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The ability to predict the occurrence of an epileptic seizure is a safeguard
against patient injury and health complications. However, a major challenge
in seizure prediction arises from the significant variability observed in patient
data. Common patient-specific approaches, which apply to each patient
independently, often perform poorly for other patients due to the data variability.
The aim of this study is to propose deep learning models which can handle
this variability and generalize across various patients. This study addresses this
challenge by introducing a novel cross-subject and multi-subject prediction
models. Multiple-subject modeling broadens the scope of patient-specific
modeling to account for the data from a dedicated ensemble of patients, thereby
providing some useful, though relatively modest, level of generalization. The
basic neural network architecture of this model is then adapted to cross-subject
prediction, thereby providing a broader, more realistic, context of application.
For accrued performance, and generalization ability, cross-subject modeling
is enhanced by domain adaptation. Experimental evaluation using the publicly
available CHB-MIT and SIENA data datasets shows that our multiple-subject
model achieved better performance compared to existing works. However,
the cross-subject faces challenges when applied to di�erent patients. Finally,
through investigating three domain adaptationmethods, themodel accuracy has
been notably improved by 10.30% and 7.4% for the CHB-MIT and SIENA datasets,
respectively.
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1 Introduction

Epilepsy is a neurological disorder which causes recurrent seizures resulting from

brain dysfunction. Symptoms of seizures vary greatly among patients and can range from

brief disruptions in activity to loss of consciousness and severe convulsions. To diagnose

epilepsy, physicians use electroencephalography (EEG), which records the electrical

activity of the brain using electrodes placed on the skull. Studies have shown that there is a

pre-ictal period, lasting several minutes before the onset of a seizure. During the pre-ictal

EEG recordings display patterns that are different from those of the seizures and also from

normal periods, called inter-ictal (Mormann et al., 2005). Thus, by distinguishing pre-ictal

from inter-ictal states, it is possible to predict seizures.

Frontiers inNeuroinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2024.1303380
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2024.1303380&domain=pdf&date_stamp=2024-02-02
mailto:imene.jemal@inrs.ca
https://doi.org/10.3389/fninf.2024.1303380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2024.1303380/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Jemal et al. 10.3389/fninf.2024.1303380

Computer-aided models for seizure prediction can be grouped

into three categories: (1) patient-specific modeling, which is

tailored to each individual patient, (2) multiple-subject modeling,

also called patient-independent modeling, which is applied to

a dedicated set of patients, and (3) cross-patient modeling, a

generalized model that uses data from multiple patients and can

be applied to new, unseen patients.

1. Patient-specific modeling involves using a portion of a single

patient’s data for model training and the remaining data for

performance evaluation. However, this type of model is not

practical as it is limited by the amount of data available and the

need to record a sufficient number of seizures for each individual

patient.

2. Multiple-subject modeling, also called patient-independent

modeling, is a complex task that predicts seizures for subjects in

a dedicated ensemble of subjects. This modeling does not have

the limitation of lack of data as it utilizes all patient data grouped

into at least two sets to train and test the model. However, this

approach faces the major challenge of adapting the prediction

model to new data from unseen patients.

3. Cross-subject modeling, also known as generalized modeling,

is the most complex type for seizure prediction. This approach

allows generalization to other patients and does not require

labeled data for new patients.

Research has mostly focused on multiple-subject modeling

for seizure prediction (Khan et al., 2017; Tsiouris et al., 2017;

Dissanayake et al., 2021a). As far as we know, cross-subject

seizure prediction has not been investigated, although cross-subject

modeling has been successfully applied to other tasks, such as

seizure detection (Zhang et al., 2020), emotion recognition (Li

et al., 2018), andmental load assessment (Albuquerque et al., 2019).

Cross-subject modeling of seizure prediction is justified by the high

variability between the data of different patients (Jemal et al., 2022).

Indeed, data from a new patient may differ significantly from data

of patients whose data served to train the cross-subject model. This

is often referred to as a domain shift (Ben-David et al., 2010). It is

common in real data applications, and can result in a significant

drop in classification performance (Ponce et al., 2006). To address

this issue, domain adaptation can be used. In this context, a domain

refers theoretically to the probability distribution from which the

problem data are drawn. The training dataset is called the source

domain data and the test dataset is called the target domain data.

Domain adaptation uses labeled source data and unlabeled target

data to learn a model that performs well in both the target and

source domains. This is generally achieved by re-weighting the

source samples to minimize the distribution shift, so that the source

samples closest to the target domain are given more importance

(Huang et al., 2006; Sugiyama et al., 2007). Alternatively, one can

use a pre-trained model from the source domain on the new

target domain (Oquab et al., 2014). This approach, known as a

parameter-based approach, can only be applied if some labeled data

are available in the target domain. Another approach on which we

focus in this study, called feature-based (Daumé III, 2009; Ganin

et al., 2016; Long et al., 2018) uses the source and target data to learn

features that display similar behavior in classification on both the

source and the target domains data. The use of domain adaptation

to classify EEG data has been successful in applications such as

emotion recognition (Li et al., 2019; Ma et al., 2019; Zhang W.

et al., 2019), motor imagery classification (Wu et al., 2019; Tang and

Zhang, 2020), and evaluation of sleep quality (Zhang et al., 2017).

