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Abstract—Federated Learning (FL) has gained popularity across
various industries due to its ability to train machine learning
models without explicit sharing of sensitive data. While this
paradigm offers significant advantages such as privacy preser-
vation and reduced communication overhead, it also comes
with several challenges such as deployment complexity and
interoperability issues, particularly in heterogeneous scenarios or
resource-constrained environments. Over-the-air (OTA) FL was
introduced to address those challenges by sharing model updates
without the need for direct device-to-device connections or cen-
tralized servers. However, OTA-FL induces some issues related
to increased energy consumption, wireless channel variability,
and network latency. In this paper, we propose a multi-attribute
client selection framework using the Grey Wolf optimizer to
limit the number of participants in each round and optimize the
OTA-FL process while considering the energy, delay, reliability,
and fairness constraints of participating devices. We analyze the
performance of our client selection approach in terms of model
loss, convergence time, and overall accuracy. Our experimental
results show that the proposed multi-attribute client selection
can lower energy consumption by up to 43% compared to the
random client selection method.

Index Terms—Over-The-Air Federated Learning; Client Selec-
tion; Grey Wolf Optimizer; Convergence Speed; Energy Effi-
ciency; Reliability; Fairness.

I. INTRODUCTION

Artificial intelligence (AI) has the potential to transform many
aspects of human society. From healthcare and education to
finance, transportation, and beyond, AI’s ability to analyze vast
amounts of data, make predictions, and automate tasks holds
the promise of improving efficiency, accuracy, and overall
quality of life. However, traditional machine learning (ML) in
massive and sensitive environments faces several challenges
due to the nature of large-scale datasets, distributed data
sources, and their constraints such as data privacy, limited
resources, and network heterogeneity. To address these issues,
federated learning (FL) is a promising approach to train ML al-
gorithms where devices collaborate to improve a shared model
while preserving users’ privacy and reducing communication
overhead [1]. Instead of sending raw data to a central server
for aggregation, each device maintains its dataset, trains a
local model, and sends model updates or gradients to the
server that aggregates these updates, and then sends back the
refined model to the individual devices. This process iterates
until the global model reaches the desired accuracy. Over-the-

air federated learning (OTA-FL) [2] is a promising concept
that allows clients to share the same spectral resources by
simultaneously transmitting their local model updates and
aggregating these models over the air in a ”one-time” manner,
as illustrated in Fig. 1. Thus, OTA-FL can greatly reduce the
cost of communicating model updates from the edge devices.
Implementing OTA-FL in heterogeneous scenarios, where
clients have different data distribution, limited bandwidth,
and less reliable network conditions, faces several challenges
including limited computing capabilities, data quality, and
fairness between FL agents. Thus, the set of participants
in each training round is a key factor in addressing these
challenges and enhancing the learning process [3]. Careful
selection of clients profoundly impacts the overall perfor-
mance, convergence speed, and robustness of the global model.
By strategically choosing clients based on factors such as
data quality and computational capabilities, the FL system
can effectively navigate through communication constraints,
privacy concerns, and other challenges.

Model averaging

Noise

OTA Computation

Fig. 1. Over-The-Air (OTA) federated learning process.

In this paper, we present an optimization problem that aims
to develop a multi-attribute client selection framework using
the grey wolf optimizer (GWO), taking into account several
criteria such as model accuracy, communication cost, resource
capacity and reliability, and fairness between FL clients. The
remainder of this paper is organized as follows: Section II
summarizes past research utilizing different techniques and
criteria for client selection and presents our contribution.
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Section III provides the system model and the objective
function. Section IV details the mechanism of the grey wolf
optimizer for selecting clients to participate in the learning
process. Section V presents experimental results and insights,
and Section VI concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTION

Effective client selection is crucial for fast convergence, ac-
curate models, fairness, and efficient communication. This
section presents a literature review focused on optimizing
client selection through various methods and our contribution.

