The Geometry of the Birkhoff Polytope

Ludovick Bouthat

Université Laval
CMS Winter Meeting; December 2023

Acknowledgement

This research is a collaborate effort with Pr. Javad Mashreghi and Pr. Frédéric Morneau-Guérin.

It was done with the financial help of the FRQNT, NSERC, and the Vanier Scholarship.

Fonds de recherche Nature et technologies

Québec ${ }^{\text {ana }}$

Bourses d'études
supérieures du Canada
Vanier
Canada Graduate
Scholarships

Doubly stochastic matrices

Definition

A square matrix is doubly stochastic if :

- nonnegative coefficients;
- row sums $=1$;
- column sums $=1$.

The set of $n \times n$ doubly stochastic matrices is denoted by Ω_{n}.

Example

$$
D=\left[\begin{array}{ccc}
0.1 & 0.3 & 0.6 \\
0.4 & 0.2 & 0.4 \\
0.5 & 0.5 & 0
\end{array}\right]
$$

Important cases

Example

The uniform matrix and the identity matrix

$$
J_{n}=\frac{1}{n}\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right] \quad \& \quad I_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] .
$$

Important properties (Algebraic structure)

- Ω_{n} is a semigroup : $D_{1} D_{2} \in \Omega_{n}$ if $D_{1}, D_{2} \in \Omega_{n}$.

Important properties (Algebraic structure)

- Ω_{n} is a semigroup : $D_{1} D_{2} \in \Omega_{n}$ if $D_{1}, D_{2} \in \Omega_{n}$.
- Ω_{n} is a monoid : $D I_{n}=I_{n} D=D$ for every $D \in I_{n}$.

Important properties (Algebraic structure)

- Ω_{n} is a semigroup : $D_{1} D_{2} \in \Omega_{n}$ if $D_{1}, D_{2} \in \Omega_{n}$.
- Ω_{n} is a monoid : $D I_{n}=I_{n} D=D$ for every $D \in I_{n}$.
- Ω_{n} has an absorbing element : $D J_{n}=J_{n} D=J_{n}$ for every $D \in \Omega_{n}$.

Important properties (Geometric structure)

- Ω_{n} is a convex polytope.

Important properties (Geometric structure)

- Ω_{n} is a convex polytope.

Definition

A convex polytope is a convex hull of a finite and nonempty set of points in \mathbb{R}^{n}.

Birkhoff's theorem

Theorem (Birkhoff ; 1946)

The set Ω_{n} of $n \times n$ doubly stochastic matrices is the convex hull of the $n \times n$ permutation matrices. Furthermore, the permutation matrices are precisely the extreme points of Ω_{n}.

Birkhoff's theorem

Theorem (Birkhoff ; 1946)

The set Ω_{n} of $n \times n$ doubly stochastic matrices is the convex hull of the $n \times n$ permutation matrices. Furthermore, the permutation matrices are precisely the extreme points of Ω_{n}.

- $D=\sum_{i} \alpha_{i} P_{i}$, where P_{i} are permutation matrices and $\alpha_{i}>0, \sum_{i} \alpha_{i}=1$.

Garrett Birkhoff

Past results (Balinski and Russakoff; 1974)

Michel Balinski

Andrew Russakoff

Past results (Balinski and Russakoff; 1974)

Theorem (Balinski and Russakoff; 1974)

(1) The graph $G\left(\Omega_{n}\right)$ is vertex-symmetric;
(2) The degree of each vertex of $G\left(\Omega_{n}\right)$ is equal to $N(n)=\sum_{k=2}^{n}\binom{n}{k}(k-1)!$;
(3) The number of edges of Ω_{n} is equal to $\frac{n!}{2} N(n)$.

Past results (Brualdi and Gibson ; 1975-1977)

Richard A. Brualdi

Peter M. Gibson

Past results (Brualdi and Gibson ; 1975-1977)

Theorem (Brualdi and Gibson ; 1975-1977)

Let B be a $(0,1)$-matrices of order n and denote by $\mathscr{F}(B)$ the set of all $D \in \Omega_{n}$ satisfying $d_{i j} \leq b_{i j}$ for all $1 \leq i, j \leq n$. The faces of Ω_{n} are given by $\mathscr{F}(B)$. Moreover, the $n \times n$ permutation matrices P satisfying $P \leq B$ are the vertices of the face $\mathscr{F}(B)$.

