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A B S T R A C T   

Recently, there has been a growing interest among researchers in enhancing the efficacy of learning through the 
utilization of diverse machine learning models within the field of artificial intelligence. However, imbalanced 
data distributions in educational datasets present a significant challenge to machine learning algorithms. This 
imbalance can result in biased models, untrustworthy outcomes, and poor performance. Data was gathered from 
a sample of 2176 first-year novice programming students in this study. Due to an alarming 76% failure rate, the 
imbalanced dataset was preprocessed before being oversampled with techniques such as SMOTE, SMOTE 
Borderline, SMOTE-ENN, and ADASYN. The proposed non-redundant synthetic data cooperation approach, 
named Equi-Fused-Data-based SMOTE, seeks to capitalize on the diversity of the obtained data by combining 
oversampled datasets. The balanced bagging model was then applied to the combined dataset to demonstrate the 
robustness of this approach. The promising results demonstrate the effectiveness of the Equi-Fused-Data-based 
SMOTE model, which achieved a higher Accuracy of 93.85%, a Precision, Recall and F1-score of 92,86%, and 
an AUC of 98.08%.   

1. Introduction 

In the 21st century, programming has emerged as a critical skill, 
often referred to as the new literacy. However, acquiring coding skills 
remains difficult for novice learners, with global failure rates ranging 
from 25% to 80% (Abdessemed et al., 2018; Gross & Powers, 2005; 
Lahtinen et al., 2005; Pillay, 2003; Pillay & Vikash, 2005; Price & 
Barnes, 2015). Despite efforts from researchers in interdisciplinary fields 
such as environmental development, smart tutors, and serious games, 
understanding computer programming remains difficult, particularly at 
the introductory level (Gross & Powers, 2005). This alarming rate of 
academic failure in introductory programming highlights the critical 
need to identify and address the root causes. Several studies have looked 
at individual factors that influence programming performance, such as 
problem-solving abilities (Sim & Lau, 2018), learner intellectual ca
pacity, mathematical skills, motivation (Yilmaz & Karaoglan Yilmaz, 
2023), and the ability to apply effective learning strategies. However, 
research indicates that learning styles have a smaller impact (Kirschner, 
2017; Lu et al., 2003; Nancekivell et al., 2020; Wilkinson et al., 2014). 

Specific areas of difficulty have also been identified, including tables, 
structured data types, recursion, pointers, references, and memory 
manipulation. These difficulties can range from syntax errors to se
mantic or pragmatic difficulties, which are difficulties in applying pro
gramming knowledge to a specific case (Lahtinen et al., 2005; McCall & 
Kölling, 2019). 

Given the complexities of these challenges, as well as the inherent 
variability in students’ backgrounds and prerequisites, assessing pro
gramming aptitude solely through traditional methods raises serious 
questions about validity and fairness. Furthermore, the imbalanced 
nature of educational datasets, in which the minority class (e.g., students 
who pass exams) far outnumbers the majority class (e.g., students who 
fail), complicates accurately predicting student outcomes and devel
oping effective assessment tools (Radwan & Cataltepe, 2017). Further
more, this imbalance can result in biased models, unreliable results, and 
poor performance because the overall Accuracy metric does not accu
rately reflect the model’s effectiveness (Fernandez et al., 2018; Wang 
et al., 2021). Given the need for effective solutions, various sampling 
techniques have been proposed to address class imbalance, including 
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oversampling and under-sampling (Wang et al., 2021). Under-sampling 
reduces the number of instances in the majority class, resulting in a more 
balanced distribution. Thus, it helps to reduce bias that can occur when a 
single class dominates the training data. There are several 
under-sampling techniques, including random under-sampling, clus
ter-based under-sampling, and cost-sensitive approaches (Tarekegn 
et al., 2021). The specific problem and dataset in question determines 
the technique used. Oversampling techniques, such as SMOTE (Syn
thetic Minority Over-sampling Technique) (Chawla et al., 2002), 
SMOTE Borderline, and ADASYN (Adaptive Synthetic Sampling), have 
been developed to create synthetic samples or modify existing ones to 
rebalance the class distribution. 

Despite the promising results of these techniques, it is critical to 
recognize their limitations, such as the risk of overfitting (Fernandez 
et al., 2018), while under-sampling methods can result in the loss of 
valuable information (Wongvorachan et al., 2023). Furthermore, pre
vious research has identified the distinct strengths and weaknesses of 
each oversampling technique, emphasizing the difficulty of selecting a 
single method to effectively address class imbalance (Tariq et al., 2023; 
Wongvorachan et al., 2023). However, to our knowledge, the specific 
efficacy of these techniques in the context of programming aptitude 
assessment has not been thoroughly investigated. Recognizing the lim
itations of existing oversampling techniques, the purpose of this study is 
to fill a gap in the literature by investigating the impact of different 
sampling techniques on algorithmic performance when dealing with 
class imbalance in a dataset. In this study, different sampling techniques 
were assessed, such as SMOTE, SMOTE Borderline, SMOTE-ENN 
(SMOTE Edited Nearest Neighbors), and ADASYN, affect classification 
algorithms’ performance in an algorithmic learning context. The pro
posed Equi-Fused-Data approach aims to address the shortcomings of 
individual techniques by leveraging the strengths of various over
sampling methods and improving classification Accuracy, Precision, 
Recall, F1-score, and Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC). Equi-Fused-Data uses a non-redundant data cooper
ation approach to improve classification performance. Furthermore, the 
study aims to provide insights into the broader impact of class imbalance 
on various classification algorithms, as well as to assess the efficacy of 
the proposed Equi-Fused-Data-based SMOTE model. 

This study, which is part of a college program aimed at improving 
algorithmic learning, examines data collected over two semesters from 
2176 first-year students enrolled in science and technology from 2020 to 
2022. The dataset contains both formative and summative assessments. 
Formative assessments include grades for behavioral characteristics 
such as class participation, attendance, and project work. Grades were 
assigned on a scale of 0–20, with 10 or higher indicating passing. Out of 
2176 students, only 518 (23.8%) passed the algorithmic module, while 
1658 (76.2%) failed. Given the dataset’s imbalance, testing different 
sampling methods is critical. We focused specifically on SMOTE, a 
popular technique for creating synthetic samples that is both simple and 
effective. SMOTE Borderline was also considered, which concentrates on 
samples near the decision boundary to improve class separation. We 
included SMOTE-ENN, which uses nearest neighbors to generate syn
thetic samples while preserving the local data distribution. Finally, the 
performance of the various techniques was compared to ADASYN, which 
generates more samples for difficult minority cases. 

The main research questions of this study are.  

1. Which sampling technique (SMOTE, SMOTE Borderline, SMOTE- 
ENN, or ADASYN) is most effective for this specific dataset? By 
comparing the performance of the various techniques, we can 
determine which one is best suited to address the class imbalance in 
this educational dataset while ensuring the most accurate and reli
able assessment results. 

2. How does class imbalance impact the performance of various clas
sification algorithms? Different classification algorithms may react 
differently to imbalanced datasets. By comparing the performance of 

various techniques on different algorithms, we can gain valuable 
insights into the specific challenges that class imbalance presents to 
each algorithm, allowing us to choose the best algorithm for a given 
evaluation task.  

3. Can the Equi-Fused-Data-based SMOTE model, a non-redundant data 
cooperation approach, outperform traditional oversampling tech
niques in terms of classification model Accuracy, F1-score, and AUC 
when applied to an imbalanced educational dataset from an intro
ductory programming class? 

