# Le comportement asymptotique des chaînes de Markov

Ludovick Bouthat

Université Laval

SUMM; January 2023

### Acknowledgement

This research is a collaborate effort with Pr. Nicolas Doyon, Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the Vanier Scholarship.



# Stochastic processes and Markov chains

#### Definition

A discrete-time Markov process is a sequence  $X_1, X_2, X_3,...$  of random variables with values in some state space S which respects the Markov property: information useful for the prediction of the future does not depend on the past.

# Stochastic processes and Markov chains

#### Definition

A discrete-time Markov process is a sequence  $X_1, X_2, X_3, \ldots$  of random variables with values in some state space S which respects the Markov property: information useful for the prediction of the future does not depend on the past.

### Example (Coupon collector problem)

**Context**: A person collects cards of n players from a sports team, which he finds inside candy bars; in each tablet, there is a 1/n chance of obtaining the card #n.

**Definition**:  $S := \{ \text{"Having } k \text{ distinct cards"} \mid k = 0, 1, ..., n \}.$ 

#### Transition matrices

A transition matrix, or stochastic matrix, is a matrix

$$P = \begin{bmatrix} P_{1,1} & P_{1,2} & \cdots & P_{1,j} & \cdots & P_{1,n} \\ P_{2,1} & P_{2,2} & \cdots & P_{2,j} & \cdots & P_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i,1} & P_{i,2} & \cdots & P_{i,j} & \cdots & P_{i,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{n,1} & P_{n,2} & \cdots & P_{n,j} & \cdots & P_{n,n} \end{bmatrix},$$

where  $P_{i,j}$  is the probability of transitioning from state i to state j in a Markov chain in one time step.

#### Transition matrices

A transition matrix, or stochastic matrix, is a matrix

$$P = \begin{bmatrix} P_{1,1} & P_{1,2} & \cdots & P_{1,j} & \cdots & P_{1,n} \\ P_{2,1} & P_{2,2} & \cdots & P_{2,j} & \cdots & P_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{i,1} & P_{i,2} & \cdots & P_{i,j} & \cdots & P_{i,n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ P_{n,1} & P_{n,2} & \cdots & P_{n,j} & \cdots & P_{n,n} \end{bmatrix},$$

where  $P_{i,j}$  is the probability of transitioning from state i to state j in a Markov chain in one time step.

The probability of going from state i to state j in k steps is given by the coefficient (i,j) of the matrix  $P^k$ .

### Coupon collector problem Part 2

•  $S_1 := "0 \text{ card}"$ ;

0000000

- $S_2 := "1 \text{ card}"$ ;
- S<sub>3</sub> := "2 distinct cards";
- $S_4 := "3 \text{ distinct card}".$

The associated transition matrix is:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

### Coupon collector problem Part 2

•  $S_1 := "0 \text{ card}"$ ;

- $S_2 := "1 \text{ card}"$ ;
- S<sub>3</sub> := "2 distinct cards";
  S<sub>4</sub> := "3 distinct card".

The associated transition matrix is:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Hence,

0000000

$$P^2 = \begin{bmatrix} 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{1}{9} & \frac{2}{3} & \frac{2}{9} \\ 0 & 0 & \frac{4}{9} & \frac{5}{9} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P^{2} = \begin{bmatrix} 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{1}{9} & \frac{2}{3} & \frac{2}{9} \\ 0 & 0 & \frac{4}{9} & \frac{5}{9} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad P^{5} = \begin{bmatrix} 0 & \frac{1}{81} & \frac{10}{27} & \frac{50}{81} \\ 0 & \frac{1}{243} & \frac{62}{243} & \frac{20}{27} \\ 0 & 0 & \frac{32}{243} & \frac{211}{243} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

# Doubly stochastic matrices

#### Definition

A square matrix is doubly stochastic if:

- nonnegative coefficients;
- row sums = 1;
- column sums = 1.

The set of doubly stochastic matrices of order n is denoted by  $\Omega_n$ .

### Example

$$D \ = \ \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.4 & 0.2 & 0.4 \\ 0.5 & 0.5 & 0 \end{bmatrix}.$$

# Important properties

0000000

•  $\Omega_n$  is closed under classical matrix multiplication, i.e.,  $D_1D_2 \in \Omega_n$  if  $D_1, D_2 \in \Omega_n$ .

# Important properties

- $\Omega_n$  is closed under classical matrix multiplication, i.e.,  $D_1D_2 \in \Omega_n$  if  $D_1, D_2 \in \Omega_n$ .
- If  $D \in \Omega_n$ , De = e and 1 is an eigenvalue of D.

# Important properties

- $\Omega_n$  is closed under classical matrix multiplication, i.e.,  $D_1D_2 \in \Omega_n$  if  $D_1, D_2 \in \Omega_n$ .
- If  $D \in \Omega_n$ , De = e and 1 is an eigenvalue of D.
- If  $D \in \Omega_n$ , every eigenvalues of D lie in the unit disk.