A. Random Selection

This client selection method is achieved by randomly selecting
a subset of clients to participate in the FL process. The
work in [4] mitigates this problem and performs FL while
actively managing clients based on their resource conditions
by asking the randomly selected clients to send their resource
information and participate in determining which of them go
to complete the FL process. However, this approach presents
several challenges such as building and maintaining client
trust and ensuring high data quality. The random selection
strategy is simple to implement but may lead to uneven data
distribution and performance.

B. Learning-based Selection

Some papers implement client selection using ML techniques,
where a central model predicts which clients provide high-
quality updates. For instance, reinforcement learning is de-
ployed to improve client selection performance by involving
a reinforcement learning agent that learns a client selection
policy [5]. The authors of [6] designed a framework that intel-
ligently chooses the client devices to participate in each round
of FL to counterbalance the bias introduced by non-IID data
and to speed up convergence. Although this method allows
for adaptive client selection strategies, it is computationally
intensive, requires additional training, and may be sensitive to
the quality of the initial model.

C. Mathematical optimization-based selection

Some methods formulate the client selection strategy as a
mathematical optimization problem. Then, clients are selected
using mathematical methods such as the Knapsack model in
[7], where the authors proposed a framework to balance the
trade-off between the energy consumption of the edge clients
and the learning accuracy of FL. The authors in [8] proposed
a predictive quality of service paradigm that allows devices to
self-adjust their power allocation to maintain reliability and la-
tency within the tolerated range of the URLLC application. In
[9], the authors proposed a delay-constrained client selection
framework for heterogeneous FL in intelligent transportation
systems to improve the model performance such as accu-
racy, training, and transmission time. The multi-armed bandit
(MAB) model is used in [10] to work for the hierarchical
FL by estimating the participation probability for each client
using the following information wireless channel state, local

computing resources, and previous performance. The authors
of [11] also formulated the client selection problem as an MAB
problem to design a selection framework where the network
operator learns the number of successful participating clients
to improve the training performance as well as under the
limited budget on each edge server. Contextual combinatorial
MAB is used in [12] to formulate a client selection problem
to boost volatile FL by speeding up model convergence,
promoting model accuracy, and reducing energy consumption.
The authors in [13] leveraged the MAB framework and the
virtual queue technique in Lyapunov optimization to conduct
client selection with a fairness guarantee in the asynchronous
FL framework. Authors of [14] proposed a client selection
method using a Genetic algorithm, which enables faster central
model training at a lower cost based on the client’s cost and the
result of its local update. A dynamic and multicriteria scheme
for client selection is developed in [15] to offer more volume
and heterogeneity of data in the FL process using a genetic
algorithm.

D. Our contributions

Based on the related works (See Table I), certain client
selection methods choose the clients with the best performance
or high resources. This approach results in clients with low-
level resource capacity being unable to participate in the
training process, and their datasets being ignored. This leads
to biased and unfair selection, which ultimately results in
an underfitting of the learned global model for those low-
level clients. Moreover, some proposed methods suffer from
some futility of the clients which train their local models
and then the server does not aggregate them. This leads to
a waste of client energy. The majority of existing works
have concentrated on accuracy and cost criteria for selecting
clients to participate in the FL process. Additionally, although
efforts have been made to employ GWO to facilitate FL in
several ways, GWO has never been used to optimize the client
selection problem by improving the global model’s accuracy,
energy, reliability, and fairness.

Our contributions are summarized below:

• Offering a multi-attribute client selection framework that
allows the balancing of accuracy with energy, delay,
reliability, and fairness criteria to tackle the OTA-FL
challenges such as security risks, limited computational
capability, and unstable networks.

• Adopting the grey wolf optimizer to choose the set of
eligible clients to join the learning process.

• Evaluating the proposed approach and analyzing the FL
model performance in terms of accuracy, convergence
time, and energy efficiency.