In this paper, we studied epileptic seizure prediction. We began

by developing and investigating a new method of multiple-subject

prediction by deep learning, and compared it to the state-of-the-art

of such methods. Multiple-subject modeling broadens the scope of

patient-specific modeling to account for the data from a fixed set

of patients, thereby providing some useful level of generalization.

To enhance seizure prediction and increase generalization across

data from new patients, we have developed and investigated cross-

subject model. We explored both model with and without domain

adaptation, allowing us to assess the impact of data variability and

underscore the significance of domain adaptation. Results show a

significant improvement in accuracy, F1-score, and Area under the

curve, on both CHB-MIT and SIENA datasets.

The remainder of this paper is organized as follows: Section

2 provides a summary of previous research on seizure prediction.

Section 3 describes the EEG databases, the deep neural network

architecture, as well as the domain adaptation methods used.

Section 4 presents the experimental setup and results. Section 5

contains a conclusion and alludes to future directions of research.

2 Related work

Existing seizure prediction models fall into two major

categories: the general multiple-subject modeling that applies to

all patients, and the patient-specific modeling that addresses each

patient individually. There has been little recent work on multiple-

subject prediction modeling. The study (Tsiouris et al., 2017)

compared different classification algorithms for seizure prediction,

including the repeated incremental pruning to produce error

reduction (RIPPER) algorithm, support vector machines (SVM),

and neural networks (NN). The main objective was to distinguish

between pre-ictal and inter-ictal EEG segments in data from

multiple patients. Using a balanced number of selected pre-ictal and

inter-ictal records from each patient in the CHB-MIT database, the

SVM was found to have the best results with an accuracy of 68.5%.

More recent studies, such as Khan et al. (2017), have demonstrated

improved results using a convolutional neural network (CNN)

on the wavelet transform of EEG signals, to achieve a sensitivity

of 87.8% with a low false prediction rate of 0.142 FP/h. In

Dissanayake et al. (2021a), a multi-task deep learning approach was

used for both seizure classification and patient prediction using a

Siamese network architecture. Using the CHB-MIT-EEG dataset,

they reported an average accuracy of 91.54%. Another study, (Wu

et al., 2022), utilized knowledge distillation to transfer information

from a multiple-subject model trained on data from N − 1 patients

to a patient-specific model trained on the remaining patient’s

data. This approach led to improved patient-specific prediction

results compared to four other existing methods, with an average

improvement of 3.37% in accuracy, 2.33% in sensitivity, and a

reduction in false predictions by an average of 0.044/h when tested

on 11 patients from the CHB-MIT dataset.
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TABLE 1 Overview of SIENA and CHB-MIT datasets used in this study for

seizure prediction.

SIENA CHB-MIT

Number of subjects 14 23

Age of subjects 20–71 1.5–19

Number of seizures 47 198

Type of recordings Scalp Scalp

Total hours of EEG recordings (h) 128 940

Number of channel 29 23

Sampling frequency (Hz) 512 256

Recently, deep learning has gained attention for its application

in seizure prediction. For instance, a study by Tsiouris et al. (2018)

employed a deep Long Short-Term Memory (LSTM) network to

predict seizures using EEG segments with a pre-ictal duration of

120 minutes. The study reported high sensitivity and specificity

of 99.84% and 99.86%, respectively, using the CHB-MIT dataset.

Other studies have applied CNNs, such as (Truong et al., 2018)

which used spectrogram representations of EEG data, and Zhang Y.

et al. (2019) which applied a common spatial algorithmmodel prior

to the CNN. Another recent study (Zhao et al., 2020) proposed

a one-dimensional CNN trained on raw EEG data trained with

raw EEG data to predict seizure occurrence. The study reported an

area under the curve, sensitivity, and false prediction rate of 0.915,

89.26%, 0.117/h and 0.970, 94.69%, 0.095/h on american epilepsy

society (AES) and CHB-MIT data, respectively. An alternative

study proposed adversarial training for data augmentation to

account for the limited amount of pre-ictal data, which improved

the performance and robustness of the model. Recently, there has

been a focus on developing interpretablemodels for patient-specific

seizure prediction, as seen in studies such as Jemal et al. (2022) and

Pinto et al. (2021), which utilize a genetic algorithm and a deep

learning classifier, respectively.

3 Materials and methods

3.1 Datasets and pre-processing

In this study, experiments were conducted using two open-

access datasets, the SIENA EEG database and the CHB-MIT

dataset. The datasets description is summarized in Table 1.

The SIENA dataset (Detti et al., 2020), acquired at the unit

of neurology and neurophysiology of the university of SIENA,

contains recordings from 14 epileptic subjects aged 20 to 71 years.

