Matrix Norms Induced by Random Vectors

Ludovick Bouthat

Université Laval

CMS Summer meeting; June 1 2024

A new norm

A new norm Some examples Motivation 0000 New results 0000 0000

Acknowledgement

This research is a collaborate effort with Pr. Stephan Ramon Garcia and Pr. Ángel Chávez.

Stephan Ramon Garcia

Ángel Chávez

My cat and I

A new norm Some examples Motivation New results 0000 0000 00000

Acknowledgment

This research was done with the financial help of the Vanier Scholarship.

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

A new norm

000

1 d > 1;

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

- **1** $d \ge 1$;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;

Motivation

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

- **1** $d \ge 1$;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;
- 3 λ is the vector of eigenvalues of the matrix A.

Theorem (Chávez, Garcia, Hurley; 2023)

Suppose that

A new norm

- **1** d > 1;
- **2** $X = (X_1, X_2, ..., X_n)$, where $X_1, X_2, ..., X_n \in L^d(\Omega, \mathcal{F}, \mathbf{P})$ are independent and identically distributed (iid) random variables;
- 3 λ is the vector of eigenvalues of the matrix A.

Then

$$||A||_{\boldsymbol{X},d} := \mathbb{E}\left[|\langle \boldsymbol{X}, \boldsymbol{\lambda} \rangle|^{d}\right]^{\frac{1}{d}} = \mathbb{E}\left[|\lambda_{1}X_{1} + \lambda_{2}X_{2} + \dots + \lambda_{n}X_{n}|^{d}\right]^{\frac{1}{d}}$$

are matrix norms on the space of Hermitian matrices.

An interesting extension

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

Proposition (Aguilar, Chávez, Garcia, Volčič, 2022; B., 2024)

The function

$$|||Z|||_{\mathbf{X},d} = \left(\frac{1}{2\pi \binom{d}{d/2}} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{\mathbf{X},d}^d dt\right)^{1/d}.$$

Motivation

defines a norm on $M_n(\mathbb{C})$ which restricts to $\|\cdot\|_{X,d}$ on the space of Hermitian matrices.

Some properties

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Motivation

Theorem (B., Chávez, Garcia, Hurley; 2023)

A new norm

000

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\big]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

Theorem (B., Chávez, Garcia, Hurley; 2023)

- **2** $||Z||_{X,d}$ is continuous relative to d;

Some properties

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

Theorem (B., Chávez, Garcia, Hurley; 2023)

- **2** $||Z||_{X,d}$ is continuous relative to d;
- **3** $||Z||_{X_1,d_1} \le ||Z||_{X_1,d_2}$ if $d_1 \le d_2$;

A new norm

•
$$||A||_{\mathbf{X}_1,d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Theorem (B., Chávez, Garcia, Hurley; 2023)

- **2** $||Z||_{X,d}$ is continuous relative to d;
- **3** $||Z||_{X_1,d_1} \le ||Z||_{X_1,d_2}$ if $d_1 \le d_2$;

Some properties

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Motivation

Theorem (B., Chávez, Garcia, Hurley; 2023)

- **2** $||Z||_{X,d}$ is continuous relative to d;
- **3** $||Z||_{X,d_1} \le ||Z||_{X,d_2}$ if $d_1 \le d_2$;
- **5** $||Z||_{X,d}$ is maybe submultiplicative...?

Normal random variables

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\big]$$

•
$$||Z||_{X,d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{X,d}^d dt$$

Motivation

Example (d = 4)

$$|||Z||_{\boldsymbol{X},4}^4 = \mu^4(\operatorname{tr} Z)^2(\operatorname{tr} Z^*)^2 + \mu^2 \sigma^2 \operatorname{tr}(Z^*)^2 \operatorname{tr}(Z^2) + \mu^2 \sigma^2(\operatorname{tr} Z)^2 \operatorname{tr}(Z^{*2}) + 4\mu^2 \sigma^2(\operatorname{tr} Z)(\operatorname{tr} Z^*)(\operatorname{tr} Z^*Z) + 2\sigma^4(\operatorname{tr} Z^*Z)^2 + \sigma^4 \operatorname{tr}(Z^2) \operatorname{tr}(Z^{*2}).$$