III. MULTI-ATTRIBUTE CLIENT SELECTION

We consider an FL framework consisting of a single base
station and n clients N = {1, 2, · · · , n}. Each client i
possesses local data, denoted as Di. In each round, the server
aims to learn a global model with the data Di distributed
across the selected clients.
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TABLE I
RELATED EXISTING WORKS ON THE MATHEMATICAL OPTIMIZATION-BASED CLIENT SELECTION

Ref Year Accuracy Energy Delay Reliability Fairness Model

[7] 2021 ✓ ✓ ✓ Knapsack

[9] 2023 ✓ ✓ ✓ Knapsack

[10] 2022 ✓ ✓ Multi armed bandit

[11] 2022 ✓ ✓ ✓ Multi armed bandit

[12] 2023 ✓ ✓ ✓ Multi armed bandit

[13] 2023 ✓ ✓ ✓ ✓ Multi armed bandit

[14] 2023 ✓ ✓ Genetic algorithm

[15] 2023 ✓ ✓ ✓ Genetic algorithm

Our approach 2023 ✓ ✓ ✓ ✓ ✓ Grey wolf optimizer

To model the FL problem, we define the weight vector w
to capture the parameters related to the global model. We
introduce the loss function l(w, xj , yj), which captures the
FL performance over input vector xj and output yj for each
Di. The categorical cross-entropy is used as a loss function in
performing the classification problem in our paper. The total
loss function of client i writes [16]:

Fi(w) =
1

Di

Di∑
j=1

l(w, xj , yj) (1)

The FL training problem can be formulated as follows:

minF (w) =

n∑
i=1

Di

D
Fi(w), (2)

where D =
∑n

i=1 Di is the total data samples of all clients.

A. Delay

To implement FL over wireless networks, wireless devices
must train the model locally and transmit their results over
wireless links. However, this computation and transmission
introduce a delay that impacts the overall FL performance.
Therefore, it is crucial to optimize the delay for efficient FL
implementation.

1) Computation Delay: The computation delay is determined
by the type of learning models and the desired learning accu-
racy ϵi, the computation time at user i needed for processing
is [16]:

τ ci =
CiDi

fi
υi log2

(
1

ϵi

)
, (3)

where υi log2(1/ϵi) is the number of local iterations required
for client i to reach the desired accuracy ϵi, Ci (cycles/bit) is
the number of CPU cycles required for computing one sample
data at user i, and fi is the computation capacity of user i,
which is measured by the number of CPU cycles per second.
2) Transmission Delay: After local computation, all users
upload their local FL parameters to the server, the quality of

TABLE II
MAIN NOTATIONS USED IN THIS PAPER.

Notation Meaning
n Number of clients
i A single client
Di Data samples collected by client i
D Total data samples of all users
w Global model parameter vector
xj Input vector for each data sample j

yj Output vector for each data sample j

l(w, xj , yj) Total loss function for client i
Fi(w) Local objective function
F (w) Global objective function
τci Computation delay
τ ti Transmission delay
τi Delay requirement
eci Computation energy
eti Transmission energy
ei Energy consumption requirement
ϵi The desired learning accuracy
Ci Computation capacity required (CPU cycles per bit)
fi Computation capacity of i (CPU cycles per second)
ri Transmission rate
bi Bandwidth allocated to user i
gi Channel gain between user i and the BS
pi Transmit power of user i
N0 Power spectral density of the Gaussian noise

M(w) FL model size
ζi Energy consumption factor of client i

MTBFi Mean time between failures
ρi(t) Reliability of client i
ρ Reliability requirement
mi Number of failures
ci Required minimum selection fraction for client i
Xp Position of the prey
X Position of the wolf

A and C GWO coefficient vectors
d Distance between the wolf and the prey

the wireless channel is the primary factor that determines the
transmission rate in each round that is given by:

ri = bi log2

(
1 +

gipi
N0bi

)
, (4)
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where bi represents the bandwidth allocated to user i, pi is
the transmit power of user i, gi is the channel gain between
user i and the BS, and N0 is the power spectral density of the
Gaussian noise.