Considering these questions, the main contribution of this paper is to 
develop machine learning models to predict student performance on 
summative and formative assessments. Furthermore, to address the issue 
of imbalanced data, this study investigates several balancing techniques 
in the literature and proposes a novel approach called Equi-Fused-Data. 
This approach takes advantage of a new scheme for coordinating the 
main performing balancing techniques. Experimental comparative 
studies were also carried out to determine the effectiveness of the pro
posed model. In addition, to better illustrate the importance of 
addressing class imbalances in education, Section 2 provides an over
view of the research conducted in this field, as well as how various 
sampling techniques and strategies have been used to reduce class im
balances. Section 3 introduces the proposed method, and Sections 4 and 
5 describe and discuss the obtained results. Section 6 concludes the 
paper and presents future perspectives. 

2. Related work 

2.1. Educational assessment and the challenge of class imbalance 

Pedagogical assessment tools are essential in modern learning envi
ronments because they allow teachers to track students’ progress, 
identify areas for improvement, and guide effective learning strategies. 
However, class imbalance in educational datasets can have a significant 
impact on the Accuracy and fairness of these tools. Class imbalance 
occurs when one class in a dataset is significantly overrepresented in 
comparison to the others. In education, this could manifest as a dataset 
with significantly more data points for high-achieving students than 
low-achieving students. Such imbalances have the potential to mislead 
traditional classification algorithms, resulting in biased models (Wang 
et al., 2021). These models benefit the majority class while mis
classifying students who require additional assistance. Hence, it un
dermines effective learning interventions. For example, an imbalanced 
dataset may result in a model that consistently misclassifies 
borderline-performing students as high performers. This bias may pre
vent educators from identifying and supporting at-risk students. 

2.2. Oversampling techniques: mitigating imbalance for fairer assessment 

Researchers have investigated various oversampling techniques to 
address the problem of class imbalance while also ensuring the fairness 
and effectiveness of assessment tools in education. These techniques, 
such as SMOTE (Chawla et al., 2002), attempt to balance the class dis
tribution within a dataset by generating synthetic data points for the 
minority class. Oversampling techniques aid classification algorithms in 
learning a more accurate representation of the data by artificially 
increasing the number of data points for the underrepresented class (for 
example, students with difficulties). This can result in more equitable 
and reliable assessment tools that can effectively identify and support 
students across the performance spectrum. 

2.3. Sampling techniques and their applications in education 

Sampling techniques are essential in addressing class imbalances in 
educational datasets, which occur when one class (e.g., students who 
pass an exam) outnumbers the other. This imbalance presents challenges 
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for traditional classification algorithms, potentially leading to biased 
models and unreliable results (Wang et al., 2021). To address this issue, 
various oversampling techniques have proven to be promising solutions 
for balancing class distributions and improving classification perfor
mance. SMOTE is a popular oversampling technique in educational 
settings (Chawla et al., 2002). SMOTE creates synthetic observations for 
the minority class in unbalanced data. For each minority class obser
vation, synthetic observations are generated at random between the 
observation and its K-nearest minority class neighbors. This method is 
computationally efficient and thus appropriate for large datasets (Fer
nandez et al., 2018). When comparing the efficacy of oversampling 
techniques, SMOTE has demonstrated its effectiveness in addressing 
underachievement rates and behavioral issues in educational settings 
(Rachburee & Punlumjeak, 2021; Wongvorachan et al., 2023). For 
example, (Khalaf Hamoud et al., 2022) discovered that the SMOTE 
improved the Accuracy of both supervised and unsupervised machine 
learning algorithms for predicting student performance. The Random 
Forest performed consistently well before and after the SMOTE appli
cation in terms of Precision, Recall, and F1-score (83%). SMOTE im
proves the overall performance of all algorithms, particularly Precision 
and Recall. 

There are several other SMOTE variants. In the study conducted by 
(Wongvorachan et al., 2023), various resampling techniques were 
evaluated. The results show that Random Forest performed best when 
combined with the hybrid approach SMOTE Nominal Continuous and 
Random Under-Sampling (SMOTE-NC + RUS), both on moderately and 
extremely imbalanced datasets. For moderately imbalanced datasets, 
the hybrid approach yielded the highest Accuracy (77%), Precision 
(79%), Recall (74%), AUC-ROC (86%), and F1-score (77%). While the 
Random Over-Sampling (ROS) technique achieved (87%) Accuracy 
despite potential overfitting, the RUS technique performed the worst 
across all metrics (Accuracy: 70%, Precision 72%, Recall 66%, 
AUC-ROC: 76%, F1-score: 69%). Even with extremely imbalanced 
datasets, the hybrid approach performed well, with 90% Accuracy and a 
AUC-ROC of 96.7%, demonstrating its suitability for educational data
sets. (Tariq et al., 2023) emphasized the importance of selecting the 
right combination of data balancing techniques and classifiers for 
optimal performance on imbalanced datasets. The study’s findings show 
that combining SMOTETomek oversampling with the K-Nearest Neigh
bors (kNN) classifier produces the highest Accuracy (83.72%) on a 
multi-class educational dataset. SMOTETomek reduces noise and gen
erates synthetic data that is similar to real data points, which improves 
the distance-based approach of kNN. However, SMOTE’s noise sensi
tivity may cause it to underperform. The technique can amplify noise in 
the data, reducing the model’s generalizability, or it can generate 
redundant data with limited diversity, impairing the model’s ability to 
learn. 

SMOTE was originally designed for binary classification problems, 
but researchers have extended it to handle imbalanced datasets with 
multiple classes by repeatedly applying it to balance each minority class 
(Tarekegn et al., 2021). In multi-class classification, the SMOTE tech
nique can be applied by comparing the minority class to the remaining 
classes using a one-versus-all comparison (Fernandez et al., 2018). 
However, SMOTE may not be suitable for all classifiers due to noise or 
overlap between classes, which can lead to misclassification. This is 
primarily because it ignores the underlying distribution of the data, 
which can result in unrealistic samples. It is also susceptible to the se
lection of nearest neighbors and the oversampling ratio (Feng et al., 
2021). To address these limitations, researchers created SMOTE variants 
such as SMOTE Borderline and SMOTE-ENN. SMOTE Borderline im
proves on the original SMOTE by concentrating on samples that are on 
the border between classes. This improves its ability to handle imbal
anced datasets with overlapping classes (Han et al., 2005). It can 
generate synthetic samples in feature space regions that are difficult for 
classifiers to learn, potentially improving the performance of classifiers 
like kNN, Support Vector Machine (SVM), and Naive Bayes (Intayoad 

et al., 2019). 
According to (Intayoad et al., 2019), the use of SMOTE and its var

iants (Borderline-SMOTE1, Borderline-SMOTE2, SVM-SMOTE) can, in 
some cases, improve classification performance for the minority class 
(failing students). This improvement is especially noticeable for kNN 
and Naive Bayes classifiers. For example, for SMOTE and 
Bordelrine-SMOTE1, kNN received F1-scores of (92%) and (93%), 
respectively. Nonetheless, the SMOTE Borderline can produce noisy 
samples if the decision boundary is not well defined (Nabus et al., 2022). 
It can also be computationally costly when the dataset contains a large 
number of borderline samples. Its effectiveness is highly dependent on 
the quality of the algorithm used to identify the boundary region. 
SMOTE-ENN is another variant of SMOTE that uses the Edited Nearest 
Neighbors rule to combine the strengths of under and oversampling 
techniques. It removes noisy and misclassified SMOTE samples, thereby 
improving overall performance (Chawla et al., 2002; Fernández et al., 
2018). SMOTE-ENN subsamples the majority class and then uses SMOTE 
to generate synthetic data for the minority class. This method addresses 
the issue of overfitting, which frequently occurs when SMOTE is applied 
to large datasets. However, if informative minority samples are near the 
majority class, SMOTE-ENN may discard them, reducing the dataset’s 
size. As a result, there is a risk of losing valuable information (Krawczyk, 
2016). 

