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Abstract
A challenge in carrying out matching analyses is to deal with undefined log ratios.
If any reinforcer or response rate equals zero, the logarithm of the ratio is undefined:
data are unsuitable for analyses. There have been some tentative solutions, but they
had not been thoroughly investigated. The purpose of this article is to assess the
adequacy of five treatments: omit undefined ratios, use full information maximum
likelihood, replace undefined ratios by the mean divided by 100, replace them by a
constant 1/10, and add the constant .50 to ratios. Based on simulations, the treat-
ments are compared on their estimations of variance accounted for, sensitivity, and
bias. The results show that full information maximum likelihood and omiting unde-
fined ratios had the best overall performance, with negligibly biased and more accu-
rate estimates than mean divided by 100, constant 1/10, and constant .50. The study
suggests that mean divided by 100, constant 1/10, and constant .50 should be avoided
and recommends full information maximum likelihood to deal with undefined log
ratios in matching analyses.
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Choice behavior has been a long-standing topic of
research in both applied behavior analysis and the experi-
mental analysis of behavior. The generalized matching
law (GML) is a quantitative model describing an organ-
ism’s response allocation as a function of reinforcer ratio
in a concurrent schedule of reinforcement (Baum, 1974).
The relation is represented in the following equation:

log
B1

B2

� �
¼ a log

R1

R2

� �
þ logc, ð1Þ

which describes the allocation of responses (B) across
alternatives 1 and 2 in terms of the distribution of
reinforcers (R) across those alternatives—hereafter,
behavior and reinforcers in Equation (1) are referred to as
the components of the GML. The parameter a refers to the
sensitivity to reinforcement—that is, the changes in

response allocation, log B1
B2

� �
, relative to changes in rein-

forcer allocation, log R1
R2

� �
—and logc is the bias—that is,

the preference between choice-affecting variables that are

kept constant but are different between response alterna-
tives. The GML has been shown to account for a wide
variety of species, behavior, reinforcers, and experimental
and applied scenarios (Davison & McCarthy, 1988).

A challenge in carrying out matching analyses is to
deal with undefined log ratios. If any component equals
zero, the logarithm of the ratio is undefined, being either
positive infinity, log 1

0¼∞, or negative infinity,
log0¼�∞, depending on whether the numerator or the
denominator is null. Some software may produce error
instead. This issue occurs in experimental settings when
either reinforcer or response rates are extreme—that is,
when a single instance of either is rare. In applied set-
tings, undefined log ratios occur because sessions last for
too short a duration, reinforcer rates are out of the exper-
imenter’s control, subjects may not have had the occasion
to respond, or reinforcers were not delivered. Without
any treatment, undefined values are ultimately dropped
from analyses, becoming missing values despite their
meaningfulness as rare but still probable events.

There have been some tentative remedies for unde-
fined values in matching analysis, which are (a) to drop
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any session that had a single undefined ratio (known as
listwise deletion), (b) to replace any undefined values by
an arbitrary perinull (values close to 0), or (c) to manipu-
late data or the experimental design to avoid undefined
values. For instance, some studies have simply dropped
the undefined values (Caron et al., 2017; Rivard
et al., 2014), whereas others have used the average
response or reinforcer rates divided by 100 (Ecott &
Critchfield, 2004; Seniuk et al., 2015, 2020). Although
replacing values appears to be a convenient solution, its
adequacy depends on the order of magnitude and vari-
ability of the components. It should be used with caution
rather than systematically. A potential problem is, for
instance, that the mean divided by 100 could be greater
than 1 (the lowest nonzero value) if the average is
greater than 100, breaking ordinality by replacing an
undefined value with a value higher than the lowest one.
A more systematic approach could be to use a value of
1=2, 1=10, or 1=100 instead. A similar treatment was
recommended by Hautus (1995) who suggested adding a
constant of .50 to all values in signal-detection experi-
ments, a task similar to matching. It remains arbitrary,
but at least it is independent of the sample. The third
option is to manipulate data (such as pooling) to avoid
undefined ratios, for example, by summing responses and
reinforcers over a large number of sessions. This tends to
eliminate infinite ratios; however, pooling data across
sessions can wash out within-subject variance and lose
considerable amounts of information, ultimately distort-
ing results (Caron, 2019). Finally, there is the procedure
of continuing sessions until the infinite ratio vanishes—
that is, for at least one instance of each component in a
session—which strongly favors the nonrare reinforcer
and response rates and distorts the results.

