Motivation	Explanation	Past results	Recent developments	Initial problem
	00000	0000000000	0	00000

Monotonicity of Certain Riemann Sums

Ludovick Bouthat

Université Laval

Canadian Undergraduate Mathematics Conference; June 2023

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments 0	Initial problem
Acknowl	edgement			
ACKHOWN	eugement			

This research is a collaborate effort with Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the Vanier Scholarship.

Outline of the presentation

- Theoretical motivation for the problem;
- Explanation of the problem;
- Some history and past results;
- 4 Recent development;
- **5** Some application to the initial motivation.

Motivation	Explanation	Past results	Recent developments	Initial problem
●○	00000	0000000000	0	

Doubly stochastic matrices

Definition

A square matrix is *doubly stochastic* if:

- nonnegative coefficients;
- row sums = 1;
- column sums = 1.

The set of doubly stochastic matrices of order n is denoted by Ω_n .

Example $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ or } \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$

Motivation Explanation Past results Recent developments Initial problem
$$00000$$

The diameter of Ω_n relative to the Schatten *p*-norms ($1 \le p \le 2$) satisfy

diam_{S_p}(
$$\Omega_n$$
) $\geq 2\left(\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)\right)^{1/p}$.

$$\begin{array}{c|c} \mbox{Motivation} & \mbox{Explanation} & \mbox{Past results} & \mbox{Recent developments} & \mbox{Initial problem} \\ \hline \mbox{OOOOOOOOOO} & \mbox{OOOOOOOOO} \end{array}$$

The diameter of Ω_n relative to the Schatten *p*-norms ($1 \le p \le 2$) satisfy

$$\operatorname{diam}_{\mathcal{S}_p}(\Omega_n) \geq 2\left(\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)\right)^{1/p}$$

To prove that this is an equality, we need to show that

$$\frac{1}{n}\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)$$

is a monotonically increasing function relative to n.

 Motivation
 Explanation
 Past results
 Recent developments
 Initial problem

 00
 00000
 0
 00000
 0
 00000

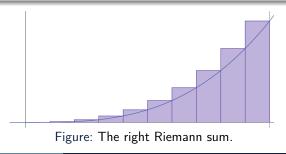
The right Riemann sum of f

Definition

Let $f : [0,1] \rightarrow \mathbb{R}$ be a Riemann integrable function. Then

$$R_n(f) := \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

is the right Riemann sum of f over [0,1] and $R_n(f) \xrightarrow{n \to \infty} \int_0^1 f(x) dx$.



Motivation	Explanation 0●000	Past results 000000000	Recent developments 0	Initial problem

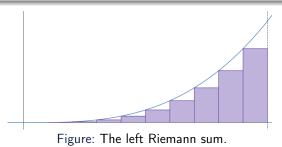
The left Riemann sum of f

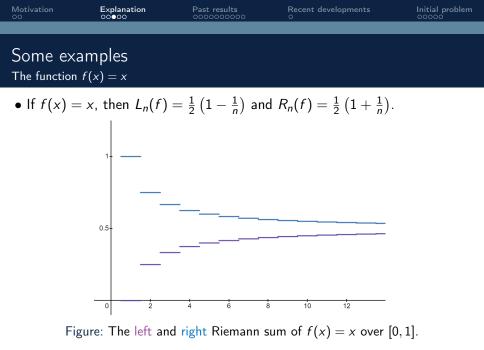
Definition

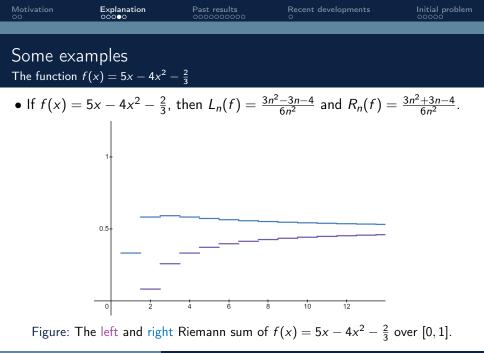
Let $f:[0,1] \to \mathbb{R}$ be a Riemann integrable function. Then