SMOTE-ENN proved to be an effective method for increasing the 
overall Accuracy of the model. Thus, in their study (Nabil et al., 2021), 
various methods were used to resample the dataset, including SMOTE, 
ADASYN, ROS, and SMOTE-ENN. The experimental results showed that 
the deep neural network (DNN) model achieved an Accuracy of (89%), 
demonstrating the effectiveness of deep learning on a balanced dataset 
for predicting students’ academic performance in the field of educa
tional data mining. Another promising oversampling technique is 
ADASYN, which dynamically adjusts the ratio of synthetic samples to be 
generated to the density of the various regions, resulting in a more 
refined approach to oversampling. In other words, ADASYN is an 
adaptation of SMOTE that produces more synthetic data points for 
difficult-to-learn classes by effectively addressing datasets with severe 
class imbalances (He et al., 2008; Rozi et al., 2023) used the ADASYN 
technique to assess students’ achievement. The findings show that using 
ADASYN with a stacking approach resulted in an F1-score of (97%). The 
results indicate that resampling techniques improve classification per
formance. However, the neighborhood size and dataset distribution can 
have an impact on ADASYN’s performance. It can generate noisy sam
ples if the density ratio between classes is too high. It is also computa
tionally intensive for large datasets. 

However, when developing models for educational datasets, it is 
important to consider the techniques’ strengths and limitations. Indeed, 
despite advances in oversampling techniques, their effectiveness in 
various educational contexts, such as algorithmic learning, has not been 
the subject of in-depth study. While previous research has primarily 
focused on individual techniques, this study aims to close this gap by 
comparing the effectiveness of various oversampling techniques 
(SMOTE, SMOTE Borderline, SMOTE-ENN, and ADASYN), as well as 
further exploring the relationships and determining which combinations 
of oversampling techniques and algorithms perform optimally in the 
context of programming skills assessment. In addition, this study in
troduces a new Equi-Fused-data-based SMOTE model that acknowledges 
the limitations of existing oversampling techniques. The Equi-Fused- 
Data approach aims to address the shortcomings of individual tech
niques by leveraging the strengths of various oversampling methods, 
improving classification Accuracy, Precision, Recall, F1-score, and AUC. 

3. Methodology 

Fig. 1 depicts the proposed approach, which includes data collection, 
preprocessing, data partitioning, SMOTE variants and Equi-Fused-Data- 
based SMOTE to manage the imbalanced dataset, and supervised models 

Y. Chachoui et al.                                                                                                                                                                                                                               



Computers and Education: Artificial Intelligence 6 (2024) 100222

4

to classify the data. 

3.1. Data collection 

The dataset includes assessments (formative and summative) of sci
ence and technology students enrolled between 2020 and 2022. The 
Head of the Department of Science and Technology helped create this 
dataset by ensuring that the Annaba University’s student data guidelines 
were followed. Students were randomly assigned to groups for evalua
tion. Each semester consisted of two formative and one summative as
sessments. Each assessment was carefully designed to address the 
specific learning objectives and prerequisites. Instructors from Com
puter Science 1 (CS1) and (CS2) evaluated student performance anon
ymously. To ensure confidentiality and student privacy, all assessments 
were anonymized before grading. This means that all identifying in
formation, such as names and student IDs, was removed from the stu
dents’ assignments. Instead, each student received a unique code that 
was used to identify their work when it was graded. Following ano
nymization, the students’ papers were randomly assigned to different 
professors for grading. This ensures that every student’s work is evalu
ated fairly and objectively. 

Furthermore, the dataset contains data from four primary features 
collected during various assessments in (CS1) and (CS2) courses. This 
study used a total of 2176 instances (rows), with the attributes/variables 
listed in Table 1. Since the aim is to predict student performance, we 
faced a multi-class classification problem. Instead of a restrictive binary 
classification (pass/fail), we chose a three-category system. This option 
recognizes the nuanced range of student performance (failing, moder
ate, excelling) found in the dataset. With this finer granularity, we hope 
to more accurately represent individual performance and provide a 
more insightful basis for analysis. 36.12% of instances (786) are labeled 
as “Low” (score 0–6) and represent students who are struggling 
academically. 63.10% of instances (1373) are labeled “Moderate” (score 
7–13), indicating that students are meeting grade level expectations, 
while the remaining (0.78%) of instances (17) are labeled “High” (score 
14–20), indicating that students are excelling in the computer science 
program. Thus, this dataset is unbalanced. 

3.2. Data preprocessing and feature selection 

To ensure the integrity of the proposed analysis, a comprehensive 
data cleaning and feature selection were performed. This process 
included the following steps: 

Data formatting. The target variable was converted from its original 
format, which contained categorical values, to a numerical representa
tion using label encoding. 

Identification and removal of duplicates. Duplicate entries were 
removed. This process resulted in the removal of 286 instances, reducing 
the dataset to 1890 instances. 

Correction of typos and inaccuracies. Any typos or inaccuracies, 
such as misspellings in the dataset that could potentially affect the re
sults were corrected to maintain data integrity. 

Treatment of outliers. The interquartile range (IQR) method was 
used to identify potential outliers. Q1 and Q3 were calculated for each 
column, and data points outside the range of Q1 -1.5 * IQR and Q3 + 1.5 
* IQR were labeled as potential outliers. However, no outliers were 
identified in this analysis. 

Treatment of missing values. There were no missing values in the 
dataset. 

Randomization of data. To reduce sample bias, the dataset was 
randomly generated. This step was designed to ensure that the subse
quent analysis was conducted on a representative sample free of sys
temic bias. 

Feature selection. Two different feature selection techniques were 
used to identify the most relevant features for predicting student per
formance: Information Gain and Subset Evaluator Classifier. 

The Information Gain algorithm assesses the value of a feature by 
calculating its information gain in relation to the class (Amrieh et al., 
2016). The ranking method allows us to rank the attributes according to 
their individual scores. The significant attributes identified and their 
corresponding score values are: Grade 1 ranked first (0.57), Exam 1 

Fig. 1. Methodology steps.  

Table 1 
Dataset description.  

