The Submultiplicativity of Matrix Norms Induced by Random Vectors

Ludovick Bouthat

Université Laval

WCLAM; May 26, 2024

Acknowledgement

This research is a collaborate effort with Pr. Stephan Ramon Garcia and Pr. Ángel Chávez.

Stephan Ramon Garcia

Ángel Chávez

My cat and ${\sf I}$

A new norm	Some examples	Motivation 0000	New results
Acknowledg	ment		

This research was done with the financial help of the Vanier Scholarship.

Bourses d'études supérieures du Canada Vanier Canada Graduate Scholarships Some examples

Motivation

A new surprising matrix norm

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

1 $d \geq 1$;

A new surprising matrix norm

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

- 1 $d \geq 1$;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;

A new surprising matrix norm

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

- 1 $d \geq 1$;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;
- **3** λ is the vector of eigenvalues of the matrix A.

A new surprising matrix norm

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

- 1 $d \geq 1$;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;
- **3** λ is the vector of eigenvalues of the matrix A.

Then

$$|A||_{\boldsymbol{X},d} := \mathbb{E}\Big[|\langle \boldsymbol{X}, \boldsymbol{\lambda} \rangle|^d\Big]^{\frac{1}{d}} = \mathbb{E}\Big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\Big]^{\frac{1}{d}}$$

are matrix norms on the space of Hermitian matrices.

A new norm ○●○	Some examples	Motivation 0000	New results
.			

An interesting extension

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

Proposition (Aguilar, Chávez, Garcia, Volčič, 2022; B., 2024)

The function

$$|||Z|||_{\mathbf{X},d} = \left(\frac{1}{2\pi \binom{d}{d/2}} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{\mathbf{X},d}^d \,\mathrm{d}t\right)^{1/d}$$

defines a norm on $M_n(\mathbb{C})$ which restricts to $\|\cdot\|_{\mathbf{X},d}$ on the space of Hermitian matrices.

A new norm ○○●	Some examples	Motivation 0000	New results
Some properties			
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}\big[\lambda_1 X_1 + \lambda_2 X_1]$	$X_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z $	$Z + e^{-it} Z^* \ _{\boldsymbol{X},d}^d \mathrm{d}t$

Under the previous hypothesis,

 $I ||| UZU^* |||_{\mathbf{X},d} = |||Z|||_{\mathbf{X},d} \text{ for any unitary matrix } U;$

A new norm	Some examples	Motivation 0000	New results
Some properties			
• $\ A\ _{\mathbf{X},d}^d = \mathbb{E} \big[\lambda_1 X_1 + \lambda_2 X_2] $	$\lambda_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\boldsymbol{X},d}^{d} = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_{0}^{2\pi} e^{it}Z $	$+ e^{-it} Z^* \ _{\pmb{X},d}^d \mathrm{d} t$

- $I ||| UZU^* |||_{\mathbf{X},d} = |||Z|||_{\mathbf{X},d} \text{ for any unitary matrix } U;$
- **2** $||| Z |||_{\mathbf{X},d}$ is continuous relative to d;

A new norm	Some examples		Motivation 0000	New results
Some properties				
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E} \big[\lambda_1 X_1 + \lambda_2 X_2]$	$\lambda_2 + \cdots + \lambda_n X_n ^d]$	• <i>Z</i> ^{<i>d</i>} _{<i>X</i>,<i>d</i>} =	$=rac{1}{2\pi}{d \choose d/2}^{-1}\int_0^{2\pi}\ $	$e^{it}Z+e^{-it}Z^*\ _{\boldsymbol{X},d}^d\mathrm{d} t$

$$I ||| UZU^* |||_{\mathbf{X},d} = |||Z|||_{\mathbf{X},d} \text{ for any unitary matrix } U;$$

3
$$|||Z|||_{\boldsymbol{X},d_1} \leq |||Z|||_{\boldsymbol{X},d_2}$$
 if $d_1 \leq d_2$;

A new norm 00●	Some examples	Motivation 0000	New results
Some properties			
• $\ A\ _{\mathbf{X},d}^d = \mathbb{E}\big[\lambda_1 X_1 + \lambda_2 X_2]$	$_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\boldsymbol{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}.$	$Z + e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