Theorem (Brualdi and Gibson ; 1975-1977)

If $n>2$, then Ω_{n} has n^{2} facets. If $n=2$, then Ω_{2} only has 2 facets corresponding to the vertices of the polytope.

The discrete volume of Ω_{n}

- Values of the volume of Ω_{n} were given for
- $n \leq 7$ by Sturmfels (1997);
- $n=8$ by Chan and Robbins (1999);
- $n=9,10$ by Beck and Pixton (2003).

The discrete volume of Ω_{n}

n	$\operatorname{Vol}\left(\Omega_{n}\right)$
1	1
2	2
3	$\frac{9}{8}$
4	$\frac{176}{2835}$
5	$\frac{23590375}{167382319104}$
6	$\frac{9700106723}{1319281996032000000}$
7	77436678274508929033 13730296368223523839986892800000000
8	$\frac{5562533838576105333259507434329}{125890362600954779500814809426933398033089280000000000}$
9	$\frac{559498129702796022246895686372766052475496691}{215330276631180889478121101750832506606140689157723348094523801600000000000000}$
10	727291284016786420977508457990121862548823260052557333386607889 $\overline{828160860106766855125676318796872729344622463533089422677980721388055739956270293750883504892820848640000000 ~}$

$$
\text { Volume of the Birkhoff polytope for } n=1,2, \ldots, 10
$$

An asymptotic formula

Theorem (Canfield and Mckay ; 2009)

For any $\varepsilon>0$,

$$
\operatorname{Vol}\left(\Omega_{n}\right)=\frac{1}{(2 \pi)^{n-\frac{1}{2}} n^{(n-1)^{2}}} \exp \left(n^{2}+\frac{1}{3}+O\left(n^{-\frac{1}{2}+\varepsilon}\right)\right)
$$

as $n \rightarrow \infty$.

My supervisors and I

Javad Mashreghi

Frédéric Morneau-Guérin

My cat and I

The Smallest Enclosing Ball Problem

Definition

Given a metric space (\mathcal{U}, d) and a nonempty closed, bounded set $\mathcal{B} \subseteq \mathcal{U}$, a minimal bounding ball of \mathcal{B} relative to the metric space (\mathcal{U}, d) is a ball $B(x, r) \subseteq \mathcal{U}$ containing the set \mathcal{B} and such that r is smallest possible.

The Chebyshev radius and centers

Definition

If a minimal bounding ball $B(x, r)$ of \mathcal{B} relative to the metric space (\mathcal{U}, d) exists, then
(1) r is called the Chebyshev radius of \mathcal{B} relative to (\mathcal{U}, d) and is noted $R_{d}(\mathcal{B})$;
(2) x is a Chebyshev center of \mathcal{B} relative (\mathcal{U}, d).

Observe that we have

$$
R_{d}(\mathcal{B})=\inf _{x \in \mathcal{U}} \sup _{y \in \mathcal{B}} d(x, y)
$$

Permutation invariant norms

Definition

A matrix norm $\|\cdot\|$ is permutation-invariant if

$$
\|P A Q\|=\|A\|, \quad \forall A \in M_{n}
$$

for every permutation matrix P and Q.

Example

(1) The entrywise p-norms $\|A\|_{p}:=\left(\sum_{i, j=1}^{n}\left|a_{i j}\right|^{p}\right)^{\frac{1}{p}}$;
(2) The operator p-norms $\|A\|_{\ell^{\rho} \rightarrow \ell^{\rho}}:=\sup _{x \neq 0} \frac{\|A x\|_{\rho}}{\|x\|_{p}}$;
(3) The Schatten p-norms $\|A\|_{S_{p}}:=\left(\sum_{i=1}^{n}\left|\sigma_{i}(A)\right|^{p}\right)^{\frac{1}{p}}$.

Properties of the Chebyshev centers of Ω_{n}

Proposition (B., Mashreghi, Morneau-Guérin ; 2023)

Let $\mathcal{U} \subseteq M_{n}(\mathbb{R})$ be a convex permutation-invariant set and let $\|\cdot\|$ be a permutation-invariant norm. If $A_{1}, A_{2} \in \mathcal{U}$ are Chebyshev centers of Ω_{n} relative to the metric space $(\mathcal{U},\|\cdot\|)$, then
(1) $P A_{i} Q(i=1,2)$ is a Chebyshev center of Ω_{n} for any permutation matrices P and Q;
(2) Any convex combination of A_{1} and A_{2} is a Chebyshev center of Ω_{n};
(3) $\left\|A_{i}-P\right\|=R_{\|\cdot\|}\left(\Omega_{n}\right)(i=1,2)$ for any permutation matrix P.

