The Geometry of the Birkhoff Polytope

Ludovick Bouthat

Université Laval

CMS Winter Meeting; December 2023

This research is a collaborate effort with Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the FRQNT, NSERC, and the Vanier Scholarship.

Doubly stochastic matrices

Definition

A square matrix is *doubly stochastic* if :

- nonnegative coefficients;
- row sums = 1;
- column sums = 1.

The set of $n \times n$ doubly stochastic matrices is denoted by Ω_n .

Example

$$D = \begin{bmatrix} 0.1 & 0.3 & 0.6 \\ 0.4 & 0.2 & 0.4 \\ 0.5 & 0.5 & 0 \end{bmatrix}.$$

Special cases

Important cases

Example

The *uniform matrix* and the *identity matrix*

$$J_n = \frac{1}{n} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \quad \& \quad I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Special cases

Applications

Important properties (Algebraic structure)

• Ω_n is a semigroup : $D_1D_2 \in \Omega_n$ if $D_1, D_2 \in \Omega_n$.

Important properties (Algebraic structure)

- Ω_n is a semigroup : $D_1D_2 \in \Omega_n$ if $D_1, D_2 \in \Omega_n$.
- Ω_n is a <u>monoid</u> : $DI_n = I_n D = D$ for every $D \in I_n$.

Important properties (Algebraic structure)

- Ω_n is a <u>semigroup</u> : $D_1D_2 \in \Omega_n$ if $D_1, D_2 \in \Omega_n$.
- Ω_n is a <u>monoid</u> : $DI_n = I_n D = D$ for every $D \in I_n$.
- Ω_n has an *absorbing element* : $DJ_n = J_nD = J_n$ for every $D \in \Omega_n$.

Important properties (Geometric structure)

• Ω_n is a convex polytope.

Applications

Important properties (Geometric structure)

• Ω_n is a convex polytope.

Definition

A *convex polytope* is a convex hull of a finite and nonempty set of points in \mathbb{R}^n .

Special cases

Birkhoff's theorem

Theorem (Birkhoff; 1946)

The set Ω_n of $n \times n$ doubly stochastic matrices is the convex hull of the $n \times n$ permutation matrices. Furthermore, the permutation matrices are precisely the extreme points of Ω_n .

Garrett Birkhoff

Special cases

Birkhoff's theorem

Theorem (Birkhoff; 1946)

The set Ω_n of $n \times n$ doubly stochastic matrices is the convex hull of the $n \times n$ permutation matrices. Furthermore, the permutation matrices are precisely the extreme points of Ω_n .

• $D = \sum_{i} \alpha_i P_i$, where P_i are permutation matrices and $\alpha_i > 0$, $\sum_{i} \alpha_i = 1$.

Garrett Birkhoff

Special cases

Applications

Past results (Balinski and Russakoff; 1974)

Michel Balinski

Andrew Russakoff

Applications

Past results (Balinski and Russakoff; 1974)

Theorem (Balinski and Russakoff; 1974)

- **1** The graph $G(\Omega_n)$ is vertex-symmetric;
- **2** The degree of each vertex of $G(\Omega_n)$ is equal to $N(n) = \sum_{k=2}^{n} {n \choose k} (k-1)!$;
- **3** The number of edges of Ω_n is equal to $\frac{n!}{2}N(n)$.

Special cases

Applications

Past results (Brualdi and Gibson; 1975–1977)

Peter M. Gibson

Applications

Past results (Brualdi and Gibson; 1975–1977)

Theorem (Brualdi and Gibson; 1975–1977)

Let B be a (0,1)-matrices of order n and denote by $\mathscr{F}(B)$ the set of all $D \in \Omega_n$ satisfying $d_{ij} \leq b_{ij}$ for all $1 \leq i, j \leq n$. The faces of Ω_n are given by $\mathscr{F}(B)$. Moreover, the $n \times n$ permutation matrices P satisfying $P \leq B$ are the vertices of the face $\mathscr{F}(B)$.