$$L_n(f) := \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$$

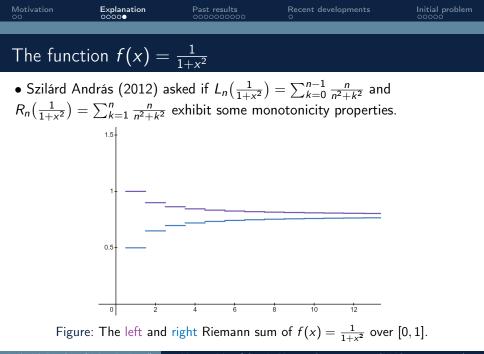
is the left Riemann sum of f over [0,1] and $L_n(f) \xrightarrow{n \to \infty} \int_0^1 f(x) dx$.







Motivation 00	Explanation 0000●	Past results 0000000000	Recent developments O	Initial problem
The func	tion $f(x) =$	$\frac{1}{1+x^2}$		
			$p = \sum_{k=0}^{n-1} \frac{n}{n^2 + k^2}$ and photonicity properties	



Some general result using convexity

Theorem (S. András; 2012)

If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and decreasing on the interval [0,1], then $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

Recent developments

11 / 26

Some general result using convexity

Theorem (S. András; 2012)

If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and decreasing on the interval [0,1], then $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

• Using the fact that $L_n(-f) = -L_n(f)$ and $R_n(-f) = -R_n(f)$, we also have:

Corollary (S. András; 2012)

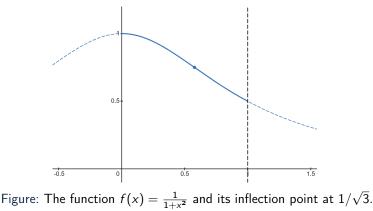
If $f : [0,1] \to \mathbb{R}$ is convex (or concave) and increasing on the interval [0,1], then $L_n(f)$ increases monotonically and $R_n(f)$ decreases monotonically relative to n.

Motivation	Explanation 00000	Past results 0●00000000	Recent developments 0	Initial problem 00000
A minor	blunder			

• András applied the last theorem to $f(x) = \frac{1}{1+x^2}$ and deduced that $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n.

A minor blunder

• András applied the last theorem to $f(x) = \frac{1}{1+x^2}$ and deduced that $L_n(f)$ decreases monotonically and $R_n(f)$ increases monotonically relative to n. However, f has an inflection point at $1/\sqrt{3}$.



Motivation	Explanation 00000	Past results 00●0000000	Recent developments 0	Initial problem 00000
A (partial) solution			

• This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_n(\frac{1}{1+x^2}) = \sum_{k=1}^n \frac{n}{n^2+k^2}$ increases monotonically.

Motivation 00	Explanation 00000	Past results 00●0000000	Recent developments 0	Initial problem 00000
A (partia	al) solution			

- This problem caught the attention of David Borwein and his son. They provided a rectified proof of the fact that $R_n(\frac{1}{1+x^2}) = \sum_{k=1}^n \frac{n}{n^2+k^2}$ increases monotonically.
- To achieve this, they prove a series of theorems and corollaries which can be viewed as extensions of the theorems of S. András.

Motivation	Explanation 00000	Past results 000●000000	Recent developments O	Initial problem
-				

Some extensions

Theorem (Borwein, Borwein, Sims; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is convex on the interval [0,c] for some 0 < c < 1, concave on [c,1], and decreasing on [0,1], then $R_n(f)$ increases monotonically and $L_n(f)$ decreases monotonically relative to n.