Main theorem

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)

Let $\mathcal{U} \subseteq M_{n}(\mathbb{R})$ be a convex permutation-invariant set and let $\|\cdot\|$ be a permutation-invariant norm. If there exist a Chebyshev center A of Ω_{n} relative to the metric space $(\mathcal{U},\|\cdot\|)$, then the matrix $J_{n} A J_{n}=\left(\frac{1}{n} \sum_{i, j=1}^{n} a_{i j}\right) J_{n}$ is also a Chebyshev center of Ω_{n} relative to the same metric space. Moreover, the Chebyshev radius of Ω_{n} in this setting is given by

$$
R_{\|\cdot\|}\left(\Omega_{n}\right)=\left\|J_{n} A J_{n}-I_{n}\right\|=\inf _{\substack{\alpha \in \mathbb{R} \\ \alpha J_{n} \in \mathcal{U}}}\left\|\alpha J_{n}-I_{n}\right\|
$$

and the infimum is attained by $\alpha=\frac{1}{n} \sum_{i, j=1}^{n} a_{i j}$.

A corollary

Corollary (B., Mashreghi, Morneau-Guérin ; 2023)

If $\|\cdot\|$ is a permutation-invariant norm, then the uniform matrix J_{n} is a Chebyshev center of Ω_{n} relative to $\left(\Omega_{n},\|\cdot\|\right)$. Moreover, the associated Chebyshev radius is given by $R_{\|\cdot\|}\left(\Omega_{n}\right)=\left\|J_{n}-I_{n}\right\|$.

About unicity

About unicity

The Schatten p-norms

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)
For $1 \leq p \leq \infty$, the uniform matrix J_{n} is the unique Chebyshev center of Ω_{n} relative to the metric space $\left(M_{n}(\mathbb{R}),\|\cdot\| \|_{s_{p}}\right)$, and the associated Chebyshev radius is equal to $(n-1)^{1 / p}$.

The operator p-norms

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)

For $1 \leq p \leq \infty$, the uniform matrix J_{n} is the unique Chebyshev center of Ω_{n} relative to the metric space $\left(\Omega_{n},\|\cdot\|_{\ell^{p} \rightarrow \ell^{p}}\right)$. Moreover, for $p=1, \infty$, the Chebyshev radius of Ω_{n} is equal to $2\left(1-\frac{1}{n}\right)$ and for $p=2$, it is equal to 1 .

The operator p-norms

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)

For $1 \leq p \leq \infty$, the uniform matrix J_{n} is the unique Chebyshev center of Ω_{n} relative to the metric space $\left(\Omega_{n},\|\cdot\|_{\ell^{p} \rightarrow \ell^{p}}\right)$. Moreover, for $p=1, \infty$, the Chebyshev radius of Ω_{n} is equal to $2\left(1-\frac{1}{n}\right)$ and for $p=2$, it is equal to 1 .

- For a general $p \in(1, \infty)$, the value of the Chebyshev radius $R_{p}\left(\Omega_{n}\right)=\left\|I_{n}-J_{n}\right\|_{\ell^{p} \rightarrow \ell^{\rho}}$ is unknown.

A conjecture

Conjecture (B., Mashreghi, Morneau-Guérin ; 2023)

For $1<p<\infty$ and $p \neq 2$, define $\rho:=p-1$. Let x_{p} be the unique root of the function

$$
x \longmapsto \rho\left(1+x^{\frac{1}{\rho}}\right)\left(1-x^{\rho-1}\right)+\left(1+x^{\rho}\right)\left(1-x^{\frac{1}{\rho}-1}\right)
$$

in the closed interval $[0,1]$. If $m_{1}:=\left\lfloor\frac{n}{x_{\rho}+1}\right\rfloor$ and $m_{2}:=\left\lceil\frac{n}{x_{\rho}+1}\right\rceil$, then

$$
R_{p}\left(\Omega_{n}\right)=\max _{m \in\left\{m_{1}, m_{2}\right\}} \frac{\left(\left(\frac{n}{m}-1\right)^{p-1}+1\right)^{\frac{1}{\rho}}\left(\left(\frac{n}{m}-1\right)^{\frac{1}{p-1}}+1\right)^{1-\frac{1}{\rho}}}{\frac{n}{m}} .
$$

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $\left(D_{k}\right) \subseteq \Omega_{n}$ be such that D_{k} is the transition matrix of a doubly stochastic Markov chain at step k.