A statistical method to consider is full information
maximum likelihood (FIML), a well-known method to
account for missing data in the methodological literature,
even being qualified as the state of the art for handling
missing data (Enders & Bandalos, 2001; Schafer &
Graham, 2002). This treatment is different from the previ-
ous ones notably because it handles data at the log-ratios’
level rather than at the component level. Because unde-
fined ratios are a type of missing data (data unsuitable for
statistical analysis), FIML could have some potential as a
treatment. In FIML, missing values are not replaced or
imputed but are handled in the analysis. Full information
maximum likelihood assumes that data are (a) at least
missing at random—that is, missingness is related to the
observed data but not to some other unobserved phenome-
non that undefined values correspond to—and (b) have a
multivariate normal distribution. Its goal is to minimize
the �2 log likelihood function with all paired data for the
covariance matrix’s elements and all the available data for
the mean vector.1 All available subjects’ data are used

even if a single element is missing, which is in sharp con-
trast with listwise deletion, where the subject is dropped
completely if a single element is missing.

Objective

Given the existing treatments to handle undefined values in
matching analyses, it is surprising that there has been no
systematic comparison. Such study may lead to meaningful
recommendations for behavior analysts when they perform
matching analyses with extreme ratios or very rare behav-
ioral occurrences. Thus, the purpose of the current article is
to investigate the adequacy of five treatments: omit unde-
fined ratios (OMIT), use FIML, replace values by the mean
of the component divided by 100 (M/100), replace values
by the constant 1/10 (1/10), and add a constant :50 to all
components (CONS). These treatments will be compared
on estimating variance accounted for (VAF, R2), sensitiv-
ity (slope, a), and bias (intercept, logc).

METHOD

This simulation was carried out in R (R Core Team, 2023).
The package lavaan (Rosseel, 2012) was used to carry the
FIML treatment with the sem() function.

Generating data

Generating random data based on the matching law poses
three main challenges. First, undefined values cannot be sim-
ply added to a data set because they are not produced from
mere random processes (e.g., missing completely at random
data) but due to their low probability of occurrence. Although
their probabilities can be fixed, their exact quantity cannot.
Second, there is no consensual algorithm to generate pseudo-
random numbers following the model implied by the match-
ing law. The model in itself is complex (Davison, 2021). It
implies four discrete correlated yet unknown distributions.
Both the reinforcer and response rates, as well as their respec-
tive log ratios, must be strongly correlated. Finally, parame-
trizing these distributions is not straightforward because there
are infinitely many possible configurations. There are 14 free
parameters to estimate (four means, four variances, and six
covariances between components) and four statistical distribu-
tions to choose, and the component level must yield an
adequate molar level—that is, matching behavior. Worst,
there is no analytically derived solution to obtain VAF, a,
and logc directly from the reinforcer and response rates,
only numerical estimations, even though there is an
approximation for the VAF (Caron, 2017).

To generate matching analysis data at the molar
and component levels, we chose to generate, at first, log
ratios of response and reinforcer rates from a bivariate
normal distribution with known slope, intercept, and

1For additional information on the topic of full information maximum likelihood
to deal with missing values, see https://real-statistics.com/handling-missing-data/.
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VAF. There is some evidence that log ratios are indeed
Gaussian distributed (Tustin & Davison, 1978). Due to
this, parameters were known a priori, which are useful to
compute statistical bias, relative bias, and root mean
square error (RMSE). We can also derive the expected
values given the doubly truncated multivariate normal
(Manjunath & Wilhelm, 2021; Wilhelm & Manjunath,
2010). Then, we derived response and reinforcer rates
from their log ratios. To do so, we generated log ratios
as a Gaussian variable x for log R1

R2
, so that

log
R1

R2
¼ x: ð2Þ

To solve the two unknowns (R1 and R2) against the
one known value (x), we can postulate a maximum
number of reinforcers (or responses) by session, Rt, an
assumption inspired by Caron (2015), so that
Rt ¼R1þR2, which yields

log
R1

Rt�R2
¼ x: ð3Þ

The parameter Rt can now be manipulated. The last
step is to solve the equation for R1, which yields with
some algebraic manipulation:

R1 ¼ Rtex

exþ1
: ð4Þ

These manipulations can be easily carried to R2 and
B1 and B2 by fixing a maximum response rate Bt. To sim-
ulate real data, which are discrete values, the obtained
values were finally rounded.