The model size determines the transmission time between the
client and server, expressed as M(w). The model transmission
time is calculated using the following formula:

τ ti =
M(w)

ri
. (5)

B. Energy

Energy is a critical factor to consider when deploying FL,
to implement energy-efficient ML algorithms, optimize
communications, use low-power hardware accelerators, and
develop energy-aware scheduling strategies. Balancing the
benefits of FL with the energy constraints of participating
devices is crucial for its widespread adoption and long-term
sustainability. The energy consumption of each client i is the
sum of the energy used to train the model on each client’s
device and the energy used to transmit the local model from
the device to the server.

1) Computation Energy: The computing resources consumed
by model training depend on the size of local data Di, which
is expressed as [17]:

eci = ζif
2
i · τ ci fi = ζif

2
i CiDiυi log2

(
1

ϵi

)
. (6)

where ζi is the energy consumption coefficient depending
on the chip of each client i’s device. Note that, since the
server has a continuous power supply, we do not consider the
energy consumption of the server in our problem.

2) Transmission Energy: The energy consumption of client i
in model transmission is expressed as [17]:

eti = piτ
t
i = pi

M(w)

ri
. (7)

C. Reliability

Choosing clients capable of completing local training is a
crucial maintenance metric to measure performance, safety,
and equipment design, especially for critical or complex assets.
The reliability of the client’s device ensures the trustworthi-
ness, stability, and efficiency of the FL process. It allows FL
systems to make informed decisions regarding the participation
of clients, data quality, and security, which results in better
model performance and a more dependable and robust learning
process [18]. The reliability computation of a client i is
performed by considering the time between failures i.e. MTBF
(mean time between failures), which refers to the average time
between two failures and is defined as follows [19]:

MTBFi =
τ ci
mi

, (8)

where mi is the number of failures. The client reliability, or
the probability of operating without fail for a time t, is denoted
by ρi(t):

ρi(t) = e−t/MTBFi . (9)

A higher reliable client device is less likely to fail shortly.
This, in turn, reduces the risk of losing the training data or
the local model due to unintentional shutdown and network
instability.

D. Fairness

During the FL process, the client selection method often
prioritizes devices with low latency. However, this bias towards
speed may not be fair to clients with high data quality, the
local dataset which has a larger size and whose distribution is
more similar to the global distribution plays a more important
role, and the corresponding clients should participate in more
communication rounds. Therefore, it is important to consider
the fairness constraint to avoid an overabundance of relevant
clients [20]. The fairness constraint is considered to ”tell”
each client how many communication rounds they should
participate in [21]. We introduce the following constraint on
a minimum selection fraction for each client i [22]:

1

T

T∑
t=1

E[ai(t)] ≥ ci, (10)

where E[.] is the expectation operator and ci ∈ (0, 1) is
the minimum fraction of communication rounds required to
choose client i. T is the total number of rounds and ai(t)
is a binary variable defined as an indicator with ai(t) = 1
indicating that client i is selected in round t, and ai(t) = 0
otherwise.

E. Problem Formulation

Our approach involves a ”select and train” client selection
method where the server invites clients who meet the con-
straints of accuracy, energy, delay, reliability, and fairness to
participate in the FL algorithm. We formulate our problem
whose goal is to minimize the loss function of an FL algorithm
by optimizing the various wireless parameters, as follows:

minF (w) =
1

D

n∑
i=1

Di∑
j=1

l(w, xji, yji) (11)

s.t. τ ci + τ ti ≤ τi, ∀i ∈ N (11a)

0 < eci + eti ≤ ei, ∀i ∈ N (11b)

ρi(t) ≥ ρ, ∀i ∈ N (11c)

1

T

T∑
t=1

E[ai(t)] ≥ ci ∀i ∈ N (11d)

ϵmin ≤ ϵi ≤ 1 ∀i ∈ N (11e)
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0 ≤ fi ≤ fmax
i ∀i ∈ N (11f)

0 ≤ pi ≤ pmax
i ∀i ∈ N (11g)

n∑
i=1

bi ≤ B ∀i ∈ N (11h)

0 ≤ ci ≤ 1 ∀i ∈ N (11i)

where γT is the maximum delay to join the FL system, γE
is the energy consumption of the FL algorithm, γR is the
minimum reliability needed to participate to the FL process.