Theorem (Brualdi and Gibson; 1975–1977)

If n > 2, then Ω_n has n^2 facets. If n = 2, then Ω_2 only has 2 facets corresponding to the vertices of the polytope.

The discrete volume of Ω_n

- Values of the volume of Ω_n were given for
 - n ≤ 7 by Sturmfels (1997);
 - *n* = 8 by Chan and Robbins (1999);
 - *n* = 9, 10 by Beck and Pixton (2003).

The discrete volume of Ω_n

n	$Vol(\Omega_n)$
1	1
2	2
3	<u>9</u> 8
4	$\frac{176}{2835}$
5	<u>23590375</u> 167382319104
6	<u>9700106723</u> 131928199603200000
7	$\frac{77436678274508929033}{1373029636822352383998689280000000}$
8	$\frac{5562533838576105333259507434329}{12589036260095477950081480942693339803308928000000000}$
9	$\frac{559498129702796022246895686372766052475496691}{215330276631180889478121101750832506606140689157723348094523801600000000000000000000000000000000000$
10	$\frac{727291284016786420977508457990121862548823260052557333386607889}{828160860106766855125676318796872729344622463533089422677980721388055739956270293750883504892820848640000000}{2}$

Volume of the Birkhoff polytope for n = 1, 2, ..., 10

Special cases

An asymptotic formula

Theorem (Canfield and Mckay; 2009)

For any $\varepsilon > 0$,

$$\mathsf{Vol}(\Omega_n) = \frac{1}{(2\pi)^{n-\frac{1}{2}} n^{(n-1)^2}} \exp\left(n^2 + \frac{1}{3} + O\left(n^{-\frac{1}{2}+\varepsilon}\right)\right)$$

as $n \to \infty$.

Special cases

Applications

My supervisors and I

Javad Mashreghi

Frédéric Morneau-Guérin

My cat and I

The Smallest Enclosing Ball Problem

Definition

Given a metric space (\mathcal{U}, d) and a nonempty closed, bounded set $\mathcal{B} \subseteq \mathcal{U}$, a <u>minimal bounding ball</u> of \mathcal{B} relative to the metric space (\mathcal{U}, d) is a ball $B(x, r) \subseteq \mathcal{U}$ containing the set \mathcal{B} and such that r is smallest possible.

The Chebyshev radius and centers

Definition

If a minimal bounding ball B(x, r) of \mathcal{B} relative to the metric space (\mathcal{U}, d) exists, then

- **1** *r* is called the <u>Chebyshev radius</u> of \mathcal{B} relative to (\mathcal{U}, d) and is noted $R_d(\mathcal{B})$;
- **2** x is a <u>Chebyshev center</u> of \mathcal{B} relative (\mathcal{U}, d) .

Observe that we have

$$R_d(\mathcal{B}) = \inf_{x \in \mathcal{U}} \sup_{y \in \mathcal{B}} d(x, y).$$

Special cases

1

Permutation invariant norms

Definition

A matrix norm $\|\cdot\|$ is <u>permutation-invariant</u> if

$$|PAQ|| = ||A||, \qquad \forall A \in M_n,$$

for every permutation matrix P and Q.

Example

① The entrywise *p*-norms
$$||A||_p := \left(\sum_{i,j=1}^n |a_{ij}|^p\right)^{\frac{1}{p}}$$

2 The operator p-norms
$$||A||_{\ell^p \to \ell^p} := \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p}$$
;

3 The Schatten p-norms
$$||A||_{S_p} := (\sum_{i=1}^n |\sigma_i(A)|^p)^{\frac{1}{p}}$$
.

Properties of the Chebyshev centers of Ω_n

Proposition (B., Mashreghi, Morneau-Guérin; 2023)

Let $\mathcal{U} \subseteq M_n(\mathbb{R})$ be a convex permutation-invariant set and let $\|\cdot\|$ be a permutation-invariant norm. If $A_1, A_2 \in \mathcal{U}$ are Chebyshev centers of Ω_n relative to the metric space $(\mathcal{U}, \|\cdot\|)$, then

- **1** PA_iQ (i = 1, 2) is a Chebyshev center of Ω_n for any permutation matrices P and Q;
- **2** Any convex combination of A_1 and A_2 is a Chebyshev center of Ω_n ;

3
$$||A_i - P|| = R_{||\cdot||}(\Omega_n)$$
 $(i = 1, 2)$ for any permutation matrix P .