- $I ||| UZU^* |||_{\mathbf{X},d} = |||Z|||_{\mathbf{X},d} \text{ for any unitary matrix } U;$
- **2** $||| Z |||_{\mathbf{X},d}$ is continuous relative to d;
- **3** $|||Z|||_{\boldsymbol{X},d_1} \leq |||Z|||_{\boldsymbol{X},d_2}$ if $d_1 \leq d_2$;

A new norm 00●	Some examples	Motivation 0000	New results
Some properties			
• $\ A\ _{\mathbf{X},d}^d = \mathbb{E} \big[\lambda_1 X_1 + \lambda_2 X_1 + \lambda_2 X_2] $	$X_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\boldsymbol{X},d}^{d} = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_{0}^{2\pi} e^{it}Z $	$+ e^{-it} Z^* \ _{\boldsymbol{X},d}^d \mathrm{d} t$

- $I ||| UZU^* |||_{\mathbf{X},d} = |||Z|||_{\mathbf{X},d} \text{ for any unitary matrix } U;$
- **2** $||| Z |||_{\mathbf{X},d}$ is continuous relative to d;
- **3** $|||Z|||_{\boldsymbol{X},d_1} \leq |||Z|||_{\boldsymbol{X},d_2}$ if $d_1 \leq d_2$;
- **⑤ ∥***Z***∥X**,*d* is maybe submultiplicative...?

A new norm	Some examples ●0000	Motivation 0000	New results
Normal rando	om variables		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E} \big[\lambda_1 X_1 +$	$+\lambda_2 X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z ^d$	$+ e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

Example (d = 4)

 $||Z|||_{\boldsymbol{X},4}^{4} = \mu^{4}(\operatorname{tr} Z)^{2}(\operatorname{tr} Z^{*})^{2} + \mu^{2}\sigma^{2}\operatorname{tr}(Z^{*})^{2}\operatorname{tr}(Z^{2}) + \mu^{2}\sigma^{2}(\operatorname{tr} Z)^{2}\operatorname{tr}(Z^{*2})$ + $4\mu^2\sigma^2(\operatorname{tr} Z)(\operatorname{tr} Z^*)(\operatorname{tr} Z^*Z) + 2\sigma^4(\operatorname{tr} Z^*Z)^2 + \sigma^4\operatorname{tr}(Z^2)\operatorname{tr}(Z^{*2}).$

A new norm 000	Some examples ●0000	Motivation 0000	New results 000000
Normal rando	m variables		
		. 1 0	

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d \mathrm{d}t$

Example (d = 4)

$$|||Z|||_{\mathbf{X},4}^{4} = \mu^{4}(\operatorname{tr} Z)^{2}(\operatorname{tr} Z^{*})^{2} + \mu^{2}\sigma^{2}\operatorname{tr}(Z^{*})^{2}\operatorname{tr}(Z^{2}) + \mu^{2}\sigma^{2}(\operatorname{tr} Z)^{2}\operatorname{tr}(Z^{*2}) + 4\mu^{2}\sigma^{2}(\operatorname{tr} Z)(\operatorname{tr} Z^{*})(\operatorname{tr} Z^{*}Z) + 2\sigma^{4}(\operatorname{tr} Z^{*}Z)^{2} + \sigma^{4}\operatorname{tr}(Z^{2})\operatorname{tr}(Z^{*2}).$$

Example (A is Hermitian)

$$\|A\|_{\mathbf{X},d} = \sqrt{2}\sigma \|A\|_{\mathsf{F}} \left(\frac{1}{\sqrt{\pi}} \Gamma(\frac{d+1}{2})_1 F_1\left(-\frac{d}{2}; \frac{1}{2}; -\frac{\mu^2(\operatorname{tr} A)^2}{2\sigma^2 \|A\|_{\mathsf{F}}^2}\right)\right)^{1/d},$$

where ${}_{1}F_{1}(\alpha; \beta; z)$ is Kummer's confluent hypergeometric function.