To manipulate undefined value proportions, we
used thresholds, referred to herein as α, based on the
Gaussian distribution. As both undefined log ratios and
the tails of the Gaussian distribution correspond to rare
events, they can be readily translated. In other terms, a
Gaussian value over a certain threshold is deemed too
rare or too extreme and was set to have a rate of zero.
For instance, the proportion for 10% of undefined values
has a bilateral threshold of 1.645. Log ratios over 1.645
yield a denominator (B2 and R2) of zero, whereas log
ratios below �1.645 have a numerator (B1 and R1) of
zero. This threshold is reminiscent of the Type I error
rate threshold α in null hypothesis testing.

Fitting models

Five treatments of undefined values were assessed:
(a) OMIT, which computes the matching analyses by
removing undefined values by listwise deletion (remov-
ing a session with at least one undefined value);
(b) FIML estimation, which uses all available data to
estimate the model; (c) M/100, which replaces undefined

values with the average response or reinforcer rate
divided by 100 before computing the matching analyses;
similarly, (d) 1/10 replaces undefined values with the
value 1/10 before carrying the analyses; and finally, (e)
CONS adds a constant :50 to all components.

Simulations

Four scenarios were investigated: The main one uses
R2 = .81, a = .90, logc = 0 (close to matching behavior); the
second uses R2 = .49, a = .70, logc = 0; the third uses
R2 = .64, a = 1, logc = .1; and the last uses R2 = .0, a = 0,
logc = 0 (Type I error rate condition). Four factors were
investigated: four levels of sample size (i.e., number of ses-
sions), n = 25, 50, 75, 100; eleven levels of undefined values
proportions, α = 0% to 25% by increments of 2.5%; and
three levels of maximum response and reinforcer rates,
Bt = 50, 100, 150, which yield 396 conditions. Each was rep-
licated 5,000 times. For each iteration, an artificial data set
was generated. The log ratios were sampled from a bivariate
normal distribution with the VAF (R2), slope (sensitivity,
a), and intercept (bias, logc) fixed. Response and rein-
forcer rates were then computed from the procedure
shown in previous sections, and NA values (a missing
value indicator) were added according to the threshold.
Log ratios were computed again based on the obtained
rates. On each artificial data set, OMIT, FIML, M/100,
1/10, and CONS were assessed. Estimates of R2, a, and
logc were recorded as well as the proportion of undefined
values. The Appendix shows a pseudo-R code example
for a given scenario.

RESULTS

For the sake of simplicity, only the main scenario,
R2 = .81, a = .90, logc = 0, and the conditions where the
maximum reinforcer rate equals the maximum response
rate are discussed. All scenarios showed similar findings,
and there was no visual and statistical difference when
the maximum reinforcer rate and the maximum response
rate were unequal. All scenarios and conditions are avail-
able in the Supplementary Material.

Figures 1, 2, and 3 depict the performance of the five
treatments (colored lines) to handle undefined values
when estimating VAF (R2), sensitivity (a), and bias
(logc), respectively, shown as the y-axis in their corre-
sponding figure. The black dotted lines are the parame-
ters at the population level.

Figure 1 shows that FIML had the best performance
overall to estimate VAF. All methods underestimated the
true VAF. The underestimation increased slightly as the
proportions of undefined values increased, an expected
result because there is an increasing loss of information
on the distribution’s tails of the log ratios. The FIML
treatment was slightly better than OMIT at all tested

UNDEFINED LOG RATIOS 3
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levels. The treatments 1/10 and M/100 showed a curvilin-
ear trend. Their performances in estimation decreased
rapidly until they reached a plateau at 10%. Treatments
1/10 and M/100 remained constant afterward and even
surpassed OMIT and FIML at 20% of undefined values.
Although, at this percentage of undefined values, data
would be dubious. Both the 1/10 and M/100 treatment
had poor performances at low percentages of undefined
values, but the 1/10 treatment was slightly better than
M/100. The CONS treatment had the worst
performance.