Constraint (11a) indicates that the execution time of the local
tasks and transmission time for all clients should not exceed
the maximum completion time for the whole FL algorithm.
(11b) is the energy consumption constraint to perform the
learning task. Constraint (11c) is the client’s device reliability
condition for joining the FL algorithm. Constraint (11d) is the
fairness constraint to participate in the FL algorithm. The local
accuracy constraint is given by (11e). Constraints (11f) and
(11g) respectively represent the maximum local computation
capacity and average transmit power limits of all clients. Due
to the limited bandwidth of the system, we have (11h), where
B is the total bandwidth. Constraint (11i) is the fraction of
communication rounds required to ensure a fair selection.

IV. GREY WOLF OPTIMIZER-BASED CLIENT SELECTION

A. Federated Learning Algorithm

Our FL is depicted in the pseudo-algorithm 1. It is divided
into two pieces, one executed by the server and the other by
the clients. In the beginning, the server initializes the global
model parameters with random values. The server coordinates
different rounds of execution. At each round, the server selects
the set of clients using Algorithm 2 and, in parallel, sends
a copy of the training model. To fine-tune the copy of the
training model, each client performs a series of gradient
descent steps using its data. After training, each client sends
back the weights and biases of the local model to the server.
The server aggregates the updates from all clients and starts a
new round.

Algorithm 1 OTA-FL with Multi-Attribute Client Selection
Base Station Side:
Initialize the global model W0

for t← 0 to T do
Select client set C using Algorithm 2
Broadcast Wt to selected clients (i.e., C).
Receive the over-the-air aggregated global model Wt+1.

end for

Selected Client Side:
At each round t:
Receive current global model Wt.
Train local model and produce model update W c

t+1.
Send W c

t+1 to the server.

Omega

Alpha

Delta

Beta

Fig. 2. The wolf in the GWO is the set of clients in the FL process: The
selected clients are shown in bold pictures, while transparent pictures represent
clients that have not been selected

B. Client Selection Algorithm

The GWO is a metaheuristic algorithm that mimics the social
hierarchy and hunting behaviors of the grey wolves to catch
the prey in nature. It’s used to solve different problems such as
global optimization problems due to the advantages of fewer
parameters, simple principles, and implementation [23]. In
this work, we employ the grey wolf model for Optimizing
the client selection problem (Eq. 11), wherein the wolf is
represented as the set of clients that are eligible to join the
learning process (See Fig.2).

Let’s assume that there are S solutions (sets of clients) in
the search space, GWO classifies these solutions based on
the objective function (Eq.11) for four categories as follows:
the best solution is alpha (α), the second-best is beta (β),
the third-best delta (δ) and the rest solutions are omega (ω).
The best three solutions (α, β, δ) are used to guide the other
solutions (ω) for improving the search space. During the
optimization, there are three main phases of hunting behavior:
Encircling, hunting, and attacking which will be detailed later.

1) Encyrcling: When the grey wolves are on the hunt, they
start by creating a circle around the prey. The mathematical
model of the encircling phase is developed using the following
equations:

X(t+ 1) = Xp(t)−A× d. (12)

The distance d between the wolf and the prey is calculated
by the following equation:

d = |C×Xp(t)−X(t)|, (13)

where t is the current iteration, Xp is the position of the prey
and X is the position of the wolf. A and C are coefficient
vectors defined as follows:

A = 2a× r1 − a, (14)
C = 2r2. (15)
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The components of a are linearly decreased from 2 to 0 over
iterations and can be calculated by:

a = 2− t× 2/maxitr, (16)

where maxitr is the maximum number of iterations. r1 and
r2 are random vectors in [0, 1].