A new norm	Some examples ○●○○○	Motivation 0000	New results
Normal rand	om variables		
• $\ A\ _{c}^{d} = \mathbb{E}[\lambda_1 X_1]$	$+ \lambda_2 X_2 + \cdots + \lambda_n X_n d $	• $\ Z\ _{c}^{d} = \frac{1}{2} \left(\frac{d}{dt} \right)^{-1} \int_{0}^{2\pi} \ e^{it}Z\ _{c}^{d}$	$' + e^{-it} Z^* \parallel_{u}^{d} dt$

(Left) Unit circles for $\|\cdot\|_{\mathbf{X},d}$ with d = 1, 2, 4.5, 10, 18, in which X_1, X_2 are normal random variables with $\mu = \sigma = 1$. (Right) Unit circles for $\|\cdot\|_{\mathbf{X},10}$, in which X_1, X_2 are normal random variables with $\mu = -2, -1, 0, 1, 6$ and variance $\sigma^2 = 1$.

A new norm	Some examples ○○●○○	Motivation 0000	New results

Uniform and exponential random variable

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Example (Uniform random variable on (-1, 1); d = 6; A is Hermitian)

$$\|A\|_{\mathbf{X},6}^{6} = \frac{1}{63} (35(\operatorname{tr} A^{2})^{3} - 42\operatorname{tr}(A^{4})\operatorname{tr}(A^{2}) + 16\operatorname{tr}(A^{6})).$$

A new norm	Some examples ○○●○○	Motivation 0000	New results

Uniform and exponential random variable

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Example (Uniform random variable on (-1, 1); d = 6; A is Hermitian)

$$\|A\|_{\boldsymbol{X},6}^{6} = \frac{1}{63} (35(\operatorname{tr} A^{2})^{3} - 42\operatorname{tr}(A^{4})\operatorname{tr}(A^{2}) + 16\operatorname{tr}(A^{6})).$$

Example (d is even; A is Hermitian)

$$|A||_{\mathbf{X},d}^{d} = d! h_{d}(\lambda_{1},\lambda_{2},\ldots,\lambda_{n}) = d! \sum_{1 \leq k_{1} \leq \cdots \leq k_{d} \leq n} \lambda_{k_{1}}\lambda_{k_{2}}\cdots\lambda_{k_{d}},$$

where h_d is the complete homogeneous symmetric polynomial of degree d.

A new norm	Some examples 000●0	Motivation 0000	New results 000000
More figures			
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}[\lambda_1 X_1 + \lambda_2 X_2]$	$+\cdots+\lambda_n X_n ^d]$	• $ \! \! Z \! \! _{\boldsymbol{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \! e^{it} Z +$	$e^{-it}Z^*\ _{\boldsymbol{X},d}^d\mathrm{d}t$
	20 1.0 4 1.0 20		2 8 115 4

(Left) Unit circles for $\|\cdot\|_{\mathbf{X},d}$ with d = 1, 2, 3, 4, 20, in which X_1 and X_2 are exponential random variables. (Right) Unit circles for $\|\cdot\|_{\mathbf{X},d}$ with d = 2, 4, 6, 8, in which X_1 and X_2 are Uniform random variables on [-1, 1].

Ludovick Bouthat (Université Laval)

On Random Matrix Norms

A new norm 000	Some examples	Motivation 0000	New results
Spectral graph t	theory		

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

• Several random vector norms can distinguish singularly cospectral graphs (graphs with the same singular values) that are not adjacency cospectral.

A new norm	Some examples 0000●	Motivation 0000	New results
Spectral graph th	neory		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}\big[\lambda_1 X_1 + \lambda_2 X_2]$	$(1 + \dots + \lambda_n X_n)^d$	• $ Z _{\boldsymbol{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z + e^{it}Z ^2$	$^{-it}Z^*\ _{\boldsymbol{X},d}^d\mathrm{d}t$

• Several random vector norms can distinguish singularly cospectral graphs (graphs with the same singular values) that are not adjacency cospectral.

Example

Let
$$K := \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
, and let $X_i \sim \Gamma(1, 1/2)$. Then
 $\mapsto A = \begin{bmatrix} K & 0 \\ 0 & K \end{bmatrix}$, $\sigma(A) = \begin{cases} -1, -1, -1, \\ -1, & 2, & 2 \end{cases} \Rightarrow \|A\|_{K,6}^6 = 1350$;
 $\mapsto A = \begin{bmatrix} 0 & K \\ K & 0 \end{bmatrix}$, $\sigma(A) = \begin{cases} -1, -1, & 1, \\ 1, & 2, -2 \end{cases} \Rightarrow \|A\|_{K,6}^6 = 1260$.