The subjects were monitored using video EEG. A total of 29 EEG

channels sampled at 512 Hz were recorded following the standard

10–20 system. During 128 hours of EEG recording, 47 epileptic

seizures were recorded. The time of the onset of a seizure and

its duration were identified by experts. The CHB-MIT dataset

(Shoeb, 2009), collected at Boston children’s hospital, contains 940

h of long-term continuous multichannel scalp EEG recordings

from 23 epileptic subjects aged 1.5 to 19 years. A minimum of

19 EEG channels sampled at 256 Hz were recorded according

to the international 10/20 standard. In total, these recordings

included 198 seizures in which the onset and the end were precisely

annotated by clinicians with expertise in neuroscience. In this

study, we eliminated recordings with fewer than 23 electrodes.

The raw EEG channels from both datasets were filtered to

focus on frequencies relevant to epilepsy analysis and to eliminate

noise sources. This was done by using a notch filter with a cutoff

frequency of 50Hz and a band-pass filter with a bandwidth of 0.5–

70Hz. The pre-ictal period, which is the time before a seizure starts,

was set to 1 hour based on published literature. Moreover, the post-

ictal period, which is the time after the seizure ends, was eliminated

to exclude any effects (Daoud and Bayoumi, 2019; Dissanayake

et al., 2021a). Non-overlapping windows of 10 s were extracted

from inter-ictal and pre-ictal recordings. To address the limited

number of pre-ictal samples, under-sampling was used to randomly

select examples from the majority class. The windows were then

normalized so that the channels had zero mean and unit standard

deviation. This resulted in a total of 77,529 inter-ictal samples and

89,783 pre-ictal samples from the CHB-MIT dataset and 197,805

inter-ictal samples and 80,845 pre-ictal samples from the SIENA

dataset, which were split between training, validation, and testing

data.

3.2 Deep learning architecture

The architecture used for themultiple-subject and cross-subject

models in this study was previously proposed by our team for

the prediction of patient-specific seizures, as outlined in Jemal

et al. (2022). We used the same network architecture. However, in

contrast to the work in Jemal et al. (2022), which focuses on patient-

specific modeling, our study centers around both multiple-subject

modeling and cross-subject modeling. Additionally, we integrated

domain adaptation techniques to enhance overall performance. As

shown in Figure 1 and Table 2, the network consists of a three-

layer convolutional neural network designed to be interpretable.

The first layer uses standard 2D convolutions to extract relevant

frequency components of the signal. The second layer uses depth-

wise filters, which is the application of convolution filters to each

feature map (output from the previous layer) independently from

the other maps. This step allows learn spatial filters from the

previous outputs. The first and second steps are similar to the Filter

Bank Common Spatial Pattern (FBCSP) algorithm commonly used

for EEG data encoding. The third 2D convolutional layer is used

for feature extraction. Finally, the output is passed through a fully

connected layer with a Softmax activation function.

3.3 Multiple-subject vs. cross-patient
modeling

The task of seizure prediction can be approached using several

models as depicted in Figure 2. Patient-specific modeling involves

using data from a single patient to train a unique model for

that patient, as shown in Figure 2A. A more practical solution

is multiple-subject modeling (Figure 2B), which uses data from

multiple patients grouped into training and test sets to learn a

Frontiers inNeuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2024.1303380
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Jemal et al. 10.3389/fninf.2024.1303380

FIGURE 1

Illustration of the deep-learning architecture: The network processes EEG inputs with a standard 2D convolution to learn frequency filters. Next,
depth-wise convolution is applied to learn spatial filters. Finally, features are extracted with a 2D convolution, and the outputs proceed through a fully
connected layer with Softmax activation.

TABLE 2 The detailed architecture of the network, where C = number of channels, T = signal duration, F1 = number of convolution kernels filters to

learn frequency filters, F2 = number of convolution kernels to learn spatial filters, F3 = number of convolution kernels for feature extraction, N = number

of classes, respectively.

Layer #Filter Filter size #Parameters Output Activation

Input (1,C,T)

2D Convolution F1 (1,128) 128 * F1 (F1,C,T) Linear

Batch normalization 2*F1 (F1,C,T)

Depth-wise convolution F2*F1 (C,1) C*F2*F1 (F2*F1,1,T)

Batch normalization 2*F2*F1 (F2*F1,1,T)

Activation (F2*F1,1,T) Relu

Average-pooling (1,16) (F2*F1,1,T//16)

Dropout (F2*F1,1,T//16)

2D Convolution F3 (1,64) 64*F3 (F3,F2*F1,T’) Linear

Batch normalization 2*F3 (F3,F2*F1,T’)

Activation (F3,F2*F1,T’) Relu

Average-pooling (1,16) (F3,F2*F1,T’//16)

Dropout (F3,F2*F1,T’//16)

Linear (flatten) (F3*F2*F1*(T’//16))

Dense N = 2 Softmax

single model that can be applied to all patients. However, this model

may not generalize well to new patients. The focus of this work is

cross-subject modeling (Figure 2C), which involves using labeled

data from N − 1 patients for training and data from the remaining

patient for testing.

