition

Given a function $f:[0,1] \rightarrow \mathbb{R}$, its symmetrization (about $x=\frac{1}{2}$ ) is defined to be

$$
\mathcal{F}_{1 / 2}(x):=\mathcal{F}(x)=\frac{f(x)+f(1-x)}{2}
$$

- The symmetrization of a convex (resp. concave) function is again convex (resp. concave). Interestingly, though the symmetrization process cannot destroy convexity or concavity, it can generate either of these properties.
- Such is the case of the function $f(x)=\frac{1}{1+x^{2}}$.


## Some results using Symmetrization

## Theorem (D. Borwein et al.; 2020)

If $f:[0,1] \rightarrow \mathbb{R}$ has a concave symmetrization and verifies $f(0)>f\left(\frac{1}{2}\right)$, then $R_{n}(f)$ increases monotonically relative to $n$.

## Some results using Symmetrization

## Theorem (D. Borwein et al.; 2020)

If $f:[0,1] \rightarrow \mathbb{R}$ has a concave symmetrization and verifies $f(0)>f\left(\frac{1}{2}\right)$, then $R_{n}(f)$ increases monotonically relative to $n$.

- Observing that $R_{n}(f(1-x))=L_{n}(f(x))$, we obtain, by applying this theorem to $-f(x), f(1-x)$, and $-f(1-x)$ respectively, the following corollaries:


## Some results using Symmetrization

## Corollary (D. Borwein et al.; 2020)

If $f$ has a convex symmetrization and verifies $f(0)<f\left(\frac{1}{2}\right)$, then $R_{n}(f)$ decreases monotonically relative to $n$.

## Corollary (D. Borwein et al.; 2020)

 If $f$ has a concave symmetrization and verifies $f\left(\frac{1}{2}\right)<f(1)$, then $L_{n}(f)$ increases monotonically relative to $n$.
## Corollary (D. Borwein et al.; 2020)

If $f$ has a convex symmetrization and verifies $f\left(\frac{1}{2}\right)>f(1)$, then $L_{n}(f)$ decreases monotonically relative to $n$.

## Application to $f(x)=\frac{1}{1+x^{2}}$

- The symmetrization of $f(x)=\frac{1}{1+x^{2}}$ is concave and satisfy $f(0)>f(1 / 2)$. Hence, $R_{n}(f)$ increases monotonically relative to $n$.


Figure: The symmetrization $\mathcal{F}(x)$ of the function $f(x)=\frac{1}{1+x^{2}}$.

## The problem of $L_{n}(f)$

- Surprisingly, none of the above theorems allows us to prove directly that $L_{n}\left(\frac{1}{1+x^{2}}\right)$ decreases monotonically relative to $n$. Borwein et al. left it at that.


## The problem of $L_{n}(f)$

- Surprisingly, none of the above theorems allows us to prove directly that $L_{n}\left(\frac{1}{1+x^{2}}\right)$ decreases monotonically relative to $n$. Borwein et al. left it at that.
- Recently, using the previous results as tools, we have been able to resolve the problem of $L_{n}(f)$ and even more, since we studied functions of the form

$$
f_{b}(x)=\frac{1}{x^{2}-b x+1}
$$

$$
(b \leq 1)
$$

## The result and proof idea

## Theorem

Let $f_{b}(x)=\frac{1}{x^{2}-b x+1}$ with $b \in \mathbb{R}$. Then $R_{n}\left(f_{b}\right)$ increases monotonically relative to $n$ for $b \in(-\infty, 1]$ and $L_{n}\left(f_{b}\right)$ decreases monotonically relative to $n$ for $b \in(-\infty, \alpha)$, where $\alpha \approx 0.493862$.

## The result and proof idea

## Theorem

Let $f_{b}(x)=\frac{1}{x^{2}-b x+1}$ with $b \in \mathbb{R}$. Then $R_{n}\left(f_{b}\right)$ increases monotonically relative to $n$ for $b \in(-\infty, 1]$ and $L_{n}\left(f_{b}\right)$ decreases monotonically relative to $n$ for $b \in(-\infty, \alpha)$, where $\alpha \approx 0.493862$.

Proof idea.
Let $g:[0,1] \rightarrow \mathbb{R}$ and define the function $h:=f_{b}-g$. Then $L_{n}\left(f_{b}\right)=L_{n}(h)+L_{n}(g)$ and $R_{n}\left(f_{b}\right)=R_{n}(h)+R_{n}(g)$. Hence, we simply need to show that $L_{n}(h), L_{n}(g)$ decreases monotonically relative to $n$ and that $R_{n}(h), R_{n}(g)$ increases monotonically relative to $n$.

## Sketch of proof

Sketch of proof of $L_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $L_{n}\left(f_{b}\right)$ is monotonically decreasing.