### Important cases

#### Example

0000000

The uniform matrix and the circular shift matrix

$$J_{n} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} \quad \& \quad K_{n} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

### Important cases **Properties**

0000000

**1** If 
$$D \in \Omega_n$$
,  $DJ_n = J_nD = J_n$ ;

# Important cases

0000000

**Properties** 

**1** If 
$$D \in \Omega_n$$
,  $DJ_n = J_nD = J_n$ ;

$$\mathcal{E}_{n}^{2} = \begin{bmatrix} 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \end{bmatrix}, \cdots, K_{n}^{n-1} = I_{n}, K_{n}^{n} = K_{n}$$

# Main question

• Let  $(D_n) \subseteq \Omega_n$  be such that  $D_k$  is the transition matrix of a doubly stochastic Markov chain at step k.

# Main question

• Let  $(D_n) \subseteq \Omega_n$  be such that  $D_k$  is the transition matrix of a doubly stochastic Markov chain at step k.

**Question**: What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about  $D_1D_2D_2\cdots$ ?

# Main question

• Let  $(D_n) \subseteq \Omega_n$  be such that  $D_k$  is the transition matrix of a doubly stochastic Markov chain at step k.

**Question**: What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about  $D_1D_2D_2\cdots$ ?

#### Definition

A Markov chain is *homogeneous* if  $D_n = D$  for every  $n \ge 1$ . Otherwise, it is *non-homogeneous*.

### Useful facts

#### Definition

A doubly stochastic matrix is *irreducible* if its eigenvalue 1 its eigenvalue 1 is simple. It is *primitive* if its eigenvalue 1 is the only one on the unit circle.

#### Proposition

For any doubly stochastic matrix D, there exist a permutation matrix P such that

$$P^{tr}DP = D_1 \oplus D_2 \oplus \cdots \oplus D_r$$

where  $D_k$  are irreducible doubly stochastic matrices or smaller order.

### Useful facts

### Proposition

If  $D \in \Omega_n$  is irreducible and  $h \ge 1$  denotes the number of unimodular eigenvalue of D, then there exist a permutation matrix P such that

$$P^{tr}DP = \begin{bmatrix} 0 & D_1 & 0 & \cdots & 0 \\ 0 & 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & D_{h-1} \\ D_h & 0 & 0 & \cdots & 0 \end{bmatrix} = (D_1 \oplus \cdots \oplus D_h) (K_h \otimes I_{n/h}),$$

where  $D_j \in \Omega_{n/h}$  for  $1 \le j \le h$ .

### Useful facts

### Corollary

If  $D \in \Omega_n$ , then there exist a permutation matrix P such that

$$P^{tr}DP = \bigoplus_{i=1}^{r} D_i = \bigoplus_{i=1}^{r} (D_{i,1} \oplus \cdots \oplus D_{i,h_i}) (K_{h_i} \otimes I_{n_i/h_i}),$$

where each  $D_i \in \Omega_{n_i}$  is irreducible and each  $D_{i,j} \in \Omega_{n_i/h_i}$ .

# Convergent irreducible d.s. matrices

#### **Theorem**

Let D be an  $n \times n$  irreducible doubly stochastic matrix. Then  $D^m$  converges as  $m \to \infty$  if and only if D is primitive. Moreover, if it converges, then  $\lim_{m \to \infty} D^m = J_n$ .

# Convergent irreducible d.s. matrices

#### Theorem

Let D be an  $n \times n$  irreducible doubly stochastic matrix. Then  $D^m$ converges as  $m \to \infty$  if and only if D is primitive. Moreover, if it converges, then  $\lim_{m\to\infty} D^m = J_n$ .

#### Example

$$D = \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.4 & 0.2 & 0.4 \\ 0.5 & 0.5 & 0 \end{bmatrix} \rightsquigarrow D^8 = \begin{bmatrix} 0.334636 & 0.334634 & 0.33073 \\ 0.333332 & 0.333335 & 0.333332 \\ 0.332031 & 0.332031 & 0.335938 \end{bmatrix}$$

Ludovick Bouthat (Université Laval)

### Convergent d.s. matrices

### Corollary

For almost all doubly stochastic matrices D,  $D^k \to J_n$  as  $k \to \infty$ .

# Convergent d.s. matrices

#### Corollary

For almost all doubly stochastic matrices D,  $D^k \to J_n$  as  $k \to \infty$ .

### Corollary

Let D be an  $n \times n$  doubly stochastic matrix and let h be the number of eigenvalues of unit modulus of D. Let P be a permutation matrix such that

$$P^{tr}DP = D_1 \oplus D_2 \oplus \cdots \oplus D_r$$

where each  $D_i \in \Omega_{n_i}$  is irreducible. Then  $D^m$  converges as  $m \to \infty$  if and only if D has precisely h eigenvalues equal to 1. Moreover, if it converges, then r = h and  $\lim_{m \to \infty} D^m = P(J_{n_1} \oplus J_{n_2} \oplus \cdots \oplus J_{n_r})P^{tr}$ .