This study investigates domain adaptation methods to improve

cross-subject modeling (Figure 2C). Domain adaptation involves

using labeled data from N − 1 patients (source domain)

and unlabeled data from a new patient (target domain) to

transfer the model. With this method, the model is able to

perform well on both the N − 1 patients used for training

and the new patient. To accomplish this, we adopt a feature-

based approach, which aims at learning features allowing good

classification in both the source domain and the target domain. We

investigate our architecture with three different domain adaptation

algorithms: Discriminative Adversarial Neural Network (DANN),

Domain Adversarial Conditional Adaptation (CDAN), and the

Entropic conditioning variant of CDAN (CDAN+E). The selection
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of Domain-Adversarial Neural Network (DANN), Conditional

Domain Adversarial Network (CDAN), and Conditional Domain

Adversarial Network with Entropy minimization (CDAN+E)

is motivated by their effectiveness in addressing domain shift

challenges in previous studies (Du et al., 2020; Tang and Zhang,

2020; Li et al., 2022). DANN is chosen for its capacity to learn

domain-invariant features, while CDAN incorporates conditional

information for complex relationships between source and target

domains. CDAN+E further enhances CDANby integrating entropy

minimization to boost model confidence in predictions.

3.4 Domain adaptation and cross-subject
generalization

3.4.1 Supervised learning
Let X be the input space, the set of all possible examples or

data points and Y be its corresponding label space. For example,

Y would be {0, 1} for a binary classification case. A domain D is

defined as a distribution over X.

Moreover, let F :X → Y be a deterministic mapping function

such as a neural network. In general, the quality of the predictor

F(x) can be measured using loss function l(F(x), y). Supervised

learning (Duda et al., 1973) can be defined as searching the optimal

predictor F∗ using the optimization problem of the following form

min
F

Ltask(F(X), y) (1)

The training data are used to find the optimal predictor F∗,

and the test data for the evaluation. Generally, the training and test

data are assumed drawn from the same distribution. However, this

assumption often does not hold in practice, thus justifying domain

adaptation.

3.4.2 Domain adaptation
Let XS be the source domain data (training data) drawn from

the distribution PS(XS) and the target domain data (test data)

denoted as XT are drawn from the distribution PT(XT).

In the training stage, we assume in the training stage of

sufficient labeled source domain dataDS = {(xSi , y
S
i )} and unlabeled

target domain data, DT = {(xTi , y
T
i )} . The input spaces and label

spaces between domains are assumed the same: if xS = xT , then

yS = yT . However, due to the data shift, PS(XS) 6= PT(XT) and

PS(YS/XS) 6= Pt(YS/XT).

The objective of domain adaptation is to adjust a model trained

on a source domain to perform effectively on a new target domain.

The feature-based approach aims to learn features that minimize

the difference between the source and target distributions (Ganin

and Lempitsky, 2015). Mathematically, this is expressed as:

min
θ ,φ

Ltask(DS, θ ,φ)+ λLdomain(DS,DT , θ ,φ) (2)

where Ltask represents the task-specific loss on the labeled

source domain data, Ldomain is a domain discrepancy measure, and

λ is a balancing parameter.

We will discuss three different methods for achieving this: the

Discriminative Adversarial Neural Network (DANN), the Domain

FIGURE 2

Di�erent modeling for seizure prediction: patient-specific modeling,
multiple-subject modeling, cross-patient modeling, and
cross-patient modeling with domain adaptation. (A) Patient-specific
modeling: design model which focus on individual patient. (B)
Multiple-subject modeling: design model considering data from
di�erent patients. (C) Cross-patient modeling: design model which
generalize to a new patient. (D) Cross-patient modeling with
domain adaptation: improve model to work e�ectively across
di�erent patients through domain adaptation.

Adversarial Conditional Adaptation (CDAN), and the Entropic

conditioning variant of CDAN (CDAN+E).

3.4.3 Discriminative adversarial neural network
The DANN method, as described by Ganin et al. (2016), aims

at learning a feature representation that is discriminative for the
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FIGURE 3

Architecture of the discriminative adversarial neural network (DANN).

FIGURE 4

Architecture of the conditional domain adaptation network (CDAN).

classification task on the source domain and not so regarding

the shift between domains. It is based on the assumption that

unlabeled target domain data is available. As shown in Figure 3, it

consists of three main components: a feature extractor φ, a label

predictor F and a domain discriminator D. The feature extractor

φ also referred to as the generator, is a neural network that
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FIGURE 5

Training and validation loss and accuracy curves for the multiple-subject seizure prediction model trained using SIENA dataset.

FIGURE 6

Confusion matrix for the multiple-subject seizure prediction model
trained using SIENA dataset.

is trained using data from both the source and target domains

to learn a feature representation that is not specific to any

particular domain. The label predictor F is trained to minimize the

classification error on the source domain data, while the domain

discriminator D is trained to differentiate between the source

domain and the target domain. The label predictor and the domain

discriminator work adversarially, encouraging the feature extractor

to learn domain-invariant representations. The parameters of

all three components are optimized according to the following

objective function:

min
φ,F

Ltask(F(φ(XS)), yS)− λ(log(1− D(φ(XS)))+ log(D(φ(XT))))

max
D

log(1− D(φ(XS)))+ log(D(φ(XT))),

(3)

where λ is a trade-off parameter.