Motivation	Explanation	Past results	Recent developments	Initial problem
00	00000	000●000000	0	

Some extensions

Theorem (Borwein, Borwein, Sims; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is convex on the interval [0,c] for some 0 < c < 1, concave on [c,1], and decreasing on [0,1], then $R_n(f)$ increases monotonically and $L_n(f)$ decreases monotonically relative to n.

Remark

One might expect this result to hold even when exchanging the roles of *convex* and *concave*. However, it suffice to consider $f(x) = 1_{[0,1/2]}$ to see that it cannot work, since

$$R_{2n-1}(f) + \frac{1}{2(n-1)} = R_{2n}(f) = R_{2n+1}(f) + \frac{1}{2n}.$$

Motivation 00	Explanation 00000	Past results 0000●00000	Recent developments 0	Initial problem
Some ex	tensions			
• Conside	ring $-f$ in the p	previous theorem	yield:	
Corollary	(Borwein, Bor	wein, Sims; 202	20)	

If the function $f : [0, 1] \to \mathbb{R}$ is concave on the interval [0, c] for some 0 < c < 1, convex on [c, 1], and increasing on [0, 1], then $R_n(f)$ decreases monotonically and $L_n(f)$ increases monotonically relative to n.

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments O	Initial problem
Some ex	tensions			
• Consider	ing $-f$ in the p	previous theorem	yield:	
Corollary	(Borwein, Bor	wein, Sims; 202	20)	

If the function $f : [0,1] \to \mathbb{R}$ is concave on the interval [0, c] for some 0 < c < 1, convex on [c,1], and increasing on [0,1], then $R_n(f)$ decreases monotonically and $L_n(f)$ increases monotonically relative to n.

• Using similar techniques, the authors showed that:

Theorem (Borwein, Borwein, Sims; 2020)

If the function $f : [0,1] \to \mathbb{R}$ is concave on the interval [0,1], with maximum f(c) for some 0 < c < 1, then $R_n(f) - \frac{f(c) - f(0)}{n}$ increases monotonically relative to n.

Symmetrization (about x = 1/2)

Definition

Given a function $f : [0,1] \to \mathbb{R}$, its symmetrization (about $x = \frac{1}{2}$) is defined to be $\mathcal{F}_{1/2}(x) := \mathcal{F}(x) = \frac{f(x) + f(1-x)}{2}$.

• The symmetrization of a convex (resp. concave) function is again convex (resp. concave). Interestingly, though the symmetrization process cannot destroy convexity or concavity, it can generate either of these properties.

Recent developments

Some results using Symmetrization

Theorem (Borwein, Borwein, Sims; 2020)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies $f(0) > f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

Recent developments

Some results using Symmetrization

Theorem (Borwein, Borwein, Sims; 2020)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies $f(0) > f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

• Observing that $R_n(f(1-x)) = L_n(f(x))$, we obtain, by applying this theorem to -f(x), f(1-x), and -f(1-x) respectively, the following corollaries:

Some results using Symmetrization

Corollary (Borwein, Borwein, Sims; 2020)

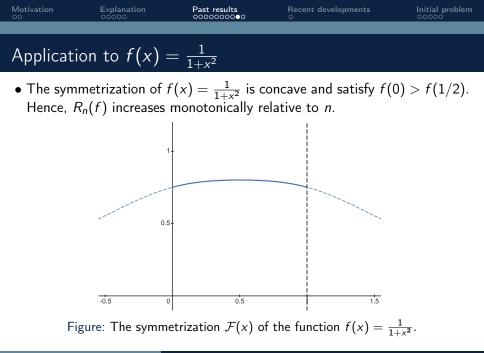
If f has a convex symmetrization and verifies $f(0) < f(\frac{1}{2})$, then $R_n(f)$ decreases monotonically relative to n.

Corollary (Borwein, Borwein, Sims; 2020)

If f has a concave symmetrization and verifies $f(\frac{1}{2}) < f(1)$, then $L_n(f)$ increases monotonically relative to n.