Figure 2 depicts performance of the five treatments to
handle undefined values when estimating sensitivity (a).
The FIML and OMIT treatments had the best overall
performance among the treatments, both having the
exact same performance. The underestimation increased

slightly as the proportions of undefined values increased.
Treatments M/100 and 1/10 had poor performances at a
low percentage of undefined values and reached a plateau
at 10% undefined values. They reached and even sur-
passed the performance of OMIT and FIML at very high
percentages (<15%) of undefined values. Again, the
CONS treatment had the worst performance. The treat-
ments’ performance of sensitivity was similar to that for
VAF (Figure 1). There were two main differences: the
treatments’ estimation was slightly less statistically biased
for sensitivity relative to VAF, and M/100 was better to
estimate sensitivity than 1/10.

Regarding bias, Figure 3 shows that all methods were
equal to recover the true parameter value of 0, except for
CONS, which strongly overestimated the parameter in an
increasing fashion with the proportion of undefined

F I GURE 1 The effect of the percentage of undefined values on variance accounted for. Rows depict different levels of maximum responses (BT)
and maximum reinforcers (RT), and columns depict different sample sizes (N). The black dotted lines represent the expected parameter at the
population level. Each colored line represents a treatment to deal with undefined ratios.
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values. This result is expected because CONS adds a
constant to every component, the influence of which is
preserved at the molar level. Scenarios with nonzero bias
(shown in the Supplementary Material), OMIT and
FIML, were better to estimate the parameter than 1/10
and M/100, which showed strong bias in these cases.

As complementary information from previous figures,
Table 1 shows the statistical bias, relative bias (RB), and
RMSE of the three parameters R2, a, and logc according
to proportions of undefined values (α) and treatments.
Based on previous results, it is of no surprise that FIML
had the lowest bias, relative bias, and RMSE in most
conditions, except at very high percentages of undefined
values. Regarding bias, even though all treatments,
except CONS, reached the same bias, FIML had the
lowest RMSE, which further incentivizes its usage.

To get a better understanding of the relation between
the maximum number of responses, maximum number of
reinforcers, sample size, proportion of undefined values,
and the treatment, a regression analysis was carried out
with the top-performing approaches (FIML, OMIT).
Treatments 1/10, M/100, and CONS were not analyzed
because of their consistently poor performance. As the
number of replications was high, a significance level of
p < .001 was used. The complete results are presented in
the Supplementary Material. We found four significant
results regarding VAF: a double interaction between
Undefined � Treatment and its two simple effects, unde-
fined and treatment, as well as a double interaction Unde-
fined � Sample Size. Regarding sensitivity, we found only
the effect of treatment. Given results presented in Figures 1
and 2, the results are straightforward: FIML gets

F I GURE 2 The effect of the percentage of undefined values on sensitivity (slope). Rows depict different levels of maximum responses (BT) and
maximum reinforcers (RT), and columns depict different sample sizes (N). The black dotted lines represent the expected parameter at the population
level. Each colored line represents a treatment to deal with undefined ratios. FIML and OMIT had the exact same performance and cannot be
distinguished. Only OMIT is visible.

UNDEFINED LOG RATIOS 5
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significantly better than OMIT as the proportion of unde-
fined values increases for VAF, and their performance was
the same for sensitivity.

DISCUSSION

The purpose of the current article was to compare five
treatments to handle undefined log ratios in matching
analyses. These treatments were OMIT, FIML, 1/10,
M/100, and CONS. To our knowledge, it is the first study
to investigate and compare treatments to deal with unde-
fined log ratios for matching analyses.

Among the five treatments, FIML had the best
performance overall, closely followed by OMIT. The
FIML treatment was slightly more accurate than OMIT

when estimating VAF. They had the same performance
when estimating sensitivity. It is worth noting that
OMIT’s performances matched perfectly the expected
values derived from the doubly truncated multivariate
normal (Manjunath & Wilhelm, 2021; Wilhelm &
Manjunath, 2010), further promoting FIML’s effectiveness.
The OMIT and FIML treatments were slightly biased for
low percentages of undefined values regarding VAF and
slope but to a lesser extent than M/100 (for sensitivity) and
1/10 (for VAF), which were both strongly biased even at
low percentages. Moreover, the M/100 and 1/10 treatments
were biased for the intercept (bias) when the parameters
were nonzero (shown in the Supplementary Material). The
CONS treatment had the worst performance, producing
strongly biased estimates for each parameter, especially
when estimating the intercept (logc). Adding a constant to

F I GURE 3 The effect of the percentage of undefined values on bias (intercept). Rows depict different levels of maximum responses (BT) and
maximum reinforcers (RT), and columns depict different sample sizes (N). The black dotted lines represent the expected parameter at the population
level. Each colored line represents a treatment to deal with undefined ratios. All treatments but CONS had approximately the same performance and
can hardly be distinguished from the expected dotted line.
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TABLE 1 Bias, relative bias (RB), and root mean square error (RMSE) of the estimands by treatments and proportions of undefined values α.