Main theorem

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

Let $\mathcal{U} \subseteq M_n(\mathbb{R})$ be a convex permutation-invariant set and let $\|\cdot\|$ be a permutation-invariant norm. If there exist a Chebyshev center A of Ω_n relative to the metric space $(\mathcal{U}, \|\cdot\|)$, then the matrix $J_nAJ_n = (\frac{1}{n}\sum_{i,j=1}^n a_{ij})J_n$ is also a Chebyshev center of Ω_n relative to the same metric space. Moreover, the Chebyshev radius of Ω_n in this setting is given by

$$\mathsf{R}_{\|\cdot\|}(\Omega_n) = \|J_n A J_n - I_n\| = \inf_{\substack{\alpha \in \mathbb{R} \\ \alpha J_n \in \mathcal{U}}} \|\alpha J_n - I_n\|$$

and the infimum is attained by $\alpha = \frac{1}{n} \sum_{i,j=1}^{n} a_{ij}$.

A corollary

Corollary (B., Mashreghi, Morneau-Guérin; 2023)

If $\|\cdot\|$ is a permutation-invariant norm, then the uniform matrix J_n is a Chebyshev center of Ω_n relative to $(\Omega_n, \|\cdot\|)$. Moreover, the associated Chebyshev radius is given by $R_{\|\cdot\|}(\Omega_n) = \|J_n - I_n\|$.

Introc	luction
0000	00000

Main Results 0000000● Special cases

About unicity

Ludovick Bouthat (Université Laval) The Geometry of the Birkhoff Polytope CMS Winter meeting 2023 19/26

About unicity

• • •

Special cases ●00

The Schatten *p*-norms

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

For $1 \le p \le \infty$, the uniform matrix J_n is the unique Chebyshev center of Ω_n relative to the metric space $(M_n(\mathbb{R}), \|\cdot\|_{S_p})$, and the associated Chebyshev radius is equal to $(n-1)^{1/p}$.

Special cases

The operator *p*-norms

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

For $1 \le p \le \infty$, the uniform matrix J_n is the unique Chebyshev center of Ω_n relative to the metric space $(\Omega_n, \|\cdot\|_{\ell^p \to \ell^p})$. Moreover, for $p = 1, \infty$, the Chebyshev radius of Ω_n is equal to $2(1 - \frac{1}{n})$ and for p = 2, it is equal to 1.

Special cases

The operator *p*-norms

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

For $1 \le p \le \infty$, the uniform matrix J_n is the unique Chebyshev center of Ω_n relative to the metric space $(\Omega_n, \|\cdot\|_{\ell^p \to \ell^p})$. Moreover, for $p = 1, \infty$, the Chebyshev radius of Ω_n is equal to $2(1 - \frac{1}{n})$ and for p = 2, it is equal to 1.

• For a general $p \in (1, \infty)$, the value of the Chebyshev radius $R_p(\Omega_n) = \|I_n - J_n\|_{\ell^p \to \ell^p}$ is unknown.