Attribute Description Values Min Max Mean STD 

Grade1 Mean score for 
formative 
assignments 
(CS1) 

Numeric: 
from 0 to 20 

0 19.50 10.72 5.39 

Grade2 Mean score for 
formative 
assignments 
(CS2) 

Numeric: 
from 0 to 20 

0 20 9.88 5.82 

Exam1 Score for 
summative 
assessment 
(CS1) 

Numeric: 
from 0 to 20 

0 18 4.70 3.46 

Exam2 Score for 
summative 
assessment 
(CS2) 

Numeric: 
from 0 to 20 

0 18.50 2.57 2.66 

Performance Academic 
performance 

Ordinal: 
low, 
moderate, 
high 

– – – – 

Grade1 and Grade2 represent the mean (range 0–20) of various course elements, 
such as formative assignments and projects in (CS1) and (CS2), respectively. 
Furthermore, behavioral characteristics related to student engagement were 
assessed using a combination of class participation, which refers to the fre
quency and quality of participation in activities and group projects. Attendance 
records serve as a measure of engagement. Moreover, project work refers to the 
quality and completion of individual and group projects. These characteristics 
were also evaluated on a scale of 0–20 and factored into their formative 
assignment score. Exam 1 and Exam 2 are the scores (range 0–20) from two 
summative assessments that cover topics such as binary coding and program
ming basics for Exam 1 and advanced concepts such as strings, loops, and arrays 
for Exam 2. 
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ranked second (0.50), Grade 2 ranked third (0.49), and Exam 2 came in 
last (0.35). The Subset Evaluator Classifier uses the bagging algorithm 
and the Best-First technique to evaluate subsets based on training data. A 
classifier is used to estimate the “merit” of a set of attributes. The 
Best-First algorithm investigates attribute subsets using greedy hill 
climbing and backtracking (Sharma et al., 2022). This technique 
selected the same Grade1, Exam1, Grade2, and Exam2 features, each 
with a merit of 0.94. In both methods, Grade 1, Exam 1, Grade 2, and 
Exam 2 were identified as key features that correspond to our under
standing of student performance. This comprehensive approach cap
tures various aspects of learning and provides an overall picture of 
progress. Grades 1 and 2 reflect consistent comprehension and appli
cation of concepts, whereas Exams 1 and 2 assess comprehensive 
application of knowledge under time constraints. 

3.3. Partitioning and balancing the data 

This section examines the methodology employed to divide and 
balance the data for the experiments. 

3.3.1. Train/test split 
To avoid bias and noise from overlapping instances, the dataset was 

resampled into two sets: training (80%, 1512 instances) and testing 
(20%, 378 instances). This common 80-20 split allowed us to collect 
enough data for training while leaving a sizable portion for an unbiased 
evaluation of model performance. The testing set remained consistent 
throughout the experiment trials. 

3.3.2. Resampling 
Variations of the SMOTE technique (Chawla et al., 2002) were used 

to balance the data. Fig. 2 illustrates the various steps of the SMOTE 
algorithm. First, we set the total amount of oversampling N to achieve an 
approximate 1:1 class distribution. The second step was an iterative 
process that began with randomly selecting a positive class from the 
training set. Next, its kNN (5 b y default) was computed. Then, at 
random, we selected N instances from the K to generate new instances 
via interpolation. To do this, we computed the difference between the 
feature vectors. The result is the selection of a random point along the 
“line segment” between the features. 

To address the dataset’s class imbalance, we applied a variation of 
the SMOTE technique. While SMOTE effectively oversamples the mi
nority class, it can generate noise. Thus, we investigated SMOTE 
Borderline, SMOTE-ENN, and ADASYN. First, the SMOTE Borderline 
prioritizes oversampling near the decision boundary, which can enhance 
classification performance. Second, SMOTE-ENN uses oversampling and 
edited nearest neighbor cleanup to remove noisy majority class in
stances near the minority class. Finally, ADASYN performs adaptive 
oversampling of minority instances based on their learning difficulty, 
potentially improving oversampling effectiveness. The following results 
were obtained.  

• SMOTE achieved a nearly balanced distribution (3273 instances, 
1091 per class).  

• SMOTE Borderline technique yielded results that were identical to 
those of SMOTE.  

• SMOTE-ENN technique resulted in 3061 instances (1091 “high”, 997 
“low”, 973 “moderate”).  

• ADASYN yielded 3258 instances (1091 each for the “moderate” and 
“high” classes, 1076 for “low”). 

3.4. Equi-fused-data-based SMOTE model: synthetic data cooperation for 
improving multi-class learning 

The Equi-Fused-Data-based SMOTE model addresses the problem of 
imbalanced datasets in multi-class learning by combining the benefits of 
oversampling and ensemble learning. Imbalanced datasets present sig
nificant challenges to traditional classification algorithms. Metrics like 
Accuracy, which are frequently optimized by these algorithms, become 
misleading in imbalanced scenarios. Instead, AUC and F1-score are 
important metrics that consider both Precision and Recall. 

3.4.1. Model’s components 
The Equi-Fused-Data-based SMOTE model consists of two compo

nents (Fig. 3). First, it employs four well-known oversampling methods: 
SMOTE, SMOTE Borderline, SMOTE-ENN, and ADASYN. Every tech
nique has its advantages and disadvantages. SMOTE excels at dealing 
with general imbalance, whereas SMOTE Borderline focuses on samples 
near the class boundary. SMOTE-ENN uses nearest neighbors to generate 
data, whereas ADASYN focuses on learning from difficult minority 
samples. Using these different techniques without duplicates allows us 
to capture a broader range of potential minority class instances, 
enriching the training data. The next step is to use balanced bagging, an 
ensemble technique designed specifically for imbalanced data. Balanced 
bagging addresses class imbalance within the ensemble by generating 
multiple sub-models from balanced subsets of oversampled data (Barros 
et al., 2019). In fact, ensemble learning, which combines the predictions 
of multiple models, is frequently superior to single models. This 
approach encourages diversity within the ensemble while reducing the 
impact of the majority class. Fig. 3 illustrates how the proposed system 
works by showing the sequence of the various phases. 

3.4.2. Theoretical foundation 
The proposed Equi-Fused-Data-based SMOTE model capitalizes on 

the synergy between oversampling and ensemble learning. By Fig. 2. SMOTE algorithm.  
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incorporating different oversampling datasets into the balanced bagging 
ensemble there are several advantages.  

• Improved representation: oversampling improves the representation 
of minority classes, allowing the ensemble to learn their features 
more effectively.  

• Reduced bias: using multiple oversampling datasets reduces the risk 
of bias from individual techniques.  

• Better generalizability: diversity in the ensemble leads to more 
robust and generalizable models, reducing the risk of overfitting to a 
single oversampled dataset. 

This approach has its theoretical foundation in studies that show the 
efficacy of oversampling and ensemble learning in imbalanced learning. 
The works of (Chawla et al., 2002; Fernandez et al., 2018) demonstrate 
the benefits of SMOTE for imbalanced datasets, while (Barros et al., 
2019) emphasized the benefits of ensemble methods such as balanced 
bagging, where the method outperformed multi-layer perceptron (MLP) 
and Decision Tree in performance on G-mean and Unbalanced Accuracy 
Ratio (UAR) metrics, avoiding the Accuracy paradox in educational 
dataset context. Furthermore, (Pristyanto et al., 2021) showed that 
combining oversampling techniques such as ADASYN with ensemble 
learning can effectively solve imbalanced problems. The 
Equi-Fused-Data-based SMOTE model was empirically evaluated on 
imbalanced multi-class datasets by comparing its performance to indi
vidual oversampling techniques and other ensemble methods. The 
model’s effectiveness was evaluated using metrics such as AUC-ROC, 
F1-score, and overall Accuracy. By integrating these theoretical foun
dations, Equi-Fused-Data demonstrates that it is a theoretically sound 
and promising approach to overcoming the challenges of imbalanced 
multi-class learning. 

