Chávez, Ángel; Garcia, Stephan Ramon; Hurley, Jackson Norms on complex matrices induced by random vectors. (English) zbl 07741833 Can. Math. Bull. 66, No. 3, 808-826 (2023).

This paper introduces a family of norms on the space M_{n} of $n \times n$ complex matrices. These norms arise from a probabilistic framework as they are induced by random vectors whose entries are independent and identically distributed (iid) real-valued random variables with sufficiently many moments.

Initially, these norms are defined on complex Hermitian matrices as symmetric functions of their (necessarily real) eigenvalues. This contrasts with Schatten p-norms, which are defined in terms of singular values. To be more specific, these random vector norms do not arise from the machinery of symmetric gauge functions. Rather, they are generalizations of the complete homogeneous symmetric (CHS) polynomial norms introduced in [K. Aguilar et al., Bull. Lond. Math. Soc. 54, No. 6, 2078-2100 (2022; Zbl 07740261)]. The paper is organized as follows:

In Section 1, the preliminary concepts and notation are covered. Following this, the main result, which is lengthy and highly technical in nature, is stated.

Norms arising from familiar distributions (namely Gamma random variables, Normal random variables, Uniform random variables, Laplace random variables, Bernoulli random variables, Finite discrete random variables, Poisson random variables, and Pareto random variables) are examined in Section 2. Various examples and applications are also provided, including a powerful generalization of Hunter's positivity theorem for the complete homogeneous symmetric polynomials.

The proof of the main result, which involves a wide range of topics, such as cumulants, Bell polynomials, partitions, and Schur convexity, is contained in Section 3.

The paper concludes with a list of open questions.
Reviewer: Frédéric Morneau-Guérin (Québec)

MSC:
Cited in 1 Document
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
16R30 Trace rings and invariant theory (associative rings and algebras)

Keywords:

norm; symmetric polynomial; partition; trace; positivity; convexity; expectation; complexification; trace polynomial; probability distribution

Full Text: DOI arXiv

References:

[1] Aguilar, K., Chávez, Á., Garcia, S. R., and Volčič, J., Norms on complex matrices induced by complete homogeneous symmetric polynomials. Bull. Lond. Math. Soc.54(2022), 2078-2100. https://doi.org/10.1112/blms.12679 • Zbl 07740261
[2] Barvinok, A. I., Low rank approximations of symmetric polynomials and asymptotic counting of contingency tables. Preprint, 2005. arXiv:0503170
[3] Baston, V. J., Two inequalities for the complete symmetric functions. Math. Proc. Cambridge Philos. Soc.84(1978), no. 1, 1-3. • Zbl 0385.26015
[4] Bell, E. T., Exponential polynomials. Ann. of Math. (2)35(1934), no. 2, 258-277. • Zbl 0009.21202
[5] Billingsley, P., Probability and measure, Wiley Series in Probability and Statistics, John Wiley \& Sons, Inc., Hoboken, NJ, 2012, Anniversary edition [of MR1324786], with a foreword by Steve Lalley and a brief biography of Billingsley by Steve Koppes. • Zbl 1236.60001
[6] Böttcher, A., Garcia, S. R., Omar, M., and O'Neill, C., Weighted means of B-splines, positivity of divided differences, and complete homogeneous symmetric polynomials. Linear Algebra Appl.608(2021), 68-83. • Zbl 1458.05253
[7] Eskenazis, A., Nayar, P., and Tkocz, T., Gaussian mixtures: Entropy and geometric inequalities. Ann. Probab.46(2018), no. 5, 2908-2945. • Zbl 1428.60036
[8] Eskenazis, A., Nayar, P., and Tkocz, T., Sharp comparison of moments and the log-concave moment problem. Adv. Math.334(2018), 389-416. • Zbl 1435.60019
[9] Garcia, S. R., Omar, M., O'Neill, C., and Yih, S., Factorization length distribution for affine semigroups II: asymptotic behavior for numerical semigroups with arbitrarily many generators. J. Combin. Theory Ser. A178(2021), Article no. 105358, 34 pp. • Zbl 1477.20115
[10] Gould, H. W., Explicit formulas for Bernoulli numbers. Amer. Math. Monthly79(1972), 44-51. . Zbl 0227.10010
[11] Haagerup, U., The best constants in the Khintchine inequality. Stud. Math.70(1981), no. 3, 231-283 (1982). • Zbl 0501.46015
[12] Havrilla, A. and Tkocz, T., Sharp Khinchin-type inequalities for symmetric discrete uniform random variables. Israel J. Math.246(2021), no. 1, 281-297. • Zbl 1487.60037
[13] Horn, R. A. and Johnson, C. R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. • Zbl 1267.15001
[14] Hunter, D. B., The positive-definiteness of the complete symmetric functions of even order. Math. Proc. Cambridge Philos. Soc.82(1977), no. 2, 255-258. • Zbl 0369.42015
[15] Latała, R. and Oleszkiewicz, K., A note on sums of independent uniformly distributed random variables. Colloq. Math.68(1995), no. 2, 197-206. • Zbl 0821.60027
[16] Lewis, A. S., Convex analysis on the Hermitian matrices. SIAM J. Optim.6(1996), no. 1, 164-177. . Zbl 0849.15013
[17] Lewis, A. S., Group invariance and convex matrix analysis. SIAM J. Matrix Anal. Appl.17(1996), no. 4, 927-949. • Zbl 0876.15016
[18] Roberts, A. W. and Varberg, D. E., Convex functions, Pure and Applied Mathematics, 57, Academic Press [Harcourt Brace Jovanovich], New York-London, 1973. • Zbl 0271.26009
[19] Rovenţa, I. and Temereancă, L. E., A note on the positivity of the even degree complete homogeneous symmetric polynomials. Mediterr. J. Math.16(2019), no. 1, Article no. 1, 16 pp. Zbl 1404.05215
[20] Stanley, R. P., Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, with a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original. • Zbl 0889.05001
[21] Stanley, R. P., Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, with a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin. • Zbl 0928.05001
[22] Tao, T., Schur convexity and positive definiteness of the even degree complete homogeneous symmetric polynomials, https://terrytao.wordpress.com/2017/08/06/

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.