# Cyclic irreducible d.s. matrices

#### Theorem

Let D be an  $n \times n$  irreducible doubly stochastic matrix. Then D is cyclic of order p if and only if there exists a permutation matrix P such that

$$P^{tr}DP = K_{p} \otimes J_{n/p} = \begin{bmatrix} 0 & J_{n/p} & 0 & \cdots & 0 \\ 0 & 0 & J_{n/p} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & J_{n/p} \\ J_{n/p} & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Moreover, p is the number of eigenvalues of D on the unit circle.

# Cyclic d.s. matrices

#### Theorem

Let D be an  $n \times n$  doubly stochastic matrix. Then D is cyclic of order p if and only if there exists a permutation matrix P and positive integers  $r, h_i, k_i$   $(1 \le i \le r)$  satisfying  $p = LCM(h_1, h_2, \ldots, h_r)$  and  $h_1k_1 + h_2k_2 + \cdots + h_rk_r = n$  such that

$$P^{tr}DP = \bigoplus_{j=1}^{r} (K_{h_j} \otimes J_{k_j}).$$

In that case, D has r eigenvalues equal to 1 and  $h = h_1 + h_2 + \cdots + h_r$  eigenvalues on the unit circle.

#### Theorem

Let  $D \in \Omega_n$  be an irreducible doubly stochastic matrix, and let P be a permutation matrix such that

$$P^{tr}DP = \Big( \oplus_{i=1}^h D_i \Big) \Big( K_h \otimes I_{n/h} \Big) ,$$

where h := h(D) and  $D_i \in \Omega_{n/h}$   $(1 \le i \le h)$ . Then for every  $0 \le r \le h-1$ ,

$$D^{mh+r} \xrightarrow{m \to \infty} P(K_h^r \otimes J_{n/h}) P^{tr}.$$

# Diverging d.s. matrices

#### Theorem

Let  $D \in \Omega_n$  be an irreducible doubly stochastic matrix, and let P be a permutation matrix such that

$$P^{tr}DP = \left(\bigoplus_{i=1}^h D_i\right) \left(K_h \otimes I_{n/h}\right),$$

where h := h(D) and  $D_i \in \Omega_{n/h}$   $(1 \le i \le h)$ . Then for every  $0 \le r \le h-1$ ,

$$D^{mh+r} \xrightarrow{m \to \infty} P(K_h^r \otimes J_{n/h}) P^{tr}.$$

### A sufficient result

**Question**: What can we say about the infinite product  $D_1D_2D_2\cdots$ ?

### A sufficient result

**Question**: What can we say about the infinite product  $D_1D_2D_2\cdots$ ?

#### Theorem

Let  $A_1, A_2, ...$  be a sequence of  $n \times n$  doubly stochastic matrices and let  $\sigma_2(A)$  be the second largest singular value of A. If

$$\sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty, \text{ then } \lim_{m \to \infty} A_1 A_2 \cdots A_m = J.$$

### A sufficient result

**Question**: What can we say about the infinite product  $D_1D_2D_2\cdots$ ?

#### Theorem

Let  $A_1, A_2, \ldots$  be a sequence of  $n \times n$  doubly stochastic matrices and let  $\sigma_2(A)$  be the second largest singular value of A. If  $\sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty$ , then  $\lim_{m \to \infty} A_1 A_2 \cdots A_m = J$ .

### Theorem (Schwarz, 1980)

Let  $A_1, A_2, \ldots$  be a sequence of  $n \times n$  doubly stochastic matrices and let  $\nu(A) := \min_{i \ n} a_{ij}$ . If  $\sum_{k=1}^{\infty} \nu(A_k) = \infty$ , then  $\lim_{m \to \infty} A_1 A_2 \cdots A_m = J$ .

# Improving a result of Schwarz

•  $n\nu(D) \leq 1 - \sigma_2(D)$  for any  $D \in \Omega_n$ .

# Improving a result of Schwarz

•  $n\nu(D) \leq 1 - \sigma_2(D)$  for any  $D \in \Omega_n$ .

$$\sum_{k=1}^{\infty} \nu(A_k) = \infty \quad \Longrightarrow \quad \sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty.$$

### Improving a result of Schwarz

•  $n\nu(D) \leq 1 - \sigma_2(D)$  for any  $D \in \Omega_n$ .

$$\sum_{k=1}^{\infty} \nu(A_k) = \infty \quad \Longrightarrow \quad \sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty.$$

#### Example

Consider the case  $A_k = A$  for each k, where

$$A = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}.$$

Then  $A \in \Omega_n$ ,  $\nu(A) = 0$ , and the singular values of A are 1, 1/2 and 0 so that  $1 - \sigma_2(A) = 1/2$ .

### References

- Štefan Schwarz (1980) Infinite products of doubly stochastic matrices. *Acta Math. Univ. Comenian.*, 39: 131–150.
- Ludovick Bouthat, Apoorva Khare, Javad Mashreghi & Frédéric Morneau-Guérin (2021) The *p*-norm of circulant matrices, *Linear and Multilinear Algebra*, DOI: 10.1080/03081087.2021.1983513
- K. R. Sahasranand (2022) The *p*-norm of circulant matrices via Fourier analysis. arXiv preprint arXiv:2111.11389.