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $\left(D_{k}\right) \subseteq \Omega_{n}$ be such that D_{k} is the transition matrix of a doubly stochastic Markov chain at step k.

Question : What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about $D_{1} D_{2} D_{3} \cdots$?

A problem in stochastic processes

- In some cases, the transition matrices in a Markov chain are not only stochastic, but doubly stochastic.
- Let $\left(D_{k}\right) \subseteq \Omega_{n}$ be such that D_{k} is the transition matrix of a doubly stochastic Markov chain at step k.

Question : What is the long-term behavior of a Markov chain formed from doubly stochastic matrices, i.e., what can we say about $D_{1} D_{2} D_{3} \cdots$?

Proposition (B., Mashreghi, Morneau-Guérin ; 2023)

For almost all doubly stochastic matrices $D \in \Omega_{n}, D^{k} \rightarrow J_{n}$ as $k \rightarrow \infty$.

A sufficient result

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)

Let D_{1}, D_{2}, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\sigma_{2}(A)$ be the second largest singular value of A. If $\sum_{k=1}^{\infty}\left(1-\sigma_{2}\left(D_{k}\right)\right)=\infty$, then $\lim _{m \rightarrow \infty} D_{1} D_{2} \cdots D_{m}=J_{n}$.

A sufficient result

Theorem (B., Mashreghi, Morneau-Guérin ; 2023)

Let D_{1}, D_{2}, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\sigma_{2}(A)$ be the second largest singular value of A. If
$\sum_{k=1}^{\infty}\left(1-\sigma_{2}\left(D_{k}\right)\right)=\infty$, then $\lim _{m \rightarrow \infty} D_{1} D_{2} \cdots D_{m}=J_{n}$.

Theorem (Schwarz; 1980)

Let D_{1}, D_{2}, \ldots be a sequence of $n \times n$ doubly stochastic matrices and let $\nu(A):=\min _{i, j} a_{i j}$. If $\sum_{k=1}^{\infty} \nu\left(D_{k}\right)=\infty$, then $\lim _{m \rightarrow \infty} D_{1} D_{2} \cdots D_{m}=J_{n}$.

Improving a result of Schwarz

- $n \nu(D) \leq 1-\sigma_{2}(D)$ for any $D \in \Omega_{n}$.

Improving a result of Schwarz

- $n \nu(D) \leq 1-\sigma_{2}(D)$ for any $D \in \Omega_{n}$.

$$
\sum_{k=1}^{\infty} \nu\left(A_{k}\right)=\infty \quad \Longrightarrow \quad \sum_{k=1}^{\infty}\left(1-\sigma_{2}\left(A_{k}\right)\right)=\infty
$$

Improving a result of Schwarz

- $n \nu(D) \leq 1-\sigma_{2}(D)$ for any $D \in \Omega_{n}$.

$$
\sum_{k=1}^{\infty} \nu\left(A_{k}\right)=\infty \quad \Longrightarrow \quad \sum_{k=1}^{\infty}\left(1-\sigma_{2}\left(A_{k}\right)\right)=\infty .
$$

Example

Consider the case $A_{k}=A$ for each k, where

$$
A=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right] .
$$

Then $A \in \Omega_{n}, \nu(A)=0$, and the singular values of A are $1,1 / 2$ and 0 so that $1-\sigma_{2}(A)=1 / 2$.

References

圊 Ludovick Bouthat, Javad Mashreghi, and Frédéric Morneau-Guérin. On the norm of normal matrices. RIMS Kôkyûroku Bessatsu, 93 :183-222, 2023.

Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin. On the Geometry of the Birkhoff Polytope. I. The operator ℓ_{n}^{p}-norms, Linear Algebra Appl., Submitted, 2023.
Ludovick Bouthat, Javad Mashreghi, Frédéric Morneau-Guérin. On the Geometry of the Birkhoff Polytope. II. The Schatten p-norms, Linear Algebra Appl., Submitted, 2023.
Rudovick Bouthat, Nicolas Doyon, Javad Mashreghi, Frédéric Morneau-Guérin. On the convergence of doubly stochastic Markov Chains, Preprint, 2023.