3.4.4 Conditional domain adaptation network
and Entropic conditioning variant of CDAN
(CDAN+E)

The CDAN approach, proposed by Long et al. (2018), is

similar to the DANN approach and also contains three main

components: a feature extractor φ, a label predictor F, and a domain

discriminator D as illustrated in Figure 4. However, in CDAN,

a conditional discriminator D is used through the joint variable

H = (φ, F) in order to improve discriminability by capturing

the cross-covariance between feature representations and classifier

predictions. The method uses a multilinear conditioning strategy

to combine the feature vector with the predicted label. The label

predictor and domain discriminator are trained alternatively to

minimize the label classification and domain classification losses,

respectively. The optimization formulation for CDAN is as follows:

min
φ,F

Ltask(F(φ(XS)), yS)− λ(log(1− D(φ(XS)⊗ F(φ(XS))+

log(D(φ(XT)⊗ F(XT)))

max
D

log(1− D(φ(XS)⊗ F(XS))+ log(D(φ(XT)⊗ F(XT))

(4)

where λ is a trade-off parameter, and, φ(XS) ⊗ F(XS) is

the multilinear map between the encoded sources and the task

predictions.

In addition, an extension of the CDAN algorithm, known as

CDAN+E, was also proposed by Long et al. (2018), in which

an entropy conditioning strategy was introduced to improve

transferability. This approach involves using a score that quantifies

the uncertainty of the classifier predictions. The score is based on

an entropy criterion, and it is used to re-weight each example used

by the conditional domain discriminator. This helps obtain better

transferability.

4 Results

Performance evaluation of this study multiple-subject and

cross-patient models for EEG based seizure prediction was

conducted on CHB-MIT and SIENA datasets. Pytorch (Paszke

et al., 2017) was used to implement the proposed architecture.

Data pre-processing was done using the MNE-Python package
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TABLE 3 Comparisons of state-of-the-art seizure prediction methods applied on SIENA dataset using a multiple-subject modeling.

References Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Dissanayake et al. (2021b) 2022 Geometric DL 95.56 95.33 95.11

Dissanayake et al. (2021b) 2022 Geometric DL 96.05 96.05 96.61

This work 2022 CNN 96.01 97.24 94.57

FIGURE 7

Training and validation loss and accuracy curves for the multiple-subject seizure prediction model trained using CHB-MIT dataset.

(Gramfort et al., 2013). Across all models, we employed the

gradient-based ADAM optimizer with coefficients β1 and β2 set

to 0.9 and 0.999 respectively for its efficiency and reliability in

reaching a global minimum. The learning rate was set to 0.005. To

prevent over-fitting, we used a holdout validation method to divide

the data into a validation set and a training set, and the training.

The training stopped after 500 epochs or when the validation loss

remained constant for at least 20 epochs. To evaluate the models,

we used various metrics including accuracy, precision, recall, F1-

score, as well as the receiver operating characteristic (ROC) and the

area under the curve (AUC).

4.1 Multiple-subject modeling

The multiple-subject model was evaluated using data from all

patients in the SIENA dataset, which was divided into training,

validation, and test sets. The model achieved a high accuracy of

96.01%, sensitivity of 97.24%, and specificity of 94.57%. The model

also produced a high AUC value of 0.96. The training and validation

loss curves indicate that the model does not suffer from over-

fitting, as shown in Figure 5. The confusion matrix in Figure 6

demonstrates the model’s classification performance. Comparison

with current state-of-the-art seizure prediction models, as shown

in Table 3, indicates that the model has comparable performance.

The multiple-subject model showed also high performance

when evaluated using the CHB-MIT dataset, with an accuracy

of 97.36%, a sensitivity of 98.31%, and a specificity of 96.97%.

As shown in Figure 7, the training and validation loss decreased

to a stable point, with a small gap between the training and

validation curves, indicating that the model is well-fitting. The

confusion level is relatively low, as indicated by the percentages of

confusion between inter-ictal and pre-ictal instances (3.03% and

FIGURE 8

Confusion matrix for the multiple-subject seizure prediction model
trained using the CHB-MIT dataset.

1.69%, respectively) as shown in Figure 8. According to Table 4,

the model outperforms current state-of-the-art models evaluated

on the same dataset.

4.2 Cross-subject modeling

In contrast to the multiple-subject modeling approach, the

cross-subject modeling employs a validation strategy called leave-

one-patient-out. This strategy involves using data from each patient

in the dataset, one at a time, for testing while training the classifier

with data from the remaining N − 1 patients. This method is
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TABLE 4 Comparison of the state-of-the-art seizure prediction methods applied on the CHB-MIT dataset using a multiple-subject modeling.