## Sketch of proof

Sketch of proof of $L_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $L_{n}\left(f_{b}\right)$ is monotonically decreasing.

Otherwise, let

$$
g_{a, c}(x):= \begin{cases}0, & \text { if } 0 \leq x<\frac{1}{2} \\ a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

## Sketch of proof

Sketch of proof of $L_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $L_{n}\left(f_{b}\right)$ is monotonically decreasing.

Otherwise, let

$$
g_{a, c}(x):= \begin{cases}0, & \text { if } 0 \leq x<\frac{1}{2} \\ a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

For $b \in\left(-1, \frac{3-\sqrt{13}}{4}\right)$, let $a:=1-b^{2}$ and $c:=0$.

## Sketch of proof

Sketch of proof of $L_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $L_{n}\left(f_{b}\right)$ is monotonically decreasing.

Otherwise, let

$$
g_{a, c}(x):= \begin{cases}0, & \text { if } 0 \leq x<\frac{1}{2} \\ a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

For $b \in\left(-1, \frac{3-\sqrt{13}}{4}\right)$, let $a:=1-b^{2}$ and $c:=0$.
For $b \in\left[\frac{3-\sqrt{13}}{4}, \alpha\right)$ where $\alpha \approx 0.493862$, let $a:=-32 \frac{4 b^{2}-6 b-1}{(5-2 b)^{3}}$ and
$c:=16\left(\frac{59-198 b+164 b^{2}-40 b^{3}}{(2-b)(5-2 b)^{3}}-\varepsilon\right)$, where $\varepsilon>0$.

## Sketch of proof

Sketch of proof of $R_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $R_{n}\left(f_{b}\right)$ is monotonically increasing.

## Sketch of proof

Sketch of proof of $R_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $R_{n}\left(f_{b}\right)$ is monotonically increasing.

Otherwise, let

$$
g_{a, c, d}(x):= \begin{cases}a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}+d\left(x-\frac{1}{2}\right)^{6}, & \text { if } 0 \leq x<\frac{1}{2} \\ 0, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

## Sketch of proof

Sketch of proof of $R_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $R_{n}\left(f_{b}\right)$ is monotonically increasing.

Otherwise, let

$$
g_{a, c, d}(x):= \begin{cases}a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}+d\left(x-\frac{1}{2}\right)^{6}, & \text { if } 0 \leq x<\frac{1}{2} \\ 0, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

For $b \in\left(-1, \frac{3-\sqrt{13}}{4}\right)$, let $a:=\frac{4}{9}(5-2 \sqrt{13}), c:=0$ and $d:=0$.

## Sketch of proof

Sketch of proof of $R_{n}\left(f_{b}\right)$.
For $b \in(-\infty,-1]$ the function $f_{b}(x)$ is convex and decreasing on $[0,1]$ and one of the earlier theorem implies that $R_{n}\left(f_{b}\right)$ is monotonically increasing.

Otherwise, let

$$
g_{a, c, d}(x):= \begin{cases}a\left(x-\frac{1}{2}\right)^{2}+c\left(x-\frac{1}{2}\right)^{4}+d\left(x-\frac{1}{2}\right)^{6}, & \text { if } 0 \leq x<\frac{1}{2} \\ 0, & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

For $b \in\left(-1, \frac{3-\sqrt{13}}{4}\right)$, let $a:=\frac{4}{9}(5-2 \sqrt{13}), c:=0$ and $d:=0$.
For $b \in\left[\frac{3-\sqrt{13}}{4}, 1\right]$, let $a:=32 \frac{1+6 b-4 b^{2}}{(5-2 b)^{3}}, c:=-\frac{128}{3} \frac{1+6 b-4 b^{2}}{(5-2 b)}$ and
$d:=\frac{512}{15} \frac{1+6 b-4 b^{2}}{(5-2 b)^{3}}$.

## The function $\sin ^{p}(\pi x)$

- Recall our initial motivation: showing that

$$
R_{n}\left(\sin ^{p}(\pi x)\right)=\frac{1}{n} \sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)
$$

increases monotonically relative to $n$.

## The function $\sin ^{p}(\pi x)$

- Recall our initial motivation: showing that

$$
R_{n}\left(\sin ^{p}(\pi x)\right)=\frac{1}{n} \sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)
$$

increases monotonically relative to $n$.

- Surprisingly, none of the above methods and theorems were able to provide a proof of this property.


## The function $\sin ^{p}(\pi x)$

- Recall our initial motivation: showing that

$$
R_{n}\left(\sin ^{p}(\pi x)\right)=\frac{1}{n} \sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)
$$

increases monotonically relative to $n$.