Normal random variables

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$||Z||_{X,d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{X,d}^d dt$$

Motivation

Example (d = 4)

$$|||Z||_{\boldsymbol{X},4}^4 = \mu^4(\operatorname{tr} Z)^2(\operatorname{tr} Z^*)^2 + \mu^2\sigma^2\operatorname{tr}(Z^*)^2\operatorname{tr}(Z^2) + \mu^2\sigma^2(\operatorname{tr} Z)^2\operatorname{tr}(Z^{*2}) + 4\mu^2\sigma^2(\operatorname{tr} Z)(\operatorname{tr} Z^*)(\operatorname{tr} Z^*Z) + 2\sigma^4(\operatorname{tr} Z^*Z)^2 + \sigma^4\operatorname{tr}(Z^2)\operatorname{tr}(Z^{*2}).$$

Example (A is Hermitian)

$$||A||_{\mathbf{X},d} = \sqrt{2}\sigma ||A||_{\mathsf{F}} \left(\frac{1}{\sqrt{\pi}} \Gamma(\frac{d+1}{2})_1 F_1\left(-\frac{d}{2}; \frac{1}{2}; -\frac{\mu^2(\operatorname{tr} A)^2}{2\sigma^2 ||A||_{\mathsf{F}}^2}\right)\right)^{1/d},$$

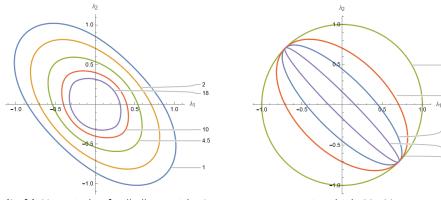
where ${}_{1}F_{1}(\alpha; \beta; z)$ is Kummer's confluent hypergeometric function.

Normal random variables

A new norm

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$



(Left) Unit circles for $\|\cdot\|_{X,d}$ with d=1,2,4.5,10,18, in which X_1,X_2 are normal random variables with $\mu = \sigma = 1$. (Right) Unit circles for $\|\cdot\|_{X,10}$, in which X_1, X_2 are normal random variables with $\mu = -2, -1, 0, 1, 6$ and variance $\sigma^2 = 1$.

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{X,d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{X,d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{X,d}^d dt$

Motivation

Example (Uniform random variable on (-1,1); d=6; A is Hermitian)

$$||A||_{\mathbf{X}_{6}}^{6} = \frac{1}{63} (35(\operatorname{tr} A^{2})^{3} - 42\operatorname{tr}(A^{4})\operatorname{tr}(A^{2}) + 16\operatorname{tr}(A^{6})).$$

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

Example (Uniform random variable on (-1,1); d=6; A is Hermitian)

$$||A||_{\mathbf{X}.6}^6 = \frac{1}{63} (35(\operatorname{tr} A^2)^3 - 42\operatorname{tr} (A^4)\operatorname{tr} (A^2) + 16\operatorname{tr} (A^6)).$$

Example (d is even; A is Hermitian)

$$||A||_{\boldsymbol{X},d}^d = d! \; h_d(\lambda_1, \lambda_2, \dots, \lambda_n) = d! \sum_{1 \leq k_1 \leq \dots \leq k_d \leq n} \lambda_{k_1} \lambda_{k_2} \cdots \lambda_{k_d},$$

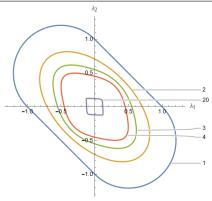
where h_d is the complete homogeneous symmetric polynomial of degree d.

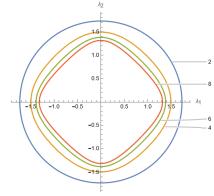
More figures

A new norm

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\big]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$





(Left) Unit circles for $\|\cdot\|_{X,d}$ with d=1,2,3,4,20, in which X_1 and X_2 are exponential random variables. (Right) Unit circles for $\|\cdot\|_{X,d}$ with d=2,4,6,8, in which X_1 and X_2 are Uniform random variables on [-1, 1].

A new norm

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Several random vector norms can distinguish singularly cospectral graphs

Motivation

(graphs with the same singular values) that are not adjacency cospectral.