References Year Method Accuracy (%) Sensitivity (%) Specificity (%)

Tsiouris et al. (2017) 2017 SVM 68.50 81.20 -

Khan et al. (2017) 2017 CNN - 87.80 -

Dissanayake et al. (2021a) 2021 Multitask DL 91.50 92.45 89.94

Dissanayake et al. (2021b) 2022 Geometric DL 95.38 94.47 94.26

Dissanayake et al. (2021b) 2022 Geometric DL 95.02 95.94 93.52

This work 2022 CNN 97.36 98.31 96.97

TABLE 5 Evaluation of cross-subject modeling using the

leave-one-patient out strategy (SIENA dataset).

Patient id F1-score(%) Accuracy(%) AUC (%)

PN01 29.75 30.75 0.31

Pn03 53.78 56.27 0.56

PN05 54.76 53.23 0.53

PN06 14.05 40.32 0.34

PN07 28.40 41.04 0.40

PN09 61.39 49.03 0.48

PN11 54.93 64.18 0.67

PN12 30.33 52.49 0.54

PN13 8.58 50.10 0.50

PN14 24.45 50.81 0.51

PN16 56.20 45.67 0.44

PN17 61.14 50.40 0.50

Average 39.81± 19.14 48.69± 8.53 0.48± 0.09

commonly used to assess the ability of the classifier to generalize

to new patients.

We evaluated the proposed cross-subject method using both

data sets by measuring performance in terms of F1-score, accuracy,

and AUC. The results, presented in Tables 5, 6, show the evaluation

results for each patient in the SIENA and CHB-MIT datasets

respectively. The overall averages across all patients in the

SIENA dataset were 39.81% for F1-score, 48.69% for accuracy,

and 0.48 for AUC. Results were slightly better with the CHB-

MIT dataset which uses more patients, with averaged F1-score,

accuracy, and AUC, equal to, respectively, 55.34%, 63.5%, and

0.69. The performance degradation can be attributed to the

mismatch between the distribution of the new patient data and

the training distribution. This issue is particularly pronounced

in seizure prediction, as most studies in this field focus on

patient-specific models. Additionally, our previous research (Jemal

et al., 2021) on the complexity of EEG features in predicting

epileptic seizures, highlighted the significant variability in EEG

data between patients. To mitigate the potential data shift, we

explored three domain adaptation methods: DANN, CDAN,

and CDAN+E.

TABLE 6 Evaluation of cross-subject modeling using leave-one-patient

out strategy (CHB-MIT dataset).

Patient id F1-score(%) Accuracy(%) AUC (%)

Chb01 15.30 32.93 0.29

Chb02 64.63 52.46 0.55

Chb03 32.74 49.18 0.49

Chb04 40.31 51.78 0.52

Chb05 40.08 59.59 0.67

Chb06 56.73 54.39 0.54

Chb07 67.44 56.58 0.61

Chb08 65.25 52.27 0.55

Chb 09 54.54 55.56 0.55

Chb 10 57.94 54.61 0.55

Chb 11 95.31 95.52 0.96

Chb 13 89.73 90.62 0.92

Chb 14 10.90 52.88 0.76

Chb 15 41.95 63.27 0.79

Chb 16 66.70 74.98 0.83

Chb 17 43.76 63.72 0.78

Chb 18 59.34 71.09 0.82

Chb 19 68.78 76.21 0.84

Chb 20 6.51 51.16 0.63

Chb 21 81.48 84.37 0.88

Chb 22 88.64 89.80 0.91

Chb 23 69.38 64.19 0.66

Average 55.34± 24.57 63.5± 15.91 0.69± 0.17

4.3 Domain adaptation for cross-subject
seizure prediction

Individual differences in physiological states, neural activity

patterns, and EEG signal characteristics among patients can indeed

introduce noise and confusion when combining data for model

training. To address the problem, we use domain adaptation.

Specifically, we use unlabeled data from new patients in learning

of domain-invariant features. With domain adaptation, our model
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TABLE 7 Domain adaptation for cross-subject modeling: results obtained using DANN, CDAN, and CDAN+E adaptation methods using the

leave-one-patient-out strategy on the SIENA dataset.

PATIENT ID DANN CDAN CDAN+E

F1 (%) ACC (%) AUC F1 (%) ACC (%) AUC F1 (%) ACC (%) AUC

PN01 57.18 50.50 0.50 75.48 73.32 0.74 34.56 32.06 0.32

PN03 67.84 57.66 0.62 62.49 65.90 0.66 58.92 59.61 0.60

PN05 54.86 55.64 0.56 57.89 56.91 0.56 59.07 56.86 0.57

PN06 32.586 38.53 0.38 45.67 49.16 0.49 20.02 37.70 0.5

PN07 67.19 51.63 0.66 76.72 73.16 0.75 65.13 57.48 0.59

PN09 66.10 50.54 0.54 65.38 50.11 0.51 65.87 51.62 0.56

PN11 60.94 57.80 0.58 66.17 71.10 0.73 65.87 63.71 0.64

PN12 61.62 55.58 0.56 55.96 56.83 0.57 60.35 60.27 0.60

PN13 24.84 51.56 0.53 11.84 51.46 0.57 11.71 50.88 0.54

PN14 61.56 60.11 0.60 69.67 64.50 0.66 62.73 57.97 0.58

PN16 65.16 48.73 0.39 63.34 52.73 0.54 61.85 45.42 0.32

PN17 60.78 47.86 0.46 66.66 58.10 0.61 56.79 47.86 0.47

Average 56.72±13.74 52.18±5.8 0.53±0.08 59.77±17.28 60.27±9.00 0.61±0.09 51.91±18.85 51.79±9.61 0.52±0.10