A conjecture

Conjecture (B., Mashreghi, Morneau-Guérin; 2023)

For $1 and <math>p \neq 2$, define $\rho := p - 1$. Let x_p be the unique root of the function

$$x \longmapsto
ho \left(1 + x^{rac{1}{
ho}}
ight) \left(1 - x^{
ho - 1}
ight) + (1 + x^{
ho}) \left(1 - x^{rac{1}{
ho} - 1}
ight)$$

in the closed interval [0,1]. If $m_1 := \lfloor \frac{n}{x_p+1} \rfloor$ and $m_2 := \lceil \frac{n}{x_p+1} \rceil$, then

$$R_{p}(\Omega_{n}) = \max_{m \in \{m_{1}, m_{2}\}} \frac{\left(\left(\frac{n}{m}-1\right)^{p-1}+1\right)^{\frac{1}{p}} \left(\left(\frac{n}{m}-1\right)^{\frac{1}{p-1}}+1\right)^{1-\frac{1}{p}}}{\frac{n}{m}}.$$

A problem in stochastic processes

• In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $(D_k) \subseteq \Omega_n$ be such that D_k is the transition matrix of a doubly stochastic Markov chain at step k.

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $(D_k) \subseteq \Omega_n$ be such that D_k is the transition matrix of a doubly stochastic Markov chain at step k.
- **Question** : What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about $D_1D_2D_3\cdots$?

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $(D_k) \subseteq \Omega_n$ be such that D_k is the transition matrix of a doubly stochastic Markov chain at step k.

Question : What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about $D_1D_2D_3\cdots$?

Proposition (B., Mashreghi, Morneau-Guérin; 2023)

For almost all doubly stochastic matrices $D \in \Omega_n$, $D^k \to J_n$ as $k \to \infty$.

Special cases

A sufficient result

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

Let D_1, D_2, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\sigma_2(A)$ be the second largest singular value of A. If $\sum_{k=1}^{\infty} (1 - \sigma_2(D_k)) = \infty$, then $\lim_{m \to \infty} D_1 D_2 \cdots D_m = J_n$.

Special cases

A sufficient result

Theorem (B., Mashreghi, Morneau-Guérin; 2023)

Let D_1, D_2, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\sigma_2(A)$ be the second largest singular value of A. If $\sum_{k=1}^{\infty} (1 - \sigma_2(D_k)) = \infty$, then $\lim_{m \to \infty} D_1 D_2 \cdots D_m = J_n$.

Theorem (Schwarz; 1980)

Let D_1, D_2, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\nu(A) := \min_{i,j} a_{ij}$. If $\sum_{k=1}^{\infty} \nu(D_k) = \infty$, then $\lim_{m \to \infty} D_1 D_2 \cdots D_m = J_n$.

Special cases

Improving a result of Schwarz

• $n\nu(D) \leq 1 - \sigma_2(D)$ for any $D \in \Omega_n$.

Ludovick Bouthat (Université Laval) The Geometry of the Birkhoff Polytope CMS Winter meeting 2023 25/26

Special cases

Improving a result of Schwarz

• $n\nu(D) \leq 1 - \sigma_2(D)$ for any $D \in \Omega_n$.

$$\sum_{k=1}^{\infty} \nu(A_k) = \infty \implies \sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty.$$

Special cases

Improving a result of Schwarz

• $n\nu(D) \leq 1 - \sigma_2(D)$ for any $D \in \Omega_n$.

$$\sum_{k=1}^{\infty} \nu(A_k) = \infty \implies \sum_{k=1}^{\infty} (1 - \sigma_2(A_k)) = \infty.$$

Example

Consider the case $A_k = A$ for each k, where

$$A = \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

Then $A \in \Omega_n$, $\nu(A) = 0$, and the singular values of A are 1, 1/2 and 0 so that $1 - \sigma_2(A) = 1/2$.

- Ludovick Bouthat, Javad Mashreghi, and Frédéric Morneau-Guérin. On the norm of normal matrices. *RIMS Kôkyûroku Bessatsu*, 93 :183–222, 2023.
- Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin. On the Geometry of the Birkhoff Polytope. I. The operator ℓ_n^p -norms, *Linear Algebra Appl.*, Submitted, 2023.
- Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin. On the Geometry of the Birkhoff Polytope. II. The Schatten *p*-norms, *Linear Algebra Appl.*, Submitted, 2023.
- Ludovick Bouthat, Nicolas Doyon, Javad Mashreghi, Frédéric Morneau-Guérin. On the convergence of doubly stochastic Markov Chains, Preprint, 2023.