VAF Sensitivity Bias

α� Treatment Bias RB RMSE Bias RB RMSE Bias RMSE

α = .000

1/10 0.00 0.00 0.05 0.00 0.00 0.07 0.00 0.03

CONS 0.00 0.00 0.05 0.00 0.00 0.07 0.05 0.07

FIML 0.00 0.00 0.05 0.00 0.00 0.07 0.00 0.03

M/100 0.00 0.00 0.05 0.00 0.00 0.07 0.00 0.03

OMIT 0.00 0.00 0.05 0.00 0.00 0.07 0.00 0.03

α = .025

1/10 �0.06 �0.08 0.11 �0.04 �0.05 0.22 0.00 0.05

CONS �0.11 �0.13 0.14 �0.06 �0.07 0.11 0.08 0.10

FIML �0.03 �0.04 0.06 �0.02 �0.02 0.07 0.00 0.03

M/100 �0.11 �0.13 0.17 �0.02 �0.03 0.16 0.00 0.04

OMIT �0.04 �0.05 0.07 �0.02 �0.02 0.07 0.00 0.03

α = .050

1/10 �0.10 �0.13 0.16 �0.07 �0.08 0.24 0.00 0.06

CONS �0.17 �0.20 0.19 �0.10 �0.11 0.13 0.10 0.11

FIML �0.05 �0.06 0.08 �0.03 �0.04 0.08 0.00 0.03

M/100 �0.16 �0.19 0.22 �0.05 �0.05 0.18 0.00 0.05

OMIT �0.06 �0.08 0.09 �0.03 �0.04 0.08 0.00 0.03

α = .075

1/10 �0.13 �0.16 0.18 �0.09 �0.10 0.24 0.00 0.08

CONS �0.21 �0.26 0.24 �0.13 �0.14 0.16 0.11 0.13

FIML �0.07 �0.09 0.10 �0.05 �0.05 0.09 0.00 0.03

M/100 �0.18 �0.22 0.24 �0.07 �0.07 0.18 0.00 0.06

OMIT �0.09 �0.11 0.11 �0.05 �0.05 0.09 0.00 0.03

α = .100

1/10 �0.15 �0.18 0.19 �0.10 �0.11 0.23 0.00 0.09

CONS �0.26 �0.32 0.28 �0.16 �0.17 0.19 0.13 0.14

FIML �0.09 �0.12 0.12 �0.06 �0.07 0.10 0.00 0.03

M/100 �0.19 �0.24 0.25 �0.08 �0.09 0.18 0.00 0.06

OMIT �0.11 �0.14 0.13 �0.06 �0.07 0.10 0.00 0.03

α = .125

1/10 �0.16 �0.19 0.20 �0.11 �0.12 0.22 0.00 0.10

CONS �0.29 �0.36 0.31 �0.18 �0.20 0.21 0.14 0.15

FIML �0.12 �0.14 0.14 �0.08 �0.08 0.12 0.00 0.03

M/100 �0.20 �0.25 0.25 �0.08 �0.09 0.17 0.00 0.07

OMIT �0.13 �0.17 0.16 �0.08 �0.08 0.12 0.00 0.03

α = .150

1/10 �0.16 �0.20 0.20 �0.11 �0.13 0.21 0.00 0.10

CONS �0.33 �0.41 0.35 �0.21 �0.23 0.23 0.15 0.17

FIML �0.14 �0.17 0.16 �0.09 �0.10 0.13 0.00 0.03

M/100 �0.20 �0.25 0.25 �0.09 �0.10 0.17 0.00 0.08

OMIT �0.16 �0.20 0.18 �0.09 �0.10 0.13 0.00 0.03

α = .175

1/10 �0.17 �0.20 0.21 �0.12 �0.13 0.20 0.00 0.11

CONS �0.36 �0.45 0.38 �0.23 �0.26 0.26 0.17 0.18

FIML �0.16 �0.20 0.18 �0.11 �0.12 0.15 0.00 0.03

(Continues)
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every component is thus problematic because the intercept
(logc) has a meaningful interpretation. The OMIT and
FIML did not produce biased estimates of the intercept
(logc), but FIML had the lowest RMSE in all conditions.
We thus recommend FIML when dealing with a reasonable
proportion of undefined values.