Corollary (Borwein, Borwein, Sims; 2020)

If f has a convex symmetrization and verifies $f(\frac{1}{2}) > f(1)$, then $L_n(f)$ decreases monotonically relative to n.



Motivation 00	Explanation 00000	Past results 000000000●	Recent developments 0	Initial problem
The prol	blem of L _n (f			

• Surprisingly, none of the above theorems allow us to prove that $L_n(\frac{1}{1+x^2})$ decreases monotonically relative to n. Borwein *et al.* left it at that.

Motivation	Explanation 00000	Past results 000000000●	Recent developments 0	Initial problem
The pro	hlem of $I_{-}(f)$)		

- Surprisingly, none of the above theorems allow us to prove that $L_n(\frac{1}{1+x^2})$ decreases monotonically relative to *n*. Borwein *et al.* left it at that.
- Recently, using the previous results as tools, we have been able to resolve the problem of $L_n(f)$ and even more, since we studied functions of the form

$$f_b(x) = \frac{1}{1-bx+x^2}, \qquad (b \le 1).$$

The result and proof idea

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies max{f(0), f(1)} > $f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

21 / 26

The result and proof idea

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

If $f : [0,1] \to \mathbb{R}$ has a concave symmetrization and verifies max{f(0), f(1)} > $f(\frac{1}{2})$, then $R_n(f)$ increases monotonically relative to n.

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

Let $f_b(x) = \frac{1}{x^2 - bx + 1}$ with $b \in \mathbb{R}$. Then $R_n(f_b)$ increases monotonically relative to n for $b \in (-\infty, 1]$ and $L_n(f_b)$ decreases monotonically relative to n for $b \in (-\infty, \frac{1}{2}]$. Moreover, these results are optimal.

Motivation Explanation Past results Recent developments Initial problem
$$\bullet 00000$$

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

increases monotonically relative to n.

Motivation Explanation Past results Recent developments Initial problem
$$\bullet 00000$$

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

increases monotonically relative to n.

• Surprisingly, none of the above methods and theorems were able to provide a proof of this property.

22 / 26

Motivation Explanation Past results Recent developments Initial problem
$$\bullet 00000$$

• Recall our initial motivation: showing that

$$R_n(\sin^p(\pi x)) = \frac{1}{n} \sum_{k=1}^n \sin^p(\frac{k\pi}{n})$$

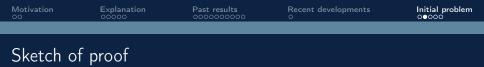
increases monotonically relative to n.

• Surprisingly, none of the above methods and theorems were able to provide a proof of this property. Nonetheless, we were able to show that $R_n(\sin^p(\pi x))$ is indeed a monotonically increasing function relative to n for $p \in [1, 2]$.

Motivation	Explanation 00000	Past results 0000000000	Recent developments 0	Initial problem ○●○○○
Sketch of	f proof			



$$\sum_{k=0}^{n-1}\cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4^{j}}\sum_{k=-\lfloor j/n \rfloor}^{\lfloor j/n \rfloor} \binom{2j}{j+kn}, \qquad (n,j\in\mathbb{N});$$

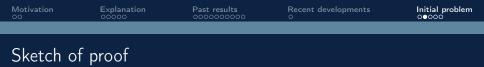


$$\sum_{k=0}^{n-1} \cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4^{j}} \sum_{k=-\lfloor j/n \rfloor}^{\lfloor j/n \rfloor} \binom{2j}{j+kn}, \qquad (n,j\in\mathbb{N});$$

$$(1+x)^{z} = \sum_{k=0}^{\infty} \binom{z}{k} x^{k} \qquad (\operatorname{Be}(z) \ge 0 ||x| \le 1);$$

$$(1+x)^z = \sum_{k=0} {\binom{z}{k}} x^k,$$
 (Re(z) > 0, $|x| \le 1$);