3.4.3. Problem formulation 
In the context of imbalanced multi-class learning, the Equi-Fused- 

Data-based SMOTE model addresses class imbalance by combining the 
benefits of oversampling and ensemble learning. To clarify the theo
retical foundation of this approach, the problem must be mathematically 
defined, considering dataset combination and duplicate exclusion. Let Di 
(for i = 1, 2, …, n) denote the dataset obtained from the i-th over
sampling technique (e.g., SMOTE, SMOTE Borderline, SMOTE-ENN, and 

ADASYN). Each Di contains instances that belong to multiple classes (c 
classes) with an imbalanced distribution. Here, c denotes the number of 
classes, and n is the total number of oversampling techniques used. 

Each instance xi
j in Di is a d-dimensional feature vector associated 

with a class label yi
j ∈ {1, 2, …, c}. 

Each oversampling technique generates a dataset Di. Let fi (x, y) 
denote the oversampling function used by the i-th technique, where x is 
a data point and y is its class label. 

Di = fi
(
xj, yj

)⃒
⃒
(
xj, yj

)
∈Doriginal, j= 1, 2,…,

⃒
⃒Doriginal

⃒
⃒

Where Doriginal is the original imbalanced dataset. 
The combination of these datasets involves merging them into a 

unified dataset, denoted as Dcombined. This fusion aims to combine in
stances from all classes to ensure a more balanced representation of the 
entire spectrum of classes. 

Dcombined =
⋃m

i=1
Di 

However, as there may be overlaps between the datasets, the 
resulting combined dataset may contain duplicate instances. To elimi
nate redundancies and maintain data integrity, redundant instances 
(duplicates) present in Dcombined are removed. The resulting unique 
dataset is denoted as Dunique. This process ensures that each instance in 
the dataset is unique and retains the diversity necessary for effective 
learning. 

Dunique =Dcombined\duplicates 

Furthermore, to leverage ensemble learning, balanced bagging is 
also used with a base classifier such as Random Forest. In this ensemble 
technique, multiple sub-models are created, each trained on a balanced 
subset of the data obtained by oversampling. Let (B={B1, B2, …,Bm}) 
represent the ensemble of m base classifiers, where each Bi is trained on a 
balanced subset of Dunique. This balancing process ensures a fair repre
sentation of all classes during training. 

Bi =TrainClassifier(Dsubset, parameters)

where Dsubset is a balanced subset of Dunique and parameters denote the 
hyperparameters of the Random Forest classifier. 

Fig. 3. General diagram of the Equi-Fused-Data-based SMOTE for the classification of imbalanced datasets.  
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3.4.4. Implementation details 
For this dataset, four balanced datasets were merged, yielding 8155 

instances. To remove duplicates, the combined dataset was further 
processed, yielding a final size of 8136 instances. Then, each of these 
datasets was classified using Random Forest. Balanced bagging (Barros 
et al., 2019) was then implemented with a Random Forest classifier. The 
ensemble included 20 base estimators (trees). This decision was made to 
achieve a balance between model complexity and computational effi
ciency. The sampling strategy was set to “not majority’, which means 
that the class distribution was balanced with the sampling technique to 
ensure equality during training. In addition, the sampling was done 
without replacement to ensure the dataset’s integrity. The random seed 
for reproducibility was set to 42. 

3.5. Training 

3.5.1. Hyperparameter tuning 
In this study, data was classified using a variety of supervised ma

chine learning algorithms, including SVM, Random Forest, Decision 
Tree, kNN, and Naive Bayes. Table 2 provides information on the al
gorithms and parameter tuning.  

• SVM is a supervised machine learning algorithm that separates data 
points into different classes by finding an optimal hyperplane in a 
high-dimensional feature space (Cortes & Vapnik, 1995). 

• Random Forest is an ensemble learning method that combines mul
tiple Decision Trees to make predictions by averaging the outputs of 
each tree, providing robustness and reducing overfitting (Breiman, 
2001).  

• Decision Tree is a Tree-like model that uses a sequence of binary 
decisions based on input features to classify or predict outcomes by 
following a series of if-else conditions (Kumar et al., 2022). 

• kNN is an instance-based learning algorithm that classifies new in
stances based on the majority vote of its k nearest neighbors in the 
training set (Quan, 2020).  

• Naive Bayes is a probabilistic classifier that applies Bayes’ theorem 
with the assumption of independence between features to predict the 
class probabilities of a given data sample (Saritas & Yasar, 2019). 

3.5.2. Cross-validation 
To ensure consistent results and reduce overfitting, all algorithms 

underwent 10-fold cross-validation. The dataset was divided into ten 
subsets, nine for training and one for testing in each iteration. Similarly, 
the Equi-Fused-Data-based SMOTE model was 10-fold cross-validated 
on the combined synthetic dataset, with the same test set used for 
evaluation. 

3.5.3. Model’s evaluation 
The performance of each algorithm was evaluated using a range of 

evaluation metrics commonly employed in classification tasks: false 
positive rate (FPR), Accuracy, Precision, Recall, F1-score, and AUC- 
ROC.  

• The False Positive rate is the proportion of incorrectly predicted 
positive instances out of all negative instances in all classes: 

FPR=
FP

(FP + TN)

where, FP is the number of false positives (incorrectly predicted positive 
instances) and TN are true negatives (correctly predicted negative 
instances).  

• Accuracy is the overall correctness of the model’s predictions: 

Accuracy=
(TP + TN)

(TP + TN + FP + FN)

where, TP are true positives (correctly predicted positive instances) and 
FN are false negatives. 

(incorrectly predicted negative instances).  
• Precision represents the proportion of predicted positives that are 

truly positive: 

Precision=
TP

(TP + FP)

• Recall indicates the proportion of actual positive instances correctly 
identified by the model: 

Recall=
TP

(TP + FN)

• F1-score combines Precision and Recall into a single metric, 
providing a balanced view of the model’s performance: 

F1 Score= 2 ∗
(Precision ∗ Recall)
(Precision + Recall)

• The AUC-ROC curve evaluates the model’s ability to distinguish 
between different classes. We employed a combination of micro-AUC 
and weighted averaging for a multi-class classification problem. 

The micro-AUC approach treats all classes equally, regardless of their 
distribution in the data. It considers all true positives and negatives from 
all classes to generate a single ROC curve and its corresponding AUC. 
The weighted AUC method first computes individual AUC values for 
each class using their ROC curves. These individual AUCs are then 
combined into a single weighted average, with weights assigned based 
on the relative frequency of each class in the training data. The result 
considers the prevalence of each class in the data to determine its sig
nificance. We combined the model’s performance across all classes, 
taking into account both their individual discriminatory power (via 
micro-averaging) and their relative importance in the data (via weighted 
averaging), to gain a more nuanced understanding of the model’s per
formance in a multi-class setting. 

4. Results 

4.1. Imbalanced dataset 

In the first experiment, the original dataset for several algorithms 
yielded reasonable results, ranging from 89.15% to 92.85%. However, it 
had a classification problem, with the “High” and “Moderate” classes 
consistently misclassified. Table 3 displays the results, while Fig. 4 de
picts a comparative analysis of various models applied to an imbalanced 
dataset. The SVM model achieved an Accuracy, Precision, Recall and F1- 
score of 91%, an FPR of 6.32% and an excellent AUC of 98.19%. In 
contrast, the Random Forest, Naive Bayes, and kNN models achieved 
accuracies ranging from 89.15% to 92.85%, with Precision, Recall, and 
F1-score values ranging from 89.12% to 92.94%. Finally, the Decision 

Table 2 
Learning models’ configuration.  