learns to discern and adapt to the inherent variations among

individual patients, effectively mitigating the impact of noise

introduced by inter-subject differences. This approach enables the

model to generalize more robustly across patient populations,

thereby enhancing its reliability and performance in the presence

of accrued physiological and neural characteristics variability. We

assessed the effectiveness of three different domain adaptation

methods against a baseline cross-subject modeling method using

leave-one-patient-out. The results displayed in Tables 7, 8, indicate

that all three methods (DANN, CDAN, and CDAN+E) enhanced

performance on both SIENA and CHB-MIT datasets. Notably, the

CDANmethod performed exceptionally well with 60.27% accuracy,

59.77% F1 score, and 0.61 AUC on the SIENA dataset. Significant

improvement in performance was also observed on the CHB-MIT

dataset with 70.90% accuracy, 66.45% F1-score, and 0.75 AUC for

CDAN+E adaptation.

The comparisons shown in Figure 9 reveal the importance

of incorporating domain adaptation in cross-subject modeling

compared to a traditional leave-one-patient-out approach. The

CDAN method was found to significantly enhance the accuracy,

F1-score, and AUC by 11.58%, 19.59%, and 0.13, respectively. The

results were even better when evaluated on the CHB-MIT dataset

(Figure 10), with an average improvement in accuracy, F1-score,

and AUC of +7.40%, +11.11%, and +0.06%, respectively, using

the CDAN+E method. Additionally, it was noted that the model’s

performance improved as the number of patients in the dataset

increased.

A pertinent issue to consider is data under sampling to obtain

a balanced dataset for improved learned model and reduced

computational burden. Our examination of the SIENA dataset,

with nearly balanced samples, demonstrated minimal impact from

under-sampling. However, with the larger CHB-MIT dataset,

potential implications become more evident. A key concern is

the reduction of the majority class size, potentially impeding

the model ability to capture diverse non-seizure patterns. This

downsized dataset may result in decreased model performance,

heightened sensitivity to noise, and biased representations of the

majority class. Furthermore, under-sampling presents challenges

in generalizing to new data and accurately identifying minority

class instances like seizure events. A comparative analysis of results

using the SIENA dataset, with limited data under sampling, and

the extensively under sampled CHB-MIT dataset, suggests that

under sampling does not significantly impact model performance

or induce severe negative effects. Further investigations would

be worthy of research, such as data augmentation, or neural

networks of more representative objective functions. This line of

investigation is crucial for ensuring the reliability and robustness of

seizure prediction models in a scientific context.

Although accounting for patient sensitivity and specificity in

model generalization ability is a problem worthy of consideration

and research, it was not intended in the scope of this study. We

acknowledge this as a limitation of the current study and mention

it as a vein for future research that may significantly improve the

method. Moreover, this study is subject to limitations inherent in

the CHB-MIT and SIENA datasets, notably concerning gender, age,

and ethnicity disparities. The datasets may not be representative

of diverse populations, potentially introducing biases that affect

the external validity of the findings. Gender imbalances may

impact the generalizability of results, as conditions or responses to

interventions may vary between genders. Additionally, uneven age

distribution within the datasets may restrict the study’s applicability

to specific age groups, and ethnicity disparities may limit the

generalizability of conclusions across different ethnic backgrounds.

These inherent biases should be considered when interpreting the

study’s outcomes, emphasizing the need for cautious extrapolation

to broader and more diverse populations.
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TABLE 8 Domain adaptation for cross-subject modeling: Results obtained using DANN, CDAN, and CDAN+E adaptation methods using the

leave-one-patient-out strategy on the CHB-MIT dataset.