23 / 26



$$\sum_{k=0}^{n-1}\cos^{2j}\left(\frac{k\pi}{n}\right) = \frac{n}{4^{j}}\sum_{k=-\lfloor j/n\rfloor}^{\lfloor j/n\rfloor} \binom{2j}{j+kn}, \qquad (n,j\in\mathbb{N});$$

$$(1+x)^{z} = \sum_{k=0}^{\infty} {\binom{z}{k} x^{k}},$$
 (Re(z) > 0, |x| ≤ 1);

$$\sum_{j=0}^{\infty} \binom{p/2}{j} \binom{-1/2}{-1/2-j} = \binom{p/2-1/2}{-1/2}, \qquad (p \ge 0).$$

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments 0	Initial problem 00●00
Sketch c	of proof			

 \bullet We showed that

$$R_{n+1}(\sin^p(\pi x)) - R_n(\sin^p(\pi x)) \geq \sum_{j=n+1}^{\infty} B_j C_j$$

where

$$B_j := \frac{2}{4^j} \frac{\Gamma(j - p/2)}{j! \Gamma(-p/2)},$$

$$C_j := \sum_{k=1}^{\lfloor j/(n+1) \rfloor} \left(\binom{2j}{j+k(n+1)} - \binom{2j}{j+kn} \right).$$

Motivation 00	Explanation 00000	Past results 000000000	Recent developments 0	Initial problem ○○●○○
Sketch c	of proof			

• We showed that

$$R_{n+1}(\sin^p(\pi x)) - R_n(\sin^p(\pi x)) \geq \sum_{j=n+1}^{\infty} B_j C_j$$

where

$$B_{j} := \frac{2}{4^{j}} \frac{\Gamma(j - p/2)}{j!\Gamma(-p/2)},$$

$$C_{j} := \sum_{k=1}^{\lfloor j/(n+1) \rfloor} \left(\binom{2j}{j+k(n+1)} - \binom{2j}{j+kn} \right).$$

For $j \ge n+1$ and $p \in [0,2]$, each B_j , $C_j \le 0$. Hence, $R_{n+1}(\sin^p(\pi x)) \ge R_n(\sin^p(\pi x))$.

Motivation	Explanation 00000	Past results 0000000000	Recent developments 0	Initial problem 000●0
Final app	olication			
Theorem	(B., Mashregh	ii, Morneau-Gu	érin; 2023)	
$R(\sin^p(\pi$	(x)) is a monot	onically increasir	or function relative to	n for

 $R_n(\sin^p(\pi x))$ is a monotonically increasing function relative to n for $p \in [0, 2]$.

Motivation 00	Explanation 00000	Past results 0000000000	Recent developments 0	Initial problem 000●0
Final app	olication			

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

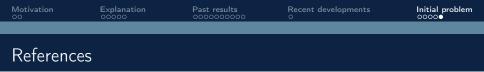
 $R_n(\sin^p(\pi x))$ is a monotonically increasing function relative to n for $p \in [0, 2]$.

Corollary (B., Mashreghi, Morneau-Guérin; 2023)

The diameter of Ω_n , the set of doubly stochastic matrices of order n, relative to the Schatten p-norms ($1 \le p \le 2$) satisfy

$$diam_{\mathcal{S}_p}(\Omega_n) = 2\left(\sum_{k=1}^n \sin^p\left(\frac{k\pi}{n}\right)\right)^{1/p}$$

25 / 26



- András, Szilárd (2012) Monotonicity of certain Riemann-type sums. *The Teaching Of Mathematics.*, 15(2): 113–120.
- David Borwein, Jonathan M. Borwein & Brailey Sims (2020) Symmetry and the Monotonicity of Certain Riemann Sums. From Analysis to Visualization: A Celebration of the Life and Legacy of Jonathan M. Borwein, Callaghan, Australia, September 2017, 313:7–20.
- Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin (2023) Monotonicity of left and right Riemann sums. *Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis. Operator Theory: Advances and Applications*, Birkhäuser/Springer, Cham, 290: 89–113.