A new norm 000	Some examples	Motivation ●000	New results
A small rant			
		1 -	

- $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$
- The vector space $(M_n, +)$ of $n \times n$ square matrices is *identical* to the vector space $(\mathbb{C}^{n^2}, +)$.

A new norm	Some examples	Motivation ●000	New results
A small rant			
• $\ A\ _{\mathbf{X},d}^d = \mathbb{E}[\lambda_1 X_1 + \lambda_2 \lambda_1]$	$X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z ^{-1}$	$+ e^{-it}Z^* \parallel_{\mathbf{X} d}^{d} \mathrm{d}t$

- The vector space $(M_n, +)$ of $n \times n$ square matrices is *identical* to the vector space $(\mathbb{C}^{n^2}, +)$.
- The only difference is the existence of matrix multiplication in M_n .

A new norm	Some examples	Motivation ●000	New results
A small rant			

- $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$
- The vector space $(M_n, +)$ of $n \times n$ square matrices is *identical* to the vector space $(\mathbb{C}^{n^2}, +)$.
- The only difference is the existence of matrix multiplication in M_n .

 \implies Matrix norms which are not *submultiplicative* are only vector norms *disguised* as matrix norms.

Definition

A function $f: M_n \to \mathbb{R}$ is submultiplicative if for any $X, Y \in M_n$,

 $f(XY) \leq f(X)f(Y).$

A new norm	Some examples	Motivation 0●00	New results
What about	· x ,d ?		
$\bullet \ A\ ^d_{\boldsymbol{X},d} = \mathbb{E}\big[\lambda_1 X_1 +$	$\lambda_2 X_2 + \dots + \lambda_n X_n ^d]$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z $	$+ e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

Main question

Under which conditions on the distribution underlying the random vector \mathbf{X} is the matrix norm $\|\cdot\|_{\mathbf{X},d}$ submultiplicative?

13/21

A new norm	Some examples	Motivation 0●00	New results
What about	$\ \cdot\ _{\boldsymbol{X},d}$?		
$ullet$ $\ A\ ^d_{oldsymbol{X},d} = \mathbb{E}ig[\lambda_1 X_1 - \mathbb{E}ig]$	$+\lambda_2 X_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\mathbf{X},d}^{d} = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_{0}^{2\pi} e^{it}Z +$	$-e^{-it}Z^*\parallel^d_{\boldsymbol{X},d}\mathrm{d}t$

Main question

Under which conditions on the distribution underlying the random vector \mathbf{X} is the matrix norm $\|\cdot\|_{\mathbf{X},d}$ submultiplicative?

Remark

The same question on $\|\cdot\|_{\mathbf{X},d}$, although much simpler, is ill-defined since the set of Hermitian matrices is not closed under matrix multiplication.

A new norm	Some examples 00000	Motivation 00●0	New results 000000
A small rant	Part 2		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}[\lambda_1 X_1 + 1]$	$\lambda_2 X_2 + \dots + \lambda_n X_n ^d]$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} e^{it}Z +$	$e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

• If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma > 0$ with essentially the same geometry and properties as the original norm.

A new norm	Some examples	Motivation 00●0	New results
A small rant.	Part 2		
• $\ A\ _{\mathbf{X} d}^d = \mathbb{E}[\lambda_1 X_1 +$	$+\lambda_2 X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X}}^{d} = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_{0}^{2\pi} e^{it}Z $	$+ e^{-it}Z^* \ _{\mathbf{X}_d}^d \mathrm{d}t$

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma > 0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma \|AB\| \le (\gamma \|A\|)(\gamma \|B\|)$ for all $A, B \in M_n$.

A small rant Part 2	

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma > 0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma \|AB\| \le (\gamma \|A\|)(\gamma \|B\|)$ for all $A, B \in M_n$.

 \implies Every matrix norm is submultiplicative, up to scalar multiplication.

	0
A small rant Part 2	

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma > 0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma \|AB\| \le (\gamma \|A\|)(\gamma \|B\|)$ for all $A, B \in M_n$.

 \implies Every matrix norm is submultiplicative, up to scalar multiplication.

• In several context, it is desirable that $\gamma > 0$ can be chosen to be independent of the dimension *n* of the matrices. This yield a *single* submultiplicative matrix norm instead of a *family* of submultiplicative matrix norm.