Spectral graph theory

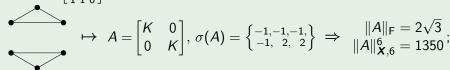
•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

• Several random vector norms can distinguish singularly cospectral graphs (graphs with the same singular values) that are not adjacency cospectral.

Example

A new norm

Let $K := \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, and let $X_i \sim \Gamma(1, 1/2)$. Then



$$\mapsto A = \begin{bmatrix} 0 & K \\ K & 0 \end{bmatrix}, \ \sigma(A) = \begin{Bmatrix} -1, -1, & 1, \\ 1, & 2, -2 \end{Bmatrix} \ \Rightarrow \ \frac{\|A\|_{\mathsf{F}} = 2\sqrt{3}}{\|A\|_{\mathsf{X}, 6}^6 = 1260}.$$

A small rant...

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

•000

• The vector space $(M_n, +)$ of $n \times n$ square matrices is identical to the vector space $(\mathbb{C}^{n^2}, +)$.

A small rant...

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\big]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Motivation

9000

- The vector space $(M_n, +)$ of $n \times n$ square matrices is identical to the vector space $(\mathbb{C}^{n^2}, +)$.
- The only difference is the existence of matrix multiplication in M_n .

A small rant...

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

- The vector space $(M_n, +)$ of $n \times n$ square matrices is identical to the vector space $(\mathbb{C}^{n^2},+)$.
- The only difference is the existence of matrix multiplication in M_n .

⇒ Matrix norms which are not *submultiplicative* are only vector norms disguised as matrix norms.

Definition

A function $f: M_n \to \mathbb{R}$ is submultiplicative if for any $X, Y \in M_n$,

$$f(XY) \leq f(X)f(Y)$$
.

What about **∥** · **∥ x**,_d ?

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

0000

Main question

Under which conditions on the distribution underlying the random vector **X** is the matrix norm $\|\cdot\|_{\mathbf{X},d}$ submultiplicative?

$$\bullet \|A\|_{\bullet}^{d} = \mathbb{E}[|\lambda_{1}X_{1} + \lambda_{2}X_{2} + \dots + \lambda_{n}X_{n}|^{d}]$$

•
$$||A||_{X,d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $|||Z||_{X,d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{X,d}^d dt$

Motivation

0000

Main question

Under which conditions on the distribution underlying the random vector **X** is the matrix norm $\|\cdot\|_{\mathbf{X},d}$ submultiplicative?

Remark

The same question on $\|\cdot\|_{X,d}$, although much simpler, is ill-defined since the set of Hermitian matrices is not closed under matrix multiplication.

A new norm

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

$$\bullet \|A\|_{\boldsymbol{X},d}^{d} = \mathbb{E}\big[|\lambda_{1}X_{1} + \lambda_{2}X_{2} + \dots + \lambda_{n}X_{n}|^{d}\big] \qquad \bullet \|Z\|_{\boldsymbol{X},d}^{d} = \frac{1}{2\pi}\binom{d}{d/2}^{-1}\int_{0}^{2\pi}\|e^{it}Z + e^{-it}Z^{*}\|_{\boldsymbol{X},d}^{d} dt$$

• If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma>0$ with essentially the same geometry and properties as the original norm.

A new norm

$$\bullet \|A\|_{\boldsymbol{X},d}^{d} = \mathbb{E}\big[|\lambda_{1}X_{1} + \lambda_{2}X_{2} + \cdots + \lambda_{n}X_{n}|^{d}\big]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Motivation

0000

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma>0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma ||AB|| \le (\gamma ||A||)(\gamma ||B||)$ for all $A, B \in M_n$.

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma>0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma ||AB|| \le (\gamma ||A||)(\gamma ||B||)$ for all $A, B \in M_n$.
 - ⇒ Every matrix norm is submultiplicative, up to scalar multiplication.

New results

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} \|e^{it} Z + e^{-it} Z^*\|_{\mathbf{X},d}^d dt$

Motivation

- If $\|\cdot\|$ is a norm, then $\gamma\|\cdot\|$ is a norm for any $\gamma>0$ with essentially the same geometry and properties as the original norm.
- For $\gamma > 0$ large enough, $\gamma ||AB|| < (\gamma ||A||)(\gamma ||B||)$ for all $A, B \in M_n$.
- ⇒ Every matrix norm is submultiplicative, up to scalar multiplication.
- In several context, it is desirable that $\gamma > 0$ can be chosen to be independent of the dimension n of the matrices. This yield a single submultiplicative matrix norm instead of a *family* of submultiplicative matrix norm.