Model Parameters 

SVM Kernel = RBF (Radial Basis Function), Probability = True 
Random 

Forest 
Number of estimators: 100, Criterion: Gini, Max Depth: None, 
Minimum sample per leaf: 1, Bootstrap samples: True 

Decision Tree Criterion: Gini, Splitter: best, Max Depth: None, Minimum samples 
per Split: 2, Minimum samples per leaf: 1 

kNN K = 5, Distance metric: Euclidean distance 
Naive Bayes Gaussian Naive Bayes  
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Tree had the lowest values for Accuracy, Precision, and Recall, with an 
F1-score of around 89% and an AUC of 87.06%. The findings show that 
while the SVM had the highest AUC 98.19% and overall performance, it 
is important to consider the potential biases caused by the imbalanced 
dataset. In addition, all classifiers except the Decision Tree had rela
tively high AUC scores, ranging from 90.17% to 98.19%. 

4.2. SMOTE dataset 

Our second experiment aimed to investigate the SMOTE technique’s 
performance for various classifiers. The results detailed in Table 4 lead 
to the following conclusions. First, using SMOTE to balance the dataset 
improves Accuracy, reduces false positives by 4.07%–6.06% for most 
models, with the exception of the Decision Tree (7.92%), and maintains 
AUC scores for the majority of models, as shown in Fig. 5. For example, 
when applied to the imbalanced dataset, the SVM model achieved 94% 
Accuracy, Recall, and F1-score, as opposed to 91%. However, SMOTE 
introduces randomness into the generation of synthetic data points, 
which can result in slightly different results each time it is used. Second, 
slightly better results were observed for the Decision Tree model, with 
Accuracy, Precision, Recall, and F1-score of around 90%. Overall, 
balancing data with SMOTE improved model performance in the ma
jority of cases. 

4.3. SMOTE borderline dataset 

Our third experiment investigated the effectiveness of SMOTE 
Borderline on various models. Table 5 summarizes the results. It can be 
observed that while both SMOTE and SMOTE Borderline generally 
outperformed the imbalanced data, some other interesting findings 

emerged. First, the SVM model improved the most with SMOTE 
Borderline, achieving higher Accuracy (94.17%), lower FPR (3.31%) 
and maintaining AUC (97.98%) compared to the imbalanced (91%, 
6.32%, and 0.98%). This suggests that SMOTE Borderline may be 
especially useful for models that are sensitive to classifying data points 
near class boundaries, such as SVM. Second, other models produce 
mixed results. While some models, such as Random Forest and kNN, 
maintain similar performance with Accuracy, Precision, Recall, and an 
F1-score of 91%, a positive rate of 5% with both SMOTE techniques, 
others, such as Naive Bayes and Decision Trees, show slightly lower 
Accuracy with SMOTE Borderline than with SMOTE. These findings 
show that the effectiveness of SMOTE Borderline varies depending on 
the algorithm used and its sensitivity to the underlying imbalance, even 
after using balancing techniques. Fig. 6 depicts the SMOTE Borderline 
performance. 

4.4. SMOTE-ENN dataset 

The results in Table 6 demonstrate that SMOTE-ENN outperforms 
SMOTE and SMOTE Borderline. In all models, SMOTE-ENN outperforms 
the other two techniques in terms of Accuracy, Precision, Recall, F1- 
score, and AUC. This indicates that SMOTE-ENN enhances overall 
classification performance. First, SVM, like SMOTE Borderline, im
proves the most with SMOTE-ENN, reaching an Accuracy of 93.65% and 
an AUC of 98.2%. This finding lends credence to the idea that techniques 
focusing on borderline samples could be particularly useful for SVM. 
Second, other models show consistent improvements. Although the de
gree of improvement varies, all models exhibit higher performance 
metrics with SMOTE-ENN than with SMOTE and SMOTE Borderline, as 

Table 3 
Performance comparison of machine learning models on the imbalanced 
dataset.  

Model Accuracy FPR Precision Recall F1- 
score 

AUC 

SVM 91.79% 6.32% 91.85% 91.80% 91.55% 98.19% 
Random 

Forest 
91.70% 6.91% 91.75% 91.79% 91.74% 97.24% 

Decision 
Tree 

89.15% 8.62% 89.12% 89.15% 89.13% 87.06% 

kNN 92.85% 5.56% 92.94% 92.85% 92.84% 96.38% 
Naive Bayes 92.06% 6.55% 92.08% 92.05% 92.02% 90.17%  

Fig. 4. Classification models’ performance on the imbalanced dataset.  

Table 4 
Performance comparison of machine learning models on the SMOTE balanced 
dataset.  

Model Accuracy FPR Precision Recall F1- 
score 

AUC 

SVM 94.17% 4.07% 94.86% 94.17% 94.29% 98.21% 
Random 

Forest 
92.06% 6.06% 92.09% 92.06% 92.06% 97.06% 

Decision 
Tree 

90.74% 7.92% 90.66% 90.74% 90.65% 88.12% 

kNN 92.32% 4.70% 92.92% 92.30% 92.45% 96.59% 
Naive Bayes 90.47% 4.99% 92.55% 90.40% 91% 92.51%  
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shown in Fig. 7. SMOTE-ENN addresses potential issues related to 
SMOTE and SMOTE Borderline. While SMOTE has the risk of over
sampling irrelevant data, and SMOTE Borderline may not be effective in 
all borderline cases, SMOTE-ENN combines oversampling and nearest 
neighbor selection. This selection process introduces more relevant and 
representative data points than random oversampling in SMOTE, 

potentially leading to improved model learning and performance. 

4.5. ADASYN dataset 

In the fifth experiment, the performance of the ADASYN technique 
was assessed using various classifiers. Based on the results in Table 7, it 

Fig. 5. Classification models’ performance on the SMOTE balanced dataset.  

Table 5 
Performance comparison of machine learning models on the SMOTE Borderline 
balanced dataset.  

Model Accuracy FPR Precision Recall F1- 
score 

AUC 

SVM 94.17% 3.31% 95.12% 94.18% 94.31% 97.98% 
Random 

Forest 
91.79% 5.89% 91.91% 91.70% 91.82% 97.24% 

Decision 
Tree 

89.41% 8.46% 89.40% 89.41% 89.39% 87.30% 

kNN 91.53% 5.07% 92.32% 91.50% 91.69% 96.24% 
Naive Bayes 87.03% 6.07% 90.88% 87% 87.70% 90.89%  

Fig. 6. Classification models’ performance on the SMOTE Borderline balanced dataset.  

Table 6 
Performance comparison of machine learning models on the SMOTE-ENN 
balanced dataset.  

Model Accuracy FPR Precision Recall F1- 
score 

AUC 

SVM 93.65% 3.11% 94.7% 93.65% 93.80% 98.20% 
Random 

Forest 
90.74% 5.92% 91.24% 90.70% 90.84% 97.19% 

Decision 
Tree 

90.74% 6.13% 91.25% 90.70% 90.87% 90.80% 

kNN 92.06% 4.66% 92.83% 92% 92.20% 95.43% 
Naive Bayes 90.21% 4.42% 92.99% 92.20% 90.77% 93.36%  
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can be noted that ADASYN performs similarly with SVM in terms of 
Accuracy, Precision, Recall, and F1-score (93.91%). While some models, 
such as Random Forest and kNN, perform similarly across all techniques, 
others, such as Naive Bayes and Decision Tree, have slightly lower Ac
curacy of 89.41% for Naive Bayes and higher FPR of 4.93%–7.07% with 
ADASYN when compared to SMOTE-ENN (90%, 4.42%–6.13%). As 
previously stated, SMOTE-ENN’s selection of informative neighbors 
during oversampling may result in more relevant data points, leading to 
improved performance in most cases. On the other hand, ADASYN fo
cuses on oversampling instances of the minority class based on their 
difficulty level, which may benefit models such as SVM that struggle 
with imbalanced data, as illustrated in Fig. 8. However, it may not work 
as well for all models or data characteristics. Indeed, different models 
may have varying sensitivities to the specific data distributions gener
ated by each balancing technique, which explains why some models 
produce mixed results with ADASYN. 