2) Hunting: During this phase, the three most promising
solutions denoted by (α, β, δ) are obtained. As for the other
research agents (ω), they need to update their positions by
moving towards the average of the three best-known positions
since they have better knowledge about the optimal location
of the prey. In this regard, the following equations have been
presented with i ∈ {α, β, δ}:

Xi(t+ 1) = Xi(t)− ai × di, (17)

where di is estimated using the following:

di = |Ci ×Xi(t)−X(t)| . (18)

Let pi be the positive weight associated with wolf i ∈ {α, β, δ}
such that

∑
i pi = 1. Given the positions of wolves α, β, and

δ, a good estimation of the average position of the optimal
solution at round t is given by:

X(t+ 1) =
∑

i∈{α,β,δ}

pi ·Xi(t+ 1). (19)

3) Attacking: GWO finishes hunting by attacking the prey
when it stops moving, to model approaching the prey we use
Eq. (16) as the parameter a is responsible for making the
balance between exploration and exploitation, the value of a
linearly decreased from 2 to 0 over iterations, consequently,
the parameter A takes a random value in the interval [−2a, 2a]
given by Eq. (14). The wolves take a random position when
A > 1 or A < −1 and they are forced to move towards the
prey when −1 ≤ A ≤ 1.

Algorithm 2 Grey Wolf Optimizer-Based client Selection
Initialize the grey wolf population X
Initialize a, A, and C
Calculate the fitness of each search agent
Xα = the best search agent
Xβ = the second best agent
Xδ = the third best search agent
while t < maxitr do

for each search agent do
Randomly initialize r1 and r2
Update the position of the current search agent using

Eq.(19)
end for
Update a, A, and C
Calculate the fitness of all search agents
Update Xα, Xβ , and Xδ

t = t+ 1
end while
return Xα ▷ Best solution: Set of clients to join the FL

The multi-attribute client selection is provided in Algorithm.2.
First, the GWO parameters are initialized by the base station.

Second, the GWO calculates the score of the set of best
clients based on the lowest loss value, lowest computation
and transmission delay, lowest energy consumption, highest
reliability, and fairness. The best score value is sent to the
BS from each set of clients. Finally, the local models are
trained by the best clients with the best score (i.e., alpha
solution) and sent to the base station for aggregation via OTA
communication.

V. EXPERIMENTAL INVESTIGATION

To evaluate the performance of our approach, we conducted
experiments to analyze the global model performance as well
as study the impact of delay, energy, reliability, and fairness.
In this section, we provide a comparison between the random
client selection of 3 clients and then 5 clients, loss-aware client
selection using GWO, and our multi-attribute client selection
approach based on the local model accuracy, energy, delay,
reliability, and fairness using the MNIST dataset.

A. Experimental setup

We implemented an FL model using the MNIST dataset,
which consists of 60,000 28 x 28 images of handwritten digits
ranging from 0 to 9, these images were distributed among
10 clients to train the FL model where each client has its
hardware parameters which allowed us to calculate the total
delay using Eq.(3) and Eq.(5), the total energy using Eq. (6)
and Eq.(7), reliability using Eq.(9) and fairness using Eq.(10).
Our study was conducted on a cloud-based platform, Google
Colab T4 GPU. We used Python version 3, TensorFlow version
2.3.0, and Keras version 2.4.3 to create our experimental code.
Our classification problem was solved using the convolutional
neural network (CNN) algorithm to train local models with
the stochastic gradient descent (SGD) technique for training
acceleration. Our study aims to improve the FL performance
using GWO by selecting clients that can achieve the best score
regarding prediction, delay, energy, reliability, and fairness.

B. Experimental Results

To show the performance of our client selection approach
in OTA-FL, we analyze the FL model on the MNIST clas-
sification problem. The analysis focused on measuring the
global model loss, convergence time, accuracy, and energy
consumption. We also compare the results of our solution with
various other methods including random client selection and
GWO loss-aware client selection.

Loss probability: Fig. 3 shows the loss of the FL model
across different communication rounds using random client
selection of 3 clients and 5 clients, loss-based client selection,
and our client selection method. It is clear that the model loss
probability obtained using our approach is lower and converges
faster compared to the other selection methods.

Convergence Time: Fig. 4 presents a comparison of the FL
convergence time for 10 communication rounds, where our
approach generally has lower values compared to GWO loss-
based client selection and random selection, suggesting better
performance in terms of convergence speed.
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Fig. 3. FL model loss under different client selection schemes.
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Fig. 4. Convergence time under different client selection schemes.