What about ∥ · ∥**x**.d?

$$\bullet \|A\|_{\mathbf{X}_d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$
 • $|||Z||_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{\mathbf{X},d}^d dt$

Motivation

0000

Main question (Correct version)

Under which conditions on the distribution underlying the random vector **X** does there exist a constant $\gamma > 0$ independent of n such that the matrix norm $\|\cdot\|_{X,d}$ is submultiplicative?

What about $\|\cdot\|_{\boldsymbol{X},d}$?

$$\bullet \|A\|_{\mathbf{X}_d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$|||Z|||_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{\mathbf{X},d}^d dt$$

Main question (Correct version)

Under which conditions on the distribution underlying the random vector \mathbf{X} does there exist a constant $\gamma > 0$ independent of n such that the matrix norm $\| \cdot \|_{\mathbf{X},d}$ is submultiplicative?

Remark

If such a γ exists, then one can consider the random vector $\gamma \boldsymbol{X}$. It follows that $\|\cdot\|_{\gamma \boldsymbol{X},d} = \gamma \|\cdot\|_{\boldsymbol{X},d}$ is submultiplicative.

The main result

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\big]$$

•
$$||Z||_{\mathbf{X},d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{\mathbf{X},d}^d dt$$

Theorem (B., 2024)

Let $d \geq 1$ and $\mathbf{X} = (X_1, X_2, \dots, X_n)$, where $X_1, X_2, \dots, X_n \in L^p(\Omega, \mathcal{F}, \mathbf{P})$ are iid random variables and $\mathbf{p} = \max\{d, \eta\}$ for some $\eta > 2$. Then there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d ||\!| Z ||\!|_{\mathbf{X}, d}$ is a submultiplicative matrix norm on M_n .

In particular, there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d \| Z \|_{\mathbf{X},d}$ is a submultiplicative matrix norm on M_n for any $d \geq 2$.

The case d=2

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

• If d=2, μ is the mean, and σ is the standard deviation of the distribution of $X_1, X_2, \dots, X_n \in L^2(\Omega, \mathcal{F}, \mathbf{P})$, then

$$||Z||_{X,2} = \sqrt{\sigma^2 ||Z||_F^2 + \mu^2 |\operatorname{tr}(Z)|^2}.$$

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Motivation

• If d=2, μ is the mean, and σ is the standard deviation of the distribution of $X_1, X_2, \dots, X_n \in L^2(\Omega, \mathcal{F}, \mathbf{P})$, then

$$||Z||_{X,2} = \sqrt{\sigma^2 ||Z||_F^2 + \mu^2 |\operatorname{tr}(Z)|^2}.$$

Theorem (B., 2024)

Let d=2 and $\boldsymbol{X}=(X_1,X_2,\ldots,X_n)$ where $X_1,X_2,\ldots,X_n\in L^d(\Omega,\mathcal{F},\boldsymbol{P})$ are iid random variables. Then $\frac{\sqrt{\sigma^2 + \mu^2}}{\sigma^2} |||Z|||_{\mathbf{X},2}$ is a submultiplicative matrix norm on M_n . Moreover, the constant $\frac{\sqrt{\sigma^2 + \mu^2}}{\sigma^2}$ is optimal.

Sketch of proof (Part 1)

•
$$||A||_{\mathbf{X},d}^d = \mathbb{E}[|\lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_n X_n|^d]$$

•
$$\|A\|_{\mathbf{X},d}^d = \mathbb{E}\left[|\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_n X_n|^d\right]$$
 • $\|Z\|_{\mathbf{X},d}^d = \frac{1}{2\pi} \binom{d}{d/2}^{-1} \int_0^{2\pi} \|e^{it}Z + e^{-it}Z^*\|_{\mathbf{X},d}^d dt$

Theorem (Folklore)