- Surprisingly, none of the above methods and theorems were able to provide a proof of this property. Nonetheless, we were able to show that $R_{n}\left(\sin ^{p}(\pi x)\right)$ is indeed a monotonically increasing function relative to $n$ for $p \in[1,2]$.


## "Sketch" of proof

- Using a myriad of identities, we were able to reduce the expression $R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right)$ to a convenient form. These identities includes


## "Sketch" of proof

- Using a myriad of identities, we were able to reduce the expression $R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right)$ to a convenient form. These identities includes

$$
\sum_{k=0}^{n-1} \cos ^{2 j}\left(\frac{k \pi}{n}\right)=\frac{n}{4 j} \sum_{k=-\lfloor j / n\rfloor}^{\lfloor j / n\rfloor}\binom{2 j}{j+k n}, \quad(n, j \in \mathbb{N})
$$

## "Sketch" of proof

- Using a myriad of identities, we were able to reduce the expression $R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right)$ to a convenient form. These identities includes

$$
\begin{array}{cl}
\sum_{k=0}^{n-1} \cos ^{2 j}\left(\frac{k \pi}{n}\right)=\frac{n}{4 j} \sum_{k=-\lfloor j / n\rfloor}^{\lfloor j / n\rfloor}\binom{2 j}{j+k n}, & (n, j \in \mathbb{N}) ; \\
(1+x)^{z}=\sum_{k=0}^{\infty}\binom{z}{k} x^{k}, & (\operatorname{Re}(z)>0,|x| \leq 1)
\end{array}
$$

## "Sketch" of proof

- Using a myriad of identities, we were able to reduce the expression $R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right)$ to a convenient form. These identities includes

$$
\begin{aligned}
& \sum_{k=0}^{n-1} \cos ^{2 j}\left(\frac{k \pi}{n}\right)=\frac{n}{4 j} \sum_{k=-\lfloor j / n\rfloor}^{\lfloor j / n\rfloor}\binom{2 j}{j+k n}, \quad(n, j \in \mathbb{N}) ; \\
& (1+x)^{z}=\sum_{k=0}^{\infty}\binom{z}{k} x^{k}, \quad(\operatorname{Re}(z)>0,|x| \leq 1) \\
& \sum_{j=0}^{\infty}\binom{p / 2}{j}\binom{-1 / 2}{-1 / 2-j}=\binom{p / 2-1 / 2}{-1 / 2},
\end{aligned}
$$

## "Sketch" of proof

- We showed that

$$
R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right) \geq \sum_{j=n+1}^{\infty} B_{j} C_{j}
$$

where

$$
\begin{gathered}
B_{j}:=\frac{2}{4^{j}} \frac{\Gamma(j-p / 2)}{j^{\prime} \Gamma(-p / 2)}, \\
C_{j}:=\sum_{k=1}^{\lfloor j /(n+1)\rfloor}\left(\binom{2 j}{j+k(n+1)}-\binom{2 j}{j+k n}\right) .
\end{gathered}
$$

## "Sketch" of proof

- We showed that

$$
R_{n+1}\left(\sin ^{p}(\pi x)\right)-R_{n}\left(\sin ^{p}(\pi x)\right) \geq \sum_{j=n+1}^{\infty} B_{j} C_{j}
$$

where

$$
\begin{gathered}
B_{j}:=\frac{2}{4 j} \frac{\Gamma(j-p / 2)}{j^{\prime} \Gamma(-p / 2)}, \\
C_{j}:=\sum_{k=1}^{\lfloor j /(n+1)\rfloor}\left(\binom{2 j}{j+k(n+1)}-\binom{2 j}{j+k n}\right) .
\end{gathered}
$$

For $j \geq n+1$ and $p \in[0,2]$, we proved that $B_{j}, C_{j} \leq 0$. Hence, $R_{n+1}\left(\sin ^{p}(\pi x)\right) \geq R_{n}\left(\sin ^{p}(\pi x)\right)$.

## Final application

## Theorem

The diameter of $\Omega_{n}$, the set of doubly stochastic matrices of order $n$, relative to the Schatten p-norms $(1 \leq p \leq 2)$ satisfy

$$
\operatorname{diam}_{\mathcal{S}_{p}}\left(\Omega_{n}\right)=2\left(\sum_{k=1}^{n} \sin ^{p}\left(\frac{k \pi}{n}\right)\right)^{1 / p}
$$

## References

围 András, Szilárd (2012) Monotonicity of certain Riemann-type sums. The Teaching Of Mathematics., 15(2): 113-120.
David Borwein, Jonathan M. Borwein \& Brailey Sims (2020) Symmetry and the Monotonicity of Certain Riemann Sums. From Analysis to Visualization: A Celebration of the Life and Legacy of Jonathan M. Borwein, Callaghan, Australia, September 2017, 313:7-20.