The current simulations have some limitations. Data
were simulated on the assumption of a maximal number of
responses and reinforcers within a session. It also produced
the log ratios before the actual reinforcer and response
rates, although the opposite is true with real organisms.
This method, however, simplified the computation before-
hand by stipulating matching behavior a priori (with known
VAF, sensitivity, and bias) and ensuring that the molar
level was in accordance with the component level. Alterna-
tive computational modeling could be used in future simu-
lations, like different data generation techniques and a
wider range of parameters. New treatments and improve-
ments to deal with undefined ratios should be considered.

In conclusion, FIML had the best overall performance,
being the most accurate on VAF and sensitivity when unde-
fined values were present. This first study on the treatment
of undefined log ratios in matching analysis suggests that
treatments like CONS, M/100, and 1/10 should be avoided.
Treatments like FIML or to a lesser extent OMIT are
recommended to deal with undefined log ratios. We hope
this current study will stimulate the development of new
methods to deal with statistical issues in behavior analysis as
well as to promote good data-analysis practices.
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APPENDIX

A pseudo-R code example for a given scenario.

# The scenario

N # Sample size, number of sessions

Rt # Maximum reinforcer rate

Bt # Maximum response rate

nreps # Number of iterations

crit # Threshold to which the log ratio is
deemed rare

# The loop

for (i in 1:nreps){

# Generate two Gaussian variables with

# VAF = .81, slope = .9, intercept = 0

logR <- rnorm(n)

logB <- .9 * x + sqrt(1 - .81) * rnorm(n)

# Compute the response and reinforcer rates

D <- data.frame(B1 = round(Bt * exp(logB) /
(exp(logB) + 1)),

B2 = round(Bt * exp(-logB) / (exp
(-logB) + 1)),

R1 = round(Rt * exp(logR) / (exp
(logR) + 1)),

R2 = round(Rt * exp(-logR) / (exp
(-logR) + 1)))

# Transform zeros to NA

D$B1 = ifelse(logB < -crit, NA, D$B1)

D$B2 = ifelse(logB > crit, NA, D$B2)

D$R1 = ifelse(logR < -crit, NA, D$R1)

D$R2 = ifelse(logR > crit, NA, D$R2)

D[D == 0] <- NA

UNDEFINED LOG RATIOS 9

 19383711, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jeab.925, W

iley O
nline L

ibrary on [05/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/JEAB.510
https://doi.org/10.1002/JEAB.510
https://doi.org/10.1080/15021149.2017.1309956
https://doi.org/10.1002/jeab.694
https://doi.org/10.1002/jeab.694
https://doi.org/10.1901/jaba.2004.37-249
https://doi.org/10.1207/S15328007SEM0803_5
https://doi.org/10.1207/S15328007SEM0803_5
https://doi.org/10.3758/BF03203619
https://doi.org/10.3758/BF03203619
https://doi.org/10.35566/jbds/v1n1/p2
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1007/s40732-014-0015-1
https://doi.org/10.1007/s40732-014-0015-1
https://www.jstatsoft.org/v48/i02/
https://www.jstatsoft.org/v48/i02/
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.1037/1082-989X.7.2.147
https://doi.org/10.1002/jaba.653
https://doi.org/10.1037/bar0000019
https://doi.org/10.1901/jeab.1978.29-561
https://doi.org/10.1901/jeab.1978.29-561
https://doi.org/10.32614/RJ-2010-005
https://doi.org/10.1002/jeab.925


# Compute new log ratios from response and
reinforcer rates

D <- data.frame(D,

B = log(D[,"B1"]/D[,"B2"],
base = 10),

R = log(D[,"R1"]/D[,"R2"],
base = 10))

# The number of undefined log ratios

nmiss <- sum(!(!is.na(D$R) jj !is.na(D$B)))

# Carry the five analyses and record VAF,
slope and intercept

res.omit <- omit(D)
res.fiml <- fiml(D)
res.1.10 <- M1.10(D)
res.M.100 <- M.100(D)
res.cons <- cons(D)

}
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