A new norm

Let $N(\cdot)$ be a matrix norm, and suppose that $\|\cdot\|$ is a submultiplicative matrix norm such that

$$C_m||A|| \leq N(A) \leq C_M||A||$$
 for all $A \in M_n$

where C_m and C_M are positive constants. Then $\frac{C_M}{C^2}N(\cdot)$ is also a submultiplicative matrix norm.

$$\bullet \|A\|_{\mathbf{X},d}^d = \mathbb{E}\big[|\lambda_1 X_1 + \lambda_2 X_2 + \cdots + \lambda_n X_n|^d\big]$$

•
$$||Z||_{X,d}^d = \frac{1}{2\pi} {d \choose d/2}^{-1} \int_0^{2\pi} ||e^{it}Z + e^{-it}Z^*||_{X,d}^d dt$$

Motivation

Theorem (B., 2024)

A new norm

Let $\mathbf{X} = (X_1, X_2, \dots, X_n)$, where $X_1, X_2, \dots, X_n \in L^p(\Omega, \mathcal{F}, \mathbf{P})$ are iid random variables of pth standardized absolute moment $\tilde{\mu}_{p}$.

Then if
$$p = d \ge 2$$
,

$$\sqrt{2} \binom{d}{d/2}^{-1/d} |||Z|||_{\boldsymbol{X},2} \le |||Z|||_{\boldsymbol{X},d} \le 4 \left(\frac{B_d \tilde{\mu}_d}{2\binom{d}{d/2}} \right)^{1/d} |||Z||_{\boldsymbol{X},2},$$

and if 1 < d < 2 and p > 2,

$$4\left(\frac{(2B_{p}\tilde{\mu}_{p})^{\frac{d-2}{p-2}}}{8\binom{d}{d/2}}\right)^{1/d} |||Z||_{\boldsymbol{X},2} \leq |||Z||_{\boldsymbol{X},d} \leq \sqrt{2} \binom{d}{d/2}^{-1/d} |||Z||_{\boldsymbol{X},2},$$

where B_p is the constant in the Marcinkiewicz–Zygmund inequality.

Some examples 00000

Open questions

A new norm

1 For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d ||Z||_{\boldsymbol{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \boldsymbol{P})$ for p > 2?

Open questions

A new norm

• For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d ||Z||_{X,d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?

Motivation

2 Can we characterize the distributions that give rise to norms $\|\cdot\|_{X,d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d \to \infty$?

Open questions

- **1** For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d \| Z \|_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?
- **2** Can we characterize the distributions that give rise to norms $\|\cdot\|_{X,d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d\to\infty$?
- **3** Can we generalize these norms to compact operators on infinite-dimensional Hilbert spaces?

Open questions

- **1** For $1 \le d < 2$, does there exists a constant $\gamma_d > 0$, independent of n, such that $\gamma_d \| Z \|_{\mathbf{X},d}$ is a submultiplicative matrix norm, even if $X_i \notin L^p(\Omega, \mathcal{F}, \mathbf{P})$ for p > 2?
- **2** Can we characterize the distributions that give rise to norms $\|\cdot\|_{X,d}$ which, under multiplication by a scalar γ_d independent of n, remain a norm when $d\to\infty$?
- **3** Can we generalize these norms to compact operators on infinite-dimensional Hilbert spaces?
- **4** Can we characterize the norms $||| \cdot |||_{X,d}$ that arise from an inner product?

References

- Bouthat, L.: On the Submultiplicativity of Matrix Norms Induced by Random Vectors. *Complex Anal. Oper. Theory*, 18, 73, 2024.
- Bouthat, L., Chávez, Á., Garcia, S.R.: Hunter's positivity theorem and random vector norms. *IWOTA 2023*, Submitted, 2024.
- Chávez, Á., Garcia, S.R., Hurley, J.: Norms on complex matrices induced by random vectors II: Extension of weakly unitarily invariant norms. *Canadian Mathematical Bulletin*, 1–11, 2023.
- Chávez, Á., Garcia, S.R., Hurley, J.: Norms on complex matrices induced by random vectors. *Canadian Mathematical Bulletin* 66(3), 808–826, 2023.
- Aguilar, K., Chávez, Á., Garcia, S.R. and Volčič, J.: Norms on complex matrices induced by complete homogeneous symmetric polynomials. *Bull. London Math. Soc.*, 54: 2078–2100, 2022.