Accuracy: The Global model accuracy is increased across
iterations as seen in Fig. 5 While Table III summarizes the
global model accuracy achieved using different client selection
methods, where the highest value is obtained using our multi-
attribute client selection scheme.

TABLE III
GLOBAL ACCURACY AND ENERGY EFFICIENCY.

Client Selection Method Accuracy (%) EE (%/joule)

Random selection (3 clients) 68 0.46

Random selection (5 clients) 73 0.41

Loss-aware client selection 92 0.80

Our multi-attribute client selection 98 1.08
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Fig. 5. FL accuracy under different client selection schemes.
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Fig. 6. Total energy consumption under different client selection schemes.
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Fig. 7. Energy efficiency indicator under different client selection schemes.

Energy Efficiency: To assess the energy efficiency of our
scheme and compare it with existing literature, we define the
following energy efficiency function:

EE ≜
Global Accuracy

Total Energy
. (20)

From Fig. 6, we observe a reduction in the total energy con-
sumption with the proposed client selection method compared
to other methods. We can relate the energy consumption di-
rectly to the model’s accuracy. Our solution yields an accuracy
of 1.08% per joule consumed (See Table III). Additionally, our
approach enhances the energy efficiency indicator where one
joule will allow for more precision as seen in Fig. 7.

Our multi-attribute client selection aims to identify clients that
contribute to the training efficiently by finding the balance
between achieving a satisfactory level of accuracy (98% after
10 global iterations), managing the computational costs, and
reducing the time required for model updates. Additionally,
this client selection scheme is designed to be fair where all par-
ticipants have an equal opportunity to contribute to the model
training and we make sure that important clients participate in
more communication rounds to maintain fairness.

C. Discussion & Insights

By leveraging the GWO, we aim to optimize the process of
choosing clients based on multiple attributes crucial to the
success of OTA-FL. One key aspect is the ability of our
solution to enhance the selection of clients based on their
proficiency in providing informative updates. In OTA-FL, the
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quality of model updates plays a pivotal role in the overall
learning process. Clients capable of contributing insightful and
relevant updates contribute significantly to the effectiveness
and accuracy of the federated learning model. The GWO
helps us identify and prioritize clients with a higher potential
for delivering informative contributions, thereby enriching the
learning experience. Moreover, the GWO assists in striking
a balance between the informative updates and the associated
communication costs. In FL, communication overhead is a crit-
ical consideration, especially in wireless environments where
bandwidth may be limited. Our approach aids in optimizing
the trade-off between selecting clients with valuable insights
and minimizing the overall communication costs. This ensures
that the learning process remains efficient and scalable, even in
resource-constrained OTA-FL scenarios. Additionally, fairness
is a key principle in client selection for OTA-FL. Our approach
incorporates fairness considerations into the client selection
process. This ensures that all participating clients have a fair
opportunity to contribute to the FL model. In conclusion, the
integration of the GWO in our multi-attribute client selection
helps to achieve a well-balanced and optimized approach. It
empowers to prioritize clients based on their ability to pro-
vide informative updates, minimize communication costs, and
uphold fairness in the FL ecosystem. This holistic approach
not only enhances the energy efficiency of OTA-FL but also
contributes to the development of more robust and equitable
ML models. Moving forward, we acknowledge the need for
a comprehensive analysis of the scalability of the solution to
understand how the increasing number of devices will affect
the efficacy of our solution. We committed to addressing this
aspect in future work.

VI. CONCLUSION

In this paper, we have introduced a multi-attribute client
selection approach for over-the-air federated learning. We have
used the grey wolf optimizer to choose the best set of clients
to participate in each communication round, which helps to
improve the performance of the global model and speed up
the convergence time. We consider several factors when se-
lecting clients, such as model loss, energy consumption, delay,
data quality, reliability, and fairness. Our proposed approach
achieves better results compared to standard client selection
methods, as it improves the model accuracy, convergence
speed, and energy efficiency in over-the-air federated learning.
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