PATIENT ID DANN CDAN CDAN+E

F1 (%) ACC (%) AUC F1 (%) ACC (%) AUC F1 (%) ACC (%) AUC

Chb01 18.10 34.77 0.32 29.28 39.44 0.38 17.97 35.58 0.32

Chb02 73.47 64.86 0.79 68.00 56.76 0.67 75.00 67.57 0.80

Chb03 54.17 52.79 0.53 57.48 59.37 0.60 40.62 50.64 0.51

Chb04 55.79 61.44 0.62 71.15 67.98 0.69 44.01 52.64 0.53

Chb05 47.65 63.07 0.70 60.14 69.51 0.75 70.69 73.34 0.74

Chb06 59.64 54.38 0.55 56.89 54.56 0.55 56.02 54.77 0.55

Chb07 67.77 56.88 0.63 67.33 56.29 0.61 67.99 58.00 0.63

Chb08 66.67 52.69 0.61 67.16 52.69 0.65 74.34 68.82 0.74

Chb09 59.19 63.51 0.64 68.13 63.79 0.65 74.88 70.21 0.73

Chb10 55.31 52.18 0.52 63.08 57.48 0.58 68.88 58.59 0.65

Chb11 97.62 97.70 0.98 95.12 95.40 0.96 96.47 96.55 0.96

Chb13 98.83 98.85 0.99 94.89 95.15 0.95 99.31 99.3 0.99

Chb14 13.92 53.74 0.76 45.17 64.59 0.80 31.86 59.48 0.78

Chb15 72.13 78.11 0.84 70.00 76.82 0.83 45.33 64.81 0.79

Chb16 70.81 77.37 0.84 76.09 80.73 0.86 95.89 95.77 0.96

Chb17 63.20 73.06 0.82 46.08 64.71 0.78 82.07 84.77 0.88

Chb18 68.87 76.13 0.83 70.14 77.02 0.84 76.29 80.85 0.86

Chb19 82.19 85.06 0.88 75.36 80.46 0.86 75.36 80.46 0.86

Chb20 39.71 62.13 0.77 12.60 52.83 0.67 9.48 52.38 0.71

Chb21 88.69 89.84 0.91 86.72 88.28 0.90 90.60 91.41 0.93

Chb22 90.21 91.09 0.92 90.52 91.35 0.93 93.73 94.10 0.95

Chb23 75.45 69.25 0.76 72.68 66.55 0.71 75.03 69.84 0.74

Average 64.52±21.92 68.59±16.72 0.73±0.16 65.64±19.81 68.72±15.21 0.74±0.14 66.45±25.27 70.90±17.63 0.75±0.17

In conclusion, the results of predicting seizures using cross-

subject models show promising outcomes. Implementing seizure

prediction models in clinical settings holds promise for early

intervention and personalized treatment strategies. However,

challenges include the necessity for high-quality, unbiased training

data, and ensuring interpretability for healthcare professionals.

Seamless integration into existing clinical workflows, ethical

considerations regarding patient privacy, and legal compliance

are crucial. The model’s ability to generalize across diverse

patient populations and adapt to external factors needs careful

consideration. Navigating these challenges is essential to harness

the potential of seizure prediction models while ensuring ethical

and practical implementation.

5 Conclusion

In this study, our goal was to assess the generalization

capability of a seizure prediction model to new patients. Therefore,

we used a deep-learning architecture previously developed for

patient-specific modeling in both multiple-subject and cross-

subject scenarios. Our deep-learning architecture for multiple-

subject seizure prediction was compared to existing state-of-the-

art models and demonstrated superior performance. Despite the

impressive accuracy of the model, its ability to generalize to new

patients not in the dataset was uncertain. Thus, to better assess the

model’s performance and its ability to generalize to new patients,

we employed a cross-subject modeling approach. This resulted

in a noticeable decrease in performance when tested on open-

access data. To overcome this issue, we investigated various domain

adaptation methods to enhance the performance of cross-subject

modeling. The results showed that all three methods (DANN,

CDAN, and CDAN+E) significantly improved performance on

both SIENA and CHB-MIT datasets.

Although this study realized significant progress in epileptic

seizure prediction, there are currently limitations that could be

addressed in future research. One limitation is the use of data

under-sampling to deal with data imbalance, which not only

impacts the computational cost of the training method but could

also remove potentially valuable data relevant to seizure prediction.
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FIGURE 9

Domain adaptation for cross-subject modeling: a comparison between DANN, CDAN, and CDAN+E adaptation neural networks against the baseline
cross-subject modeling using the leave-one-patient-out strategy on the SIENA dataset. Noticeable improvements over the baseline are consistently
significant in terms of accuracy, F1-score, and AUC.

FIGURE 10

Domain adaptation for cross-subject modeling: a comparison between DANN, CDAN, and CDAN+E adaptation neural networks against the baseline
cross-subject modeling using the leave-one-patient-out strategy on the CHB-MIT dataset. Noticeable improvements over the baseline are
consistently significant in terms of accuracy, F1-score, and AUC.

Another limitation is related to the size of the datasets used

in the study. While the current amount of data allowed for a

fair investigation of the problem, incorporating more data from

additional EEG databases would offer further support to the

findings and enhance the overall validity of the study. Moreover,

it’s crucial to acknowledge that the study refrained from using

extensive statistical analyses, presenting an avenue for future

investigations to delve deeper into the quantitative aspects of the

predictive model.

In future research, we aim to address this limitations. This

involves exploring alternative methods, beyond under-sampling,

to balance our dataset. Techniques like over-sampling, employing

synthetic data, or leveraging advanced neural networks designed for

imbalanced datasets will be considered. Additionally, we intend to

combine patient data from various datasets to address the challenge

of limited data. This expanded dataset will be evaluated to better

understand how well the model performs in different datasets.
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