A new norm	Some examples 00000	Motivation 000●	New results 000000
What about	$\ \cdot\ \boldsymbol{x}_{,d}$?		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}[\lambda_1 X_1 +$	$+\lambda_2 X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} e^{it}Z $	$+ e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

Main question (Correct version)

Under which conditions on the distribution underlying the random vector \mathbf{X} does there exist a constant $\gamma > 0$ independent of n such that the matrix norm $\| \cdot \| \mathbf{x}_{,d}$ is submultiplicative?

15 / 21

A new norm	Some examples 00000	Motivation 000●	New results 000000
What about	$\ \cdot\ \boldsymbol{x}_{,d}$?		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}[\lambda_1 X_1 +$	$+\lambda_2 X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} e^{it}Z $	$+ e^{-it}Z^* \ _{\mathbf{X},d}^d \mathrm{d}t$

Main question (Correct version)

Under which conditions on the distribution underlying the random vector \mathbf{X} does there exist a constant $\gamma > 0$ independent of n such that the matrix norm $\| \cdot \| \mathbf{x}_{,d}$ is submultiplicative?

Remark

If such a γ exists, then one can consider the random vector $\gamma \boldsymbol{X}$. It follows that $\| \cdot \|_{\gamma \boldsymbol{X},d} = \gamma \| \cdot \|_{\boldsymbol{X},d}$ is submultiplicative.

A new norm	Some examples	Motivation 0000	New results •00000
The main resul	t		
• $\ A\ _{\mathbf{X},d}^d = \mathbb{E}[\lambda_1 X_1 + \lambda_2]$	$2X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X},d}^{d} = \frac{1}{2\pi} \left(\frac{d}{d/2}\right)^{-1} \int_{0}^{2\pi} e^{it}Z + e^{it}Z ^{2}$	$e^{-it}Z^* \ _{\boldsymbol{X},d}^d \mathrm{d}t$

Theorem (B., 2024)

Let $d \ge 1$ and $\mathbf{X} = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^p(\Omega, \mathcal{F}, \mathbf{P})$ are iid random variables and $\mathbf{p} = \max\{d, \eta\}$ for some $\eta > 2$. Then there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d || Z || \mathbf{X}_{,d}$ is a submultiplicative matrix norm on M_n .

In particular, there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d ||\!| Z ||\!|_{\mathbf{X},d}$ is a submultiplicative matrix norm on M_n for any $d \ge 2$.

A new norm 000	Some examples 00000	Motivation 0000	New results 0●0000
The case $d = 2$			
• $\ A\ _{\mathbf{X}}^d = \mathbb{E}[\lambda_1 X_1 + \lambda_2 X_1]$	$X_2 + \cdots + \lambda_n X_n ^d$	• $ Z _{\mathbf{X}_d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} e^{it}Z +$	$e^{-it}Z^*\parallel_{\mathbf{X}d}^d \mathrm{d}t$

• If d = 2, μ is the mean, and σ is the standard deviation of the distribution of $X_1, X_2, \ldots, X_n \in L^2(\Omega, \mathcal{F}, \mathbf{P})$, then

$$|||Z|||_{\mathbf{X},2} = \sqrt{\sigma^2 ||Z||_{\mathsf{F}}^2 + \mu^2 |\operatorname{tr}(Z)|^2}.$$

17 / 21

A new norm	Some examples 00000	Motivation 0000	New results 0●0000
The case $d =$	2		
		. 1 .	

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1X_1 + \lambda_2X_2 + \dots + \lambda_nX_n|^d]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

• If d = 2, μ is the mean, and σ is the standard deviation of the distribution of $X_1, X_2, \ldots, X_n \in L^2(\Omega, \mathcal{F}, \mathbf{P})$, then

$$|||Z|||_{\mathbf{X},2} = \sqrt{\sigma^2 ||Z||_{\mathsf{F}}^2 + \mu^2 |\operatorname{tr}(Z)|^2}.$$

Theorem (B. , 2024)

Let d = 2 and $\mathbf{X} = (X_1, X_2, ..., X_n)$ where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are iid random variables. Then $\frac{\sqrt{\sigma^2 + \mu^2}}{\sigma^2} ||| \mathbf{Z} |||_{\mathbf{X}, 2}$ is a submultiplicative matrix norm on M_n . Moreover, the constant $\frac{\sqrt{\sigma^2 + \mu^2}}{\sigma^2}$ is optimal.