4.6. Equi-fused-data-based SMOTE dataset 

The experimental results in Table 8 demonstrate the Balanced 
Bagging model’s promising performance with the Equi-Fused-Data- 
based SMOTE technique. This approach outperformed several metrics, 
including Accuracy (93.85%), Precision (92.86%), Recall (92.8%), F1- 
score (92.86%), and AUC (98.08%), all while maintaining a low FPR 
(5.35%). These metrics collectively indicate good classification perfor
mance. This approach’s strength stems from its ability to combine 
multiple oversampled versions of data, potentially capturing a broader 
range of patterns and improving class balance. Notably, the performance 
of balanced bagging with a Random Forest classifier is consistent with 
that of the SMOTE-ENN technique, which was previously identified as 

the most effective technique for this particular dataset. These findings 
indicate that the Equi-Fused-Data-based SMOTE model has significant 
potential as a viable strategy for addressing multi-class classification 
problems. 

The results in Table 9 and Fig. 9 compare Random Forest’s perfor
mance on various datasets: imbalanced, oversampled with SMOTE, 
SMOTE Borderline, SMOTE-ENN, ADASYN, and the novel Equi-Fused- 
Data-based SMOTE. Notably, the Equi-Fused-Data-based SMOTE 
model outperforms the imbalanced and oversampled datasets, with an 
accuracy of (93.85%) versus (91.70%) and approximately (91%), 
respectively. The results also show a higher Precision, Recall, and F1- 
score (92%), the lowest FPR (5.35%), and a higher AUC (98.08%). 
This model may overcome the limitations of single oversampling tech
niques by incorporating diverse synthetic samples derived from multiple 
versions. This comprehensive representation of the data most likely 
improves model learning. Furthermore, the Equi-Fused-Data strategy is 
specifically designed for multi-class problems, which may provide ad
vantages over techniques based primarily on binary classification. 

5. Discussion 

5.1. Class imbalance in student performance assessment 

As shown by the first experiment, class imbalance is a significant 
challenge in the field of education, where datasets frequently show an 
uneven distribution of student performance categories. This imbalance 
biases machine learning models toward the majority class, resulting in 
misleadingly high overall Accuracy but potentially poor performance in 
identifying minority-class students. These findings emphasize the crit
ical need to account for class imbalance when using machine learning 
for educational assessment. 

5.2. Effectiveness of oversampling techniques 

The first objective of this study is to demonstrate the efficacy of 
various oversampling techniques in addressing class imbalance issues in 
the educational dataset. The results show that the SMOTE, SMOTE 
Borderline, SMOTE-ENN, and ADASYN techniques are effective at 
addressing the class imbalance problem, resulting in consistent perfor
mance across training and test sets and preventing overfitting. The 
proposed analysis demonstrates that SMOTE produces promising results, 
particularly for Random Forest and SVM models, which have significant 

Fig. 7. Classification models’ performance on the SMOTE-ENN balanced dataset.  

Table 7 
Performance comparison of machine learning models on the ADASYN balanced 
dataset.  

Model Accuracy FPR Precision Recall F1- 
score 

AUC 

SVM 93.91% 2.84% 94.94% 93.91% 94.05% 98.14% 
Random 

Forest 
92.32% 5.60% 92.43% 92.32% 92.34% 97.15% 

Decision 
Tree 

91% 7.07% 91% 91% 91% 89.39% 

kNN 92.06% 4.83% 92.71% 92.06% 92.20% 96.67% 
Naive Bayes 89.41% 4.93% 92.41% 89.42% 90% 92.60%  
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AUC values (e.g., 98% for SVM). This finding is consistent with the 
findings of other studies, such as (Rozi et al., 2023; Tariq et al., 2023; 
Wongvorachan et al., 2023), which reported reasonable performance of 
SMOTE while emphasizing that it is dependent on factors such as data 
distribution, noise level, and the classifier used. For example, in this 
dataset, the combination of SMOTE and SVM achieved the best perfor
mance, whereas, in the study by (Tariq et al., 2023), the best classifier 
was kNN, implying that different classifiers may respond differently to 
oversampling. Some algorithms, such as kNN that rely on local distances 
may benefit more from SMOTE because it provides a clearer decision 
boundary. Furthermore, in the work of (Khalaf Hamoud et al., 2022), 
Random Forest outperformed the other algorithms in terms of Precision, 
Recall, and F1-score (81%). Random Forest produced consistent results 
(92%), indicating that the use of SMOTE improved the model’s perfor
mance in many cases, but its effectiveness remains dependent on a va
riety of factors. 

Similarly, the SMOTE Borderline improved the efficiency of SVM 

models by increasing Accuracy, precision, recall, F1-score, and AUC. 
However, its effectiveness varies by algorithm, implying that it is not 
inherently superior to SMOTE. Further research into its application to 
various educational datasets is needed. SMOTE-ENN outperformed 
other techniques, achieving impressive AUC values for both SVM and 
Random Forest models (98.2% and 97.19%, respectively). Furthermore, 
it produced lower FPR, demonstrating its efficacy in improving classi
fication across multiple models. Finally, ADASYN provided satisfactory 
performance results. While most models achieved AUC values ranging 
from 92.6% to 98.14%, the Decision Tree classifier had an even lower 
AUC value (89.39%). This implies that ADASYN may be less effective for 
some algorithms than other methods. Similar to the results of (Rozi 
et al., 2023), ADASYN improved classification performance, but its 
effectiveness, like SMOTE’s, is dependent on the specific data charac
teristics and models used. For example, in this dataset, ADASYN per
formed best with SVM, Random Forest, and kNN, whereas in the work of 
(Rozi et al., 2023), the stacking algorithm performed best overall. 
Figs. 10 and 11 show a comprehensive comparison of the Accuracy and 
AUC of the various models. Most models, with the exception of Naive 
Bayes, have higher overall Accuracy when using oversampling tech
niques. In terms of AUC, these techniques produce consistent or better 
results across all models. 

5.3. Equi-fused-data-based SMOTE 

The second objective of this study was to investigate the effectiveness 
of a non-redundant data cooperation model for improving overall per
formance. The proposed Equi-Fused-Data-based SMOTE model effec
tively addresses the class imbalance issue, as shown in Table 9, and 
outperforms other techniques in terms of Accuracy, Precision, Recall, 
F1-Score over (92%), AUC (98.08%), and FPR (5.35%) (Fig. 12). Thus, 
these results demonstrate the potential benefits of combining elements 
from different oversampling techniques to produce a more compre
hensive and effective solution for identifying minority classes in 
educational datasets. Furthermore, the stability of balanced bagging 
observed in the experiments suggests that ensemble techniques continue 
to be effective in dealing with class imbalances in multi-class problems 
by providing robust and stable predictions, as supported by studies such 
as (Barros et al., 2019; Pristyanto et al., 2021). This finding highlights 
the potential of this method for educational assessment. 

Fig. 8. Classification models’ performance on the ADASYN balanced dataset.  

