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This paper introduces a family of norms on the space  of  complex matrices. These norms arise

from a probabilistic framework as they are induced by random vectors whose entries are independent and

identically distributed (iid) real-valued random variables with sufficiently many moments.

Initially, these norms are defined on complex Hermitian matrices as symmetric functions of their (necessarily

real) eigenvalues. This contrasts with Schatten -norms, which are defined in terms of singular values. To

be more specific, these random vector norms do not arise from the machinery of symmetric gauge

functions. Rather, they are generalizations of the complete homogeneous symmetric (CHS) polynomial

norms introduced in [K. Aguilar et al., Bull. Lond. Math. Soc. 54, No. 6, 2078–2100 (2022; Zbl 07740261)].

The paper is organized as follows:

In Section 1, the preliminary concepts and notation are covered. Following this, the main result, which is

lengthy and highly technical in nature, is stated.

Norms arising from familiar distributions (namely Gamma random variables, Normal random variables,

Uniform random variables, Laplace random variables, Bernoulli random variables, Finite discrete random

variables, Poisson random variables, and Pareto random variables) are examined in Section 2. Various

examples and applications are also provided, including a powerful generalization of Hunter’s positivity

theorem for the complete homogeneous symmetric polynomials.

The proof of the main result, which involves a wide range of topics, such as cumulants, Bell polynomials,

partitions, and Schur convexity, is contained in Section 3.

The paper concludes with a list of open questions.
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