A new norm	Some examples	Motivation 0000	New results 00●000
Sketch of proc	of (Part 1)		
• $\ A\ _{\boldsymbol{X},d}^d = \mathbb{E}\big[\lambda_1 X_1 + \lambda_1 X_1 - \lambda_2 X_1] \big]$	$\lambda_2 X_2 + \cdots + \lambda_n X_n ^d]$	• $ Z _{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} e^{it}Z ^d$	$+ e^{-it}Z^* \ _{\boldsymbol{X},d}^d \mathrm{d}t$

Theorem (Folklore)

Let $N(\cdot)$ be a matrix norm, and suppose that $\|\cdot\|$ is a submultiplicative matrix norm such that

 $C_m \|A\| \le N(A) \le C_M \|A\|$ for all $A \in M_n$

where C_m and C_M are positive constants. Then $\frac{C_M}{C_m^2}N(\cdot)$ is also a submultiplicative matrix norm.

Sketch of proof (Part 2)

• $\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$ • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {\binom{d}{d/2}}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Theorem (B., 2024)

Let $\mathbf{X} = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^p(\Omega, \mathcal{F}, \mathbf{P})$ are iid random variables of pth standardized absolute moment $\tilde{\mu}_p$. Then if $p = d \ge 2$,

$$\sqrt{2} \binom{d}{d/2}^{-1/d} |||Z|||_{\boldsymbol{X},2} \le |||Z|||_{\boldsymbol{X},d} \le 4 \binom{B_d \tilde{\mu}_d}{2\binom{d}{d/2}}^{1/d} |||Z|||_{\boldsymbol{X},2}$$

and if $1 \leq d \leq 2$ and p > 2,

$$4\left(\frac{(2B_{p}\tilde{\mu}_{p})^{\frac{d-2}{p-2}}}{8\binom{d}{d/2}}\right)^{1/d} ||\!| Z|\!|\!| _{\boldsymbol{X},2} \leq ||\!| Z|\!|\!| _{\boldsymbol{X},d} \leq \sqrt{2}\binom{d}{d/2}^{-1/d} ||\!| Z|\!|\!| _{\boldsymbol{X},2},$$

where B_p is the constant in the Marcinkiewicz–Zygmund inequality.

• For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d |||Z|||_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?

Open questions

- For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d || Z ||_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?
- **2** Can we characterize the distributions that give rise to norms $\|\cdot\|_{\mathbf{X},d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d \to \infty$?

Open questions

- For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d |||Z|||_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?
- **2** Can we characterize the distributions that give rise to norms $\|\cdot\|_{\mathbf{X},d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d \to \infty$?
- 3 Can we generalize these norms to compact operators on infinite-dimensional Hilbert spaces?

Open questions

- For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d |||Z|||_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?
- **2** Can we characterize the distributions that give rise to norms $\|\cdot\|_{\mathbf{X},d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d \to \infty$?
- 3 Can we generalize these norms to compact operators on infinite-dimensional Hilbert spaces?
- G Can we characterize the norms ^{|||} · ^{||}_{X,d} that arise from an inner product ?

A new norm	Some examples	Motivation 0000	New results 00000●

References

- Bouthat, L. : On the Submultiplicativity of Matrix Norms Induced by Random Vectors. *Complex Anal. Oper. Theory*, 18, 73, 2024.
- Bouthat, L., Chávez, Á., Garcia, S.R. : Hunter's positivity theorem and random vector norms. *IWOTA 2023*, Submitted, 2024.
- Chávez, Á., Garcia, S.R., Hurley, J. : Norms on complex matrices induced by random vectors II : Extension of weakly unitarily invariant norms. *Canadian Mathematical Bulletin*, 1–11, 2023.
- Chávez, Á., Garcia, S.R., Hurley, J. : Norms on complex matrices induced by random vectors. *Canadian Mathematical Bulletin* 66(3), 808–826, 2023.
- Aguilar, K., Chávez, Á., Garcia, S.R. and Volčič, J. : Norms on complex matrices induced by complete homogeneous symmetric polynomials. *Bull. London Math. Soc.*, 54 : 2078–2100, 2022.

Ludovick Bouthat (Université Laval)