Table 8 
Balanced bagging performance on the Equi- 
Fused-Data-based SMOTE balanced dataset.  

Metric Value 

Accuracy 93.85% 
FPR 5.35% 
Precision 92.86% 
Recall 92.80% 
F1-score 92.86% 
AUC 98.08%  

Table 9 
Comparative analysis of classification models with imbalanced, oversampled, 
and Equi-Fused-Data datasets.  

Dataset Accuracy FPR Precision Recall F1- 
score 

AUC 

Imbalanced 91.70% 6.91% 91.75% 91.79% 91.74% 97.24% 
SMOTE 92.06% 6.06% 92.09% 92.06% 92.06% 97.06% 
SMOTE 

Borderline 
91.79% 5.89% 91.91% 91.70% 91.82% 97.24% 

SMOTE-ENN 90.74% 5.92% 91.24% 90.70% 90.84% 97.19% 
ADASYN 92.32% 5.60% 92.43% 92.32% 92.34% 97.15% 
Equi-Fused- 

Data 
93.85% 5.35% 92.86% 92.80% 92.86% 98.08%  
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5.4. Educational implication 

The findings show that the proposed Equi-Fused-Data-based SMOTE 
model, as well as oversampling techniques and classification models, are 
effective in addressing class imbalance in educational assessments. 
These findings highlight the importance of considering not only Accu
racy but also Precision, Recall, FPR, and AUC when assessing model 
performance. This is especially important in education, where errors in 
classification can have serious consequences for students. These findings 
are promising for educators because they can help to develop more ac
curate tools for assessing student performance and progress. Early 
identification of students at risk of failure or in need of additional 
assistance can result in targeted interventions and, ultimately, better 
educational outcomes. 

5.5. Limitations 

While the proposed Equi-Fused-Data-based SMOTE and balanced 
bagging method demonstrated promising results in addressing class 

imbalance for educational assessment, some limitations must be 
addressed. The current study utilized a specific dataset that concen
trated on a specific educational context (algorithmic performance) and 
student population. The applicability to other educational settings with 
different student populations, learning objectives, and assessment types 
requires further investigation. The dataset’s size (2176 instances) limits 
the statistical results’ generalizability and necessitates validation using 
larger and more diverse datasets. While the oversampling techniques 
used in this study, including SMOTE, SMOTE Borderline, SMOTE-ENN, 
and ADASYN, were effective, they did have potential limitations, such as 
introducing their own biases into the data, which could affect the 
model’s generalizability. 

Furthermore, as previously stated, their efficacy varies depending on 
the specific data distribution and characteristics of class imbalance. 
Investigating alternative approaches, such as cost-sensitive learning, 
may provide useful insights into their efficacy in the context of educa
tional assessment. While balanced bagging performs well, it is compu
tationally expensive when compared to simpler oversampling 
techniques, particularly when dealing with large datasets. Investigating 

Fig. 9. Comparative analysis of balanced bagging vs. Random Forest on different datasets.  

Fig. 10. Accuracy comparison: imbalanced dataset vs oversampled balanced datasets.  
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optimization strategies to improve scalability is, therefore, critical. In 
addition, this study primarily addressed class imbalances using over
sampling techniques. However, incorporating domain-specific knowl
edge into the assessment process, such as student demographics or 
cognitive profiles, has the potential to improve model accuracy and 
fairness. 

6. Conclusion 

This study addressed the critical issue of class imbalance in educa
tional datasets, specifically focusing on a dataset of student performance 
in introductory programming. Unaddressed imbalance can result in 
biased and unreliable assessment results. We investigated the efficacy of 
several sampling techniques in mitigating this imbalance in the context 
of multi-class classification. These techniques included SMOTE, SMOTE 
Borderline, SMOTE-ENN, ADASYN, and the recently proposed Equi- 
Fused-Data-based SMOTE model. Three main research questions 
guided this investigation.  

1. Which sampling technique (SMOTE, SMOTE Borderline, SMOTE- 
ENN, or ADASYN) is most effective for this specific dataset? 

Our comparison of different techniques, including SMOTE, SMOTE 
Borderline, SMOTE-ENN, and ADASYN, revealed that SMOTE, SMOTE 

Borderline and ADASYN were successful in mitigating class imbalance 
and improving classification model performance. These approaches 
enabled the models to learn from a more balanced dataset, resulting in 
improved generalization and higher performance. However, SMOTE- 
ENN demonstrated promise by producing encouraging results while 
preserving the dataset’s global information, thereby improving overall 
performance. 

2. How does class imbalance impact the performance of various clas
sification algorithms? 

We found that the different classification algorithms respond 
differently to class imbalance, a result that is consistent with previous 
studies (Rozi et al., 2023; Tariq et al., 2023). SVM and Random Forest 
were found to be suitable choices for this particular problem and robust 
to imbalanced data.  

3 Can the Equi-Fused-Data-based SMOTE model, a non-redundant data 
cooperation approach, outperform traditional oversampling tech
niques in terms of classification model Accuracy, F1-score, and AUC 
when applied to an imbalanced educational dataset from an intro
ductory programming class? 

The Equi-Fused-Data-based SMOTE model tackles class imbalance in 
multi-class classification while delivering high performance. It shows 
significant improvements in Accuracy (93.85%), Precision, Recall, F1- 
score (92%), and AUC (98.08%). Additionally, it has a lower FPR 
(5.35%) than individual sampling methods. The low false positive rate 
reduces the number of misclassified instances in the minority class, 
resulting in more accurate and equitable classification, which is espe
cially important in education. In contrast to previous studies (Khalaf 
Hamoud et al., 2022; Wongvorachan et al., 2023) that used single 
sampling methods, the proposed model employs a data collaboration 
strategy. This method combines the advantages of several sampling 
techniques to produce a more robust solution for identifying minority 
classes. As a result, it effectively addresses the issue of underrepresen
tation of minority classes while also improving classification 
performance. 

Based on the findings highlighted, this study makes two major con
tributions. First, the Equi-Fused-Data-based SMOTE model was intro
duced, which marks a significant step forward in addressing class 
imbalances in educational datasets. This builds on previous research on 

Fig. 11. AUC comparison: imbalanced dataset vs oversampled balanced datasets.  

Fig. 12. Comparative analysis of false positive rates across different over
sampled datasets. 
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reducing class imbalances and contributes to ongoing efforts to improve 
learning outcomes in programming education. Beyond Accuracy, the 
findings highlight the importance of incorporating multiple assessment 
metrics when dealing with class imbalances. Furthermore, we discuss 
the potential benefits of combining elements from different over
sampling techniques to develop a more comprehensive and effective 
solution for identifying minority classes in educational datasets. This is a 
promising direction for future research, with potential applications in 
real-world educational assessment scenarios. 

Building on the Equi-Fused-Data model’s findings, a comprehensive 
evaluation of various sampling techniques yields valuable insights for 
future research on algorithmic learning assessment methods. This is 
accomplished by emphasizing the critical importance of taking into 
account class imbalances when developing more equitable and reliable 
assessments in programming education. Furthermore, it paves the way 
for the development of more effective and reliable assessment tools, 
which will lead to better learning outcomes in programming education. 
While limitations such as generalizability and scalability warrant further 
investigation, this study paves the way for future advances in person
alized learning approaches. For future work, we propose using the Equi- 
Fused-Data-based SMOTE to recommend personalized learning re
sources tailored to individual student needs, which could lead to further 
improvement in learning outcomes. 
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