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This paper introduces a family of norms on the space Mn of n × n complex matrices. These norms arise
from a probabilistic framework as they are induced by random vectors whose entries are independent and
identically distributed (iid) real-valued random variables with sufficiently many moments.
Initially, these norms are defined on complex Hermitian matrices as symmetric functions of their (nec-
essarily real) eigenvalues. This contrasts with Schatten p-norms, which are defined in terms of singular
values. To be more specific, these random vector norms do not arise from the machinery of symmetric
gauge functions. Rather, they are generalizations of the complete homogeneous symmetric (CHS) poly-
nomial norms introduced in [K. Aguilar et al., Bull. Lond. Math. Soc. 54, No. 6, 2078–2100 (2022; Zbl
1544.15023)].
The paper is organized as follows:
In Section 1, the preliminary concepts and notation are covered. Following this, the main result, which
is lengthy and highly technical in nature, is stated.
Norms arising from familiar distributions (namely Gamma random variables, Normal random variables,
Uniform random variables, Laplace random variables, Bernoulli random variables, Finite discrete random
variables, Poisson random variables, and Pareto random variables) are examined in Section 2. Various
examples and applications are also provided, including a powerful generalization of Hunter’s positivity
theorem for the complete homogeneous symmetric polynomials.
The proof of the main result, which involves a wide range of topics, such as cumulants, Bell polynomials,
partitions, and Schur convexity, is contained in Section 3.
The paper concludes with